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Thermodynamics of Glasses: A First Principles Computation
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We propose a first principles computation of the equilibrium thermodynamics of simple fragile glasses
starting from the two body interatomic potential. A replica formulation translates this problem into that
of a gas of interacting molecules, each molecule being built ofm atoms, and having a gyration radius
(related to the cage size) which vanishes at zero temperature. We use a small cage expansion, valid
at low temperatures, which allows us to compute the cage size, the specific heat (which follows the
Dulong and Petit law), and the configurational entropy. [S0031-9007(98)08247-7]
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Take a three-dimensional classical system consisting
N particles, interacting by pairs through a short rang
potentialysrd. Very often this system will undergo, upon
cooling or upon density increasing, a solidification int
an amorphous solid state—the glass state. The condit
required for observing this glass phase is the avoidan
of crystallization, which can always be obtained eith
through a fast enough quench (the meaning of “fas
depends very much on the type of system) [1] or by usi
appropriately frustrated binary mixtures of hard sphere
soft spheres, or Lennard-Jones particles, as seen in re
simulations [2–6].

Our aim is to compute the thermodynamic properties
this glass phase, starting from the microscopic Hamilto
ian. The general framework of our approach finds its roo
in the old ideas of [7,8], which have also been studied
some generalized mean field spin glasses, opening the
to a fruitful analogy between the two fields [9]. In this
framework, which should provide a good description o
fragile glass formers, the glass transition, measured fro
dynamical effects, is associated with an underlying the
modynamic transition at the Kauzmann or Vogel-Fulch
temperatureTK [1]. This transition is of an unusual type
since it presents two apparently contradictory feature
(i) The order parameter, defined as the inverse radius of
cage seen by each particle, jumps discontinuously from 0
the liquid phase to a finite value in the glass phase. (ii) T
transition is continuous (second order) from the therm
dynamical point of view, with a continuous free energ
and a jump in the specific heat. These properties are
deed observed in generalized spin glasses [9,10], altho
these have quenched disorder which is absent in structu
glasses. The recent discovery of some generalized s
glass systems without quenched disorder [11] strongly su
gests that this similarity is not fortuitous.

In order to turn this general idea into a consiste
computational scheme, a first important step, which w
shall review below, was the idea of using several copi
of the same system in order to characterize the gla
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phase [12,13]. The next step, which we carry here,
to understand and compute the correlations between
copies and translate them into the physical properties
the glass phase. In a previous preliminary study, we u
some of these ideas to estimate the glass tempera
arriving from the liquid phase, but we could not study t
glass phase itself, because we did not take into accoun
formation of bound states between these copies [14].
treatment of the bound states which we develop here, u
new methods, is the key to the analytic study of the gl
phase.

The main obstacle to a study of the glass phase
the very description of the amorphous solid state.
simple idea, originally developed in the spin glass cont
[15,16], is to consider two copies (sometimes call
“replicas”) of the system, with an infinitesimal extensiv
attraction. The low temperature phase is identified fro
the fact that the two replicas remain close to each othe
the limit of vanishing coupling.

This method can be generalized to study glasses,
one must be careful to take into account the degenerac
glass states. This property can be studied in detail in g
eralized spin glass mean field models [17,18]. For str
tural glasses, this is a conjecture which we shall ma
on the basis of its agreement with the phenomenology
glasses [6,9]. Let us introduce a free energy functio
Fsrd which depends on the densityrsxd and on the tem-
perature. We suppose that at sufficiently low tempe
ture this functional has many minima (i.e., the number
minima goes to infinity with the numberN of particles).
Exactly at zero temperature these minima, labeled by
indexa, coincide with the minima of the potential energ
as function of the coordinates of the particles. To each
them we can associate a free energyFa and a free energy
densityfa ­ FayN . The number of free energy minim
with free energy densityf is supposed to be exponentiall
large:

N s f, T , Nd ø expfNSs f, T dg , (1)
© 1999 The American Physical Society 747
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where the functionS is called the complexity or the
configurational entropy (it is the contribution to the
entropy coming from the existence of an exponential
large number of locally stable configurations). Thi
function is not defined in the regionsf . fmaxsT d or
f , fminsT d, whereN s f, T , Nd ­ 0; it is concave and
it is supposed to go to zero atfminsTd, as found in all
existing models so far. In the low temperature regio
the total free energy of the systems fSd can be well
approximated by

e2bNfS .
X
a

e2bNfa ­
Z fmax

fmin

df e2Nfbf2Ss f,T dg. (2)

The minima which dominate the sum are those wit
a free energy densityfp which minimizes the quantity
f 2 Ss f, T dyb. The Kauzmann temperatureTK is that
below which the saddle point sticks at the minimum
fp ­ fminsTd.

