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Thermodynamics of Glasses: A First Principles Computation
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We propose a first principles computation of the equilibrium thermodynamics of simple fragile glasses
starting from the two body interatomic potential. A replica formulation translates this problem into that
of a gas of interacting molecules, each molecule being builz gttoms, and having a gyration radius
(related to the cage size) which vanishes at zero temperature. We use a small cage expansion, valid
at low temperatures, which allows us to compute the cage size, the specific heat (which follows the
Dulong and Petit law), and the configurational entropy. [S0031-9007(98)08247-7]

PACS numbers: 05.20.—y, 75.10.Nr

Take a three-dimensional classical system consisting gihase [12,13]. The next step, which we carry here, is
N particles, interacting by pairs through a short ranggo understand and compute the correlations between the
potentialv(r). Very often this system will undergo, upon copies and translate them into the physical properties of
cooling or upon density increasing, a solidification intothe glass phase. In a previous preliminary study, we used
an amorphous solid state—the glass state. The conditiosome of these ideas to estimate the glass temperature,
required for observing this glass phase is the avoidancarriving from the liquid phase, but we could not study the
of crystallization, which can always be obtained eitherglass phase itself, because we did not take into account the
through a fast enough quench (the meaning of “fastformation of bound states between these copies [14]. The
depends very much on the type of system) [1] or by usindreatment of the bound states which we develop here, using
appropriately frustrated binary mixtures of hard spheresnew methods, is the key to the analytic study of the glass
soft spheres, or Lennard-Jones particles, as seen in receaiiase.
simulations [2—-6]. The main obstacle to a study of the glass phase is

Our aim is to compute the thermodynamic properties othe very description of the amorphous solid state. A
this glass phase, starting from the microscopic Hamiltonsimple idea, originally developed in the spin glass context
ian. The general framework of our approach finds its root$15,16], is to consider two copies (sometimes called
in the old ideas of [7,8], which have also been studied if'replicas”) of the system, with an infinitesimal extensive
some generalized mean field spin glasses, opening the wagtraction. The low temperature phase is identified from
to a fruitful analogy between the two fields [9]. In this the fact that the two replicas remain close to each other in
framework, which should provide a good description ofthe limit of vanishing coupling.
fragile glass formers, the glass transition, measured from This method can be generalized to study glasses, but
dynamical effects, is associated with an underlying therone must be careful to take into account the degeneracy of
modynamic transition at the Kauzmann or Vogel-Fulchemlass states. This property can be studied in detail in gen-
temperaturd’x [1]. This transition is of an unusual type, eralized spin glass mean field models [17,18]. For struc-
since it presents two apparently contradictory featurestural glasses, this is a conjecture which we shall make,
(i) The order parameter, defined as the inverse radius of then the basis of its agreement with the phenomenology of
cage seen by each particle, jumps discontinuously from O iglasses [6,9]. Let us introduce a free energy functional
the liquid phase to a finite value in the glass phase. (ii) Th&'(p) which depends on the densiffx) and on the tem-
transition is continuous (second order) from the thermoperature. We suppose that at sufficiently low tempera-
dynamical point of view, with a continuous free energyture this functional has many minima (i.e., the number of
and a jump in the specific heat. These properties are imninima goes to infinity with the numbey of particles).
deed observed in generalized spin glasses [9,10], althoudtxactly at zero temperature these minima, labeled by an
these have quenched disorder which is absent in structuraddex «, coincide with the minima of the potential energy
glasses. The recent discovery of some generalized spas function of the coordinates of the particles. To each of
glass systems without quenched disorder [11] strongly sughem we can associate a free enefgyand a free energy
gests that this similarity is not fortuitous. densityf, = F,/N. The number of free energy minima

In order to turn this general idea into a consistentwith free energy density is supposed to be exponentially
computational scheme, a first important step, which wdarge:
shall review below, was the idea of using several copies
of the same system in order to characterize the glass N(f,T,N) =exdN(f,T)], Q)
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where the functionX is called the complexity or the mixtures, which is presumably an easy generalization. We
configurational entropy (it is the contribution to the introducem replicas of each particle, with positions,
entropy coming from the existence of an exponentiallya € 1,...,m, and computeZ,, in the presence of an in-
large number of locally stable configurations). Thisfinitesimal pinning field which is an attractive potential
function is not defined in the regiong > fa(T) Or  between them. This attractive potential must be of short
f < fmin(T), where N'(f,T,N) = 0; it is concave and range (the range should be less than the typical interpar-
it is supposed to go to zero &t,n(T), as found in all ticle distance in the solid phase), and must not break the
existing models so far. In the low temperature regionindistinguishability of allv particles with the same replica
the total free energy of the systefys) can be well index, but its precise form is irrelevant.