In order to cope with this degeneracy of states, it
useful to introducem replicas of the problem, coupled
through a small extensive attraction which will eventuall
go to zero [13]. In the glass phase, the attraction w
force all m systems to fall into the same glass state, s
that the partition function is

Zm ­
Z fmax

fmin

df e2Nfmbf2Ss f,Tdg. (3)

In the limit where m ! 1 the corresponding partition
function Zm is dominated by the correct saddle pointfp

for T . TK . When the temperature isT , TK , the saddle
point fp sticks atfp ­ fminsT d, and the replicated free
energyFm ­ 2 logsZmdybm is maximum at a value of
m ­ mp smaller than one. One can use expressions va
in the liquid phase (i.e., high temperature formulas)
evaluate the free energyFm at m , mp. Notice that the
replicas which we introduce here play a slightly differen
role compared to the ones used in disordered system
there is no quenched disorder here and no need
average a logarithm of the partition function. Replicas a
introduced to define the amorphous state in the framewo
of equilibrium statistical mechanics. There is no “zer
replica” limit, but there is, as in disordered systems, a
analytic continuation in the number of replicas. We sha
see that this continuation looks rather innocuous. A
alternative and complementary method is to introduce
real coupling of the system to another system which
thermalized [5,12,19].

Let us turn to a more explicit implementation of thes
ideas. The original partition function is

Z ­
1

N!

Z NY
i­1

dxi exp

√
2b

X
1#i,j#N

ysxi 2 xjd

!
,

(4)

where theN indistinguishable particles move in a volume
V of a d-dimensional space, and we shall take the the
modynamic limit N , V ! ` at fixed densityr ­ NyV .
For simplicity, we do not consider here the description o
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mixtures, which is presumably an easy generalization.
introducem replicas of each particle, with positionsxa

i ,
a [ 1, . . . , m, and computeZm in the presence of an in-
finitesimal pinning field which is an attractive potentialw
between them. This attractive potential must be of sh
range (the range should be less than the typical interp
ticle distance in the solid phase), and must not break
indistinguishability of allN particles with the same replica
index, but its precise form is irrelevant.

A large attraction gives rise to the formation ofmolecu-
lar bound statesof m atoms. The appearance of th
glass statessT # TDd is signaled by the fact that thes
molecules still exist in the limit limm!1 limw!0 limN!`

(notice the order of limits). According to the abov
discussion, the ideal glass transitionsTK d is detected from
the existence, atT , TK , of a maximum of the replicated
free energyFm ­ 2 logsZmdybm at a value ofm less
than 1. This is a well defined mathematical proble
which fully describes our general strategy for computi
the thermodynamics of the glass state. Of course t
cannot be done without resorting to some approximat
schemes. We shall now develop one of them, a kind
harmonic expansion in the solid phase, but several ot
approximation schemes can be developed [20].

We are interested in the regime of low temperatur
where the molecules have a small radius, justifying
quadratic expansion ofy [we work here with a regular
potentialysrd, excluding hard cores]. We thus write th
partition function in terms of the center of mass an
internal variableszi , ua

i , with xa
i ­ zi 1 ua

i and
P

a ua
i ­

0, expand the energy to second order inu, and integrate
over these quadratic fluctuations, leading to

Zm ­ Z0
m

Z NY
i­1

dzi e
2bm

P
i,j

yszi2zjd2fsm21dy2g Tr log M
,

(5)

where Z0
m ­ mNdy2

p
2p Ndsm21dyN!, and the matrixM,

of dimensionNd 3 Nd, is given by

Msimd s jnd ­ bdij

X
k

ymnszi 2 zkd 2 bymnszi 2 zjd

(6)

andymnsrd ­ ≠2yy≠rm≠rn (the indicesm andn, running
from 1 to d, denote space directions). We have th
found an effective Hamiltonian for the centers of mass
zi of the molecules, which basically looks like the orig
nal problem at the effective temperatureTp ­ 1ybm,
complicated by the contribution of vibration modes. W
shall proceed by using a “quenched approximation
i.e., neglecting the feedback of vibration modes on
the centers of masses, which amounts to substitut
kexps2 m21

2 Tr log Mdl by exps2 m21
2 kTr log Mld, where

k?l is the Boltzmann expectation value at the effecti
temperatureTp.

Computing the spectrum ofM is an interesting problem
of random matrix theory, in a subtle case where the ma
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elements are correlated. Some efforts have been devo
to such computations in the liquid phase where th
eigenmodes are called instantaneous normal modes [2
It might be possible to extend these approaches to o
case. Here we shall rather propose a simple resummat
scheme which should be reasonable at high densities/ l
temperatures and which also enforces automatically t
positivity of the spectrum (which is guaranteed in th
original “annealed” case form , 1 but not automatic
in the quenched approximation). Considering first th
diagonal elements ofM, we notice that in this high density
regime there are many neighbors to each point, and thu
good approximation is to neglect the fluctuations of the
diagonal terms and substitute them by their average val
r0 ; b

d

R
dr gsrd=2ysrd, with gsrd the pair correlation

in the liquid at the effective temperatureTp. Expanding
kTr logsMyr0dl in powers of1yr0, thepth order term is