approximated by A large attraction gives rise to the formationrablecu-
fmax lar bound statesof m atoms. The appearance of the
e PNIs ~ ZefﬁNf” = f df e MAIZXSDI (2)  glass state$T = Tp) is signaled by the fact that these
@ Fmin molecules still exist in the limit lim—; lim,,—g limy—«

The minima which dominate the sum are those with(notice the order of limits). According to the above
a free energy density™ which minimizes the quantity discussion, the ideal glass transiti@fy ) is detected from
f = 2(f,T)/B. The Kauzmann temperatui® is that the existence, @& < Tk, of a maximum of the replicated
below which the saddle point sticks at the minimum:free energyF,, = —log(Z,)/Bm at a value ofm less
= fmin(T). than 1. This is a well defined mathematical problem,
In order to cope with this degeneracy of states, it iswhich fully describes our general strategy for computing
useful to introducem replicas of the problem, coupled the thermodynamics of the glass state. Of course this
through a small extensive attraction which will eventuallycannot be done without resorting to some approximation
go to zero [13]. In the glass phase, the attraction willschemes. We shall now develop one of them, a kind of
force all m systems to fall into the same glass state, stharmonic expansion in the solid phase, but several other

that the partition function is approximation schemes can be developed [20].
fmax We are interested in the regime of low temperatures
Zn =f df e NmBI=2(£.1)], (3)  where the molecules have a small radius, justifying a
Jmin quadratic expansion of [we work here with a regular

In the limit wherem — 1 the corresponding partition potentialv(r), excluding hard cores]. We thus write the
function Z,, is dominated by the correct saddle pojfit  partition function in terms of the center of mass and
for T > Tx. When the temperature I8 < T, the saddle internal variables;, u{, with x{' = z; + u{ andd , u{ =
point f* sticks atf* = fmin(T), and the replicated free 0, expand the energy to second ordeminand integrate
energyF,, = —log(Zm)/Bm is maximum at a value of over these quadratic fluctuations, leading to

m = m" smaller than one. One can use expressions valid N

in the liquid phase (i.e., high temperature formulas) to 7z, = Zglf l—[ dzie_BmZK/U(Zi—Zj)_[(m—l)/Z]Tr log M,
evaluate the free energy,, atm < m*. Natice that the i=1

replicas which we introduce here play a slightly different (5)
role cqmpared to the ones used in disordered system\:,;\iherezo — N2 T Ndn=1) /N1 and the matrixM,
there is no quenched disorder here and no need t8f dimer;nsionNd % Nd. is given b
average a logarithm of the patrtition function. Replicas are 159 y
introduced to define the amorphous state in the framework

of equilibrium statistical mechanics. There is no “zero Miw(j») = B8 D vz = ) = Bz — 7))
replica” limit, but there is, as in disordered systems, an k (6)
analytic continuation in the number of replicas. We shall

see that this continuation looks rather innocuous. Arandv,,(r) = 9*v/dr,dr, (the indicesu andv, running
alternative and complementary method is to introduce &om 1 to d, denote space directions). We have thus

real coupling of the system to another system which idound an effective Hamiltonian for the centers of masses

thermalized [5,12,19]. z; of the molecules, which basically looks like the origi-
Let us turn to a more explicit implementation of thesenal problem at the effective temperatufé = 1/8m,
ideas. The original partition function is complicated by the contribution of vibration modes. We
1 N shall proceed by using a “quenched approximation,”
Z = NI ] l_[ dx; exp(—,B Z v(x; — xj)), i.e., neglecting the feedback of vibration modes onto
) i=1 I=i<j=N the centers of masses, which amounts to substituting

) <exp(—mT_1 Tr log M)) by exr(—mT_l (Tr log M)), where
where theN indistinguishable particles move in a volume (-) is the Boltzmann expectation value at the effective
V of a d-dimensional space, and we shall take the thertemperaturd™.
modynamic limitN,V — oo at fixed densityp = N/V. Computing the spectrum a@f is an interesting problem
For simplicity, we do not consider here the description ofof random matrix theory, in a subtle case where the matrix
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elements are correlated. Some efforts have been devoteliktance, we see that the most important effect of the
to such computations in the liquid phase where thamultiple correlation function is its vanishing when two
eigenmodes are called instantaneous normal modes [21Joints get near one to the other. We have thus used a
It might be possible to extend these approaches to ourchain” approximation involving only the product of pair
case. Here we shall rather propose a simple resummatiarorrelations, which consists of writing

scheme which should be reasonable at high densities/low dk

temperatures and which also enforces automatically the M, = f ——[ay(k)" + (d = Da,(k)’], (8)
positivity of the spectrum (which is guaranteed in the (2m)