Mp ;
Z

dx1, . . . , dxp gsx1, . . . , xpd

3 ym1m2 sx1 2 x2d , . . . , ymp21mp sxp21 2 xpd

3 ympm1 sxp 2 x1d , (7)

which involves thep points correlation function of the
liquid at the effective temperatureTp. Observing that
ymnsrd is a function which is very peaked at shor
ted
e
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distance, we see that the most important effect of th
multiple correlation function is its vanishing when two
points get near one to the other. We have thus used
“chain” approximation involving only the product of pair
correlations, which consists of writing

Mp .
Z dk

s2pdd
fakskdp 1 sd 2 1da'skdpg , (8)

whereak ­ a 1
d21

d b anda' ­ a 2
1
d b, and the func-

tionsa andb are the Fourier transforms ofymn:Z
dr gsrdymnsrdeikr ; dmnaskd

1

√
kmkn

k2 2
dmn

d

!
bskd . (9)

This chain approximation selects those contribution
which survive in the high density limit; systematic cor-
rections could probably be computed in the framework o
the approach of [22]; we leave this for future work. Here
and in what follows, we have not written explicitly the
density: we choose to work with density unity and vary
the temperature (density and temperature variations a
directly related in soft sphere systems onto which we fo
cus below).

The free energy within the chain approximation is
bFm

N
­ 2

d log m
2m

2
log ZsT pd

mN
1

dsm 2 1d
2m

log

√
br0

2p

!

1
sm 2 1d

2m

Z dk
s2pdd

"
L3

√
akskd

r0

!
1 sd 2 1dL3

√
a'skd

r0

!#
2

sm 2 1d
4m

Z
dr gsrd

X
mn

ymnsrd2

r2
0

, (10)
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where the functionL3 is defined as
L3sxd ­ logs1 2 xd 1 x 1 x2y2 . (11)

We can thus compute the replicated free energyfm solely
from the knowledge of the free energy and the pair co
relation of the liquid at the effective temperatureTp. We
have done this computation in the case of soft sphe
in three dimensions withysrd ­ 1yr12, using the free
energy and pair correlation function of the liquid give
by the hypernetted chain approximation [obviously on
could try to use better schemes of approximation for t
liquid, depending on the form ofysrd, in order to im-
prove the results; our point here is not to try to get th
most precise results but to show the feasibility of a qua
titative computation of glass properties using the sim
plest approximations]. We find (always at density unit
a Kauzmann temperatureTK . 0.194. When converted
into the usual dimensionless parameterG ­ rT 21y4, this
gives GK . 1.51 which is close to the glass tempera
turesG , 1.6d observed in simulations [23] with very fas
cooling to avoid crystallization. Simulations done on b
nary mixtures (which do not crystallize) give a simila
value forG.

In Fig. 1 we show the results for the various properti
of the glass phase. The effective temperatureTp varies
r-
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very little in the whole glass phase and remains clos
to the Kauzmann temperature. The square cage rad
A, defined asA ­ 1

3 skx2
i l 2 kxil2d, is nearly linear in

temperature in the whole glass phase, which is natu
since nonharmonic effects have been neglected. T
value of A at the Kauzmann temperature isA , 2.5 3

1023. This corresponds to a typical lateral displaceme
of the particle in each direction of order

p
A , 0.05,

which is 0.045 of the mean interparticle distance,
value which gives the correct order of magnitude for th
Lindeman ratio. The specific heat closely follows th
Dulong-Petit law. This is the result that one should obta
since we study a solid phase in the classical framewor
Notice that it is not at all trivial to derive this law from
first principles in the glass phase. It is interesting to se
it coming out naturally from our computations: although
we are basically using the properties of theliquid at the
effective temperatureTp, the fact that the optimal number
of replicasm vanishes linearly withT at low temperatures
naturally gives the Dulong-Petit law.

From the knowledge ofFm as a function ofm, we can
compute the configurational entropy as a function of th
free energy. In Fig. 2 we plot the result forSs fd versusf
at three different temperatures. We see that the curves
749
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FIG. 1. The various parameters characterizing the glass ph
as a function of the temperature (the Kauzmann temperat
is TK . 0.194). From top to bottom: the inverse effective
temperature1yTp ­ bm of the reference liquid, the interna
energy, the specific heat, and the quantity100AyT , whereA is
the square cage radius (see text).

similar to each other, the main effect of the temperatu
changes being a shift in thef axis. As these temperature
all lie belowTK , the Boltzmann measure is dominated b
states with zero configurational entropy.Ss fd can also
be computed aboveTK ; this will be presented in a more
expanded publication [20].

To summarize, we have developed a method for the a
lytic study of the thermodynamics of the glass phase. T
basic knowledge one needs is the detailed properties of
liquid (particularly the instantaneous normal modes) clo
to the glass transition. We have shown that an impleme
tation of this scheme with rather simple approximatio
leads to very reasonable results. We hope to be able to
fine these approximations in the near future in order to g
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FIG. 2. The configurational entropySs fd versus the free
energy, at temperaturesT ­ 0.05, 0.1, 0.15 (from left to right).
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very precise predictions. The extension of this approa
to dynamical properties is also a fascinating perspective
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