original “annealed” case fom < 1 but not automatic _ d-1 _ 1

in the quenched approximation). Considering first thetviv:r?srzaa”mabaa;re@ngSSgrltr;an;rnz:;nq the func-
diagonal elements dif, we notice that in this high density wye
regime there are many neighbors to each point, and thus a r

good approximation is to neglect the fluctuations of these[ dr g(r)v,(r)e™ = é,,a(k)

diagonal terms and substitute them by their average value, ok P
ro =5 [ dr g(r)V?u(r), with g(r) the pair correlation ( - — "“V)b(k). (9)
in the liquid at the effective temperatu?€. Expanding k d

(Tr log(M /ro)) in powers ofl/ro, the pth order term is This chain approximation selects those contributions

M. = j dx dx, g(x ) whi(_:h survive in the high density Iim_it; systematic cor-

P Loees @Xp 8L o Ap rections could probably be computed in the framework of

% v (1 — x) v (| — x,) the a_pproach of [22]; we leave this for'future wqu_<. Here

papa L B2 Bty Ep L A and in what follows, we have not written explicitly the

X vy (X, = x1), (7)  density: we choose to work with density unity and vary
which involves thep points correlation function of the (he temperature (density and temperature variations are
liquid at the effective temperaturg*. Observing that directly related in soft sphere systems onto which we fo-

v,,(r) is a function which is very peaked at ShO”t cus below). o _ o
The free energy within the chain approximation is

BFn _ dlogm logZ(T") N dim — 1) Iog(ﬂ)

N 2m mN 2m 2
(m — 1) f dk aj (k) a, (k) (m — 1) / Vu(r)?
+ +(d - - ———
sl B e vl 2| Gl IS GV el R UD e S CY
where the functiorl; is defined as | very little in the whole glass phase and remains close
L3(x) = log(l — x) + x + x%/2. (11) to the Kauzmann temperature. The square cage radius

We can thus compute the replicated free engigyolely A, defined asA = +((x7) — (x;)?), is nearly linear in
from the knowledge of the free energy and the pair cortemperature in the whole glass phase, which is natural
relation of the liquid at the effective temperatufé. We  since nonharmonic effects have been neglected. The
have done this computation in the case of soft sphereglue of A at the Kauzmann temperature As~ 2.5 X
in three dimensions withy(r) = 1/r'?, using the free 1073. This corresponds to a typical lateral displacement
energy and pair correlation function of the liquid given of the particle in each direction of ordefA ~ 0.05,
by the hypernetted chain approximation [obviously onewhich is 0.045 of the mean interparticle distance, a
could try to use better schemes of approximation for thevalue which gives the correct order of magnitude for the
liquid, depending on the form af(r), in order to im- Lindeman ratio. The specific heat closely follows the
prove the results; our point here is not to try to get theDulong-Petit law. This is the result that one should obtain
most precise results but to show the feasibility of a quansince we study a solid phase in the classical framework.
titative computation of glass properties using the sim-Notice that it is not at all trivial to derive this law from
plest approximations]. We find (always at density unity)first principles in the glass phase. It is interesting to see
a Kauzmann temperaturg = 0.194. When converted it coming out naturally from our computations: although
into the usual dimensionless paramdfer= p7 /4, this  we are basically using the properties of figuid at the
gives I'r = 1.51 which is close to the glass tempera- effective temperatur&™, the fact that the optimal number
ture(I' ~ 1.6) observed in simulations [23] with very fast of replicasm vanishes linearly witl" at low temperatures
cooling to avoid crystallization. Simulations done on bi- naturally gives the Dulong-Petit law.
nary mixtures (which do not crystallize) give a similar From the knowledge of’,, as a function ofn, we can
value forT". compute the configurational entropy as a function of the
In Fig. 1 we show the results for the various propertiesfree energy. In Fig. 2 we plot the result faf 1) versusf
of the glass phase. The effective temperatfifevaries at three different temperatures. We see that the curves are
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FIG. 1. The various parameters characterizing the glass phase,
as a function of the temperature (the Kauzmann temperature

is Tx = 0.194). From top to bottom: the inverse effective
temperaturel /T* = Bm of the reference liquid, the internal
energy, the specific heat, and the quantpA/T, whereA is
the square cage radius (see text).

similar to each other, the main effect of the temperature [6]

changes being a shift in theaxis. As these temperatures
all lie below Tk, the Boltzmann measure is dominated by
states with zero configurational entropy.( /) can also
be computed abov&g; this will be presented in a more
expanded publication [20].

very precise predictions. The extension of this approach
to dynamical properties is also a fascinating perspective.
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