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Diffusion of Ionic Particles in Charged Disordered Media
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The results of the first realistic computer simulation of diffusion of charged species in heterogeneou
media with a quenched distribution of charge centers are reported. They indicate that the char
centers create deep traps that capture the mobile particles and slow down their motion for a lon
time. However, the mobile particles eventually escape the traps. Their motion between the traps
diffusive. These results explain several sets of hitherto unexplained experimental data and resol
a long-standing controversy regarding the nature of transport of charged particles in a heterogeneo
charged medium. [S0031-9007(98)08280-5]
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Transport in heterogeneous systems, such as flow
porous media [1], conduction in composite solids [2] an
in amorphous semiconductors [3], and diffusion throug
biological tissues [4] constitute an important set of phe
nomena. Most of the previous studies have consider
transport of neutral particles in a disordered but neutr
medium. However, transport of charged particles in a di
ordered medium, especially one with a quenched distrib
tion of charge centers, is also very important, since it
relevant to many important phenomena, such as dynam
response of nonmetallic materials, e.g., ionic glasses a
polymeric and glassy conductors, highly defected crysta
and porous materials that are used for catalytic and se
ration processes. Although this problem has also be
studied extensively, no consensus regarding the nature
the transport process has emerged. For example, Zh
[5] studied diffusion of a particle in a random potentia
(generated by, e.g., quenched charge centers) and arg
that for sufficiently strong disorder localized states will ex
ist which, however, do not live forever; rather, the loca
ization center hops discontinuously with its displaceme
R at time t given byR , ty ln t. Engel and Ebeling [6]
argued that if in Zhang’s model the potential energy fluc
tuations contain short-range correlations, then the avera
time spent in a localized state grows as expsb2E2d, where
b ­ skT d21, with k and T being the Boltzmann’s con-
stant and the temperature, respectively, andE is the typi-
cal depth of potential energy well. De Masiet al. [7]
predicted that the diffusivity of mobile charged particles i
a charged medium should have a finite boundwhich can
be zero,thus allowing complete localization. Bouchaud
and Georges [8] studied diffusion in disordered media
which the disorder exhibits long-range correlations, su
as that induced by Coulombic interactions, and the forc
force correlation function decays asCsrd , r2a . They
argued that for ad-dimensional system witha , d and
a , 2 transport is anomalous, i.e., the mean square d
placement (MSD)kR2stdl , tz with z , 1. Chakraborty,
Bratko, and Chandler [9] use a variational method to tre
diffusion of charged particles in a disordered medium wit
random distribution of charge centers and argue that f
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sufficiently strong disorder there should be a crossov
from a weakly diffusive behavior to complete localize
states, whereas Deem and Chandler [10] use renormal
tion group techniques to argue that, even for sufficien
strong disorder, one still has diffusive motion between l
calized states. Therefore, over the years there have b
several contradictory results with no consensus emergi
This has also prevented the interpretation of the expe
mental data for diffusion of ions in random media with
distribution of charge centers. For example, in diffusion
ions through zeolites, which are porous catalytic materi
with a distribution of charge center (ions and cations),
has been observed [11] that, upon changing the charge
the diffusing particles (i.e., making the disorder stronge
the diffusivity decreases by orders of magnitude. Such
puzzling data have remained unexplained.

Despite its great importance, there has been no co
puter simulation of this problem. This is due to the fa
that simulation of diffusion of charged particles in a he
erogeneous medium withquenched distribution of charge
centers is extremely difficult, because (i) the Coulom
bic interactions between the particles are long ranged a
(ii) as we show, the charge centers give rise to deep pot
tial wells that may capture the mobile particles and slo
down their motion for long times. In this Letter we repo
the results of the first Monte Carlo simulation of this prob
lem which we believe resolve the controversy and expla
the hitherto unexplained experimental data.

We used both lattice and continuum representation
the disordered medium with periodic boundary condition
Our simulations indicated that with large enough syste
periodic and free boundaries yield the same results. T
continuum representation was used when the fixed cha
centers were distributed randomly in the medium. T
lattice, which was simple cubic, was utilized when w
used a potential-potential correlation function, define
below, for generating the potentials due to the fixed char
centers. At timet ­ 0 the charged mobile particles ar
distributed randomly in the system, but as they mo
correlations develop between them. In addition to t
Coulombic interaction, we also include a short-rang
© 1999 The American Physical Society 735
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Lennard-Jones-type repulsive interaction (i.e.,,1yr12,
wherer is the distance) between the particles. At ea
time step a random but finite displacement in a rando
direction is selected for each particle. If the displacemen
are too large, the probabilities of their acceptance w
be small and the simulation does not generate much n
statistics, whereas although very small displacements
accepted more often, they do not contribute significan
to the statistics of the particles’ motion. Thus, a displac
ment vectord ­ sdx , dy, dzd was selected [12] such tha
da ­ s2Ra 2 1ddm, wherea ­ x, y, z; Ra is a random
number distributed uniformly in (0,1]; anddm is the
maximum allowed displacement, which we took it to b
of the order of a lattice constant, hence ensuring that
displacements are smaller than the correlation lengthk21

of the potential distribution (see below) due to the fixe
charge centers (otherwise the simulations are not me
ingful). A displacement is accepted with probability 1 i
Dfi , 0, or with probability exps2bDfid if Dfi $ 0,
whereDfi is the difference between the potential energ
of the system in its present state and that of the new st
obtained by moving theith particle to its new position.
The mean square displacementskR2stdl of the mobile
particles are then calculated and averaged over all
particles and many realizations of the medium.

The charge centers are either distributed explicit
throughout the medium or are represented by their p
tential distribution, generated by the potential-potenti
correlation function. To make the system neutral, equ
numbers of the centers with opposite charges are inser
in the system, and the same is done with the mobile p
ticles. The Coulomb potentialfi acting on theith mobile
particle is written asfi ­ f

s fmd
i 1 f

smmd
i , wheref

s fmd
i

is due to the interaction between the mobile particle a
the fixed centers, whilef

smmd
i is contributed by the in-

teraction between the mobile particles themselves.f
s fmd
i

is calculated by two different methods (yielding identica
results). In one method,f

s fmd
i (and alsof

smmd
i ) is com-

puted by the multipole expansion method discussed b
low. In the second method, we use the fact that diffusio
of charged particles in disordered media can be viewed
their motion in an external potential field generated by th
quenched disorder that represents the fixed charge cen
Thus, instead of directly distributing the charge cente
with a given densityrsrd, f

s fmd
i is formally represented

by the solution of the Poisson’s equation which, e.g.,
three dimensions (3D), is given by

f
s fmd
i srd ­ 2

qfqm

4p´

Z
dr0 rsr0d

jr 2 r0j
, (1)

where qf and qm are the charges for the fixed and
mobile particles, respectively, and́ is the permittivity.
The charge densityrsrd is represented by its correlation
function xrrsrd which, in the case of Debye-Hücke
statistics, is given by
736
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xrrsrd ­ r0dsrd 2
r0k2e2kjrj

4pjrj
, (2)

where r0 ­ krsrdl, and k21 is the spatial correlation
length. The power spectrum̂xffsvd for the potential is
calculated from that of the charge densityx̂rrsvd, since
Eq. (1) is a convolution integral of the charge density a
the Green function for the potential generated by a sin
charge particle, and therefore in 3D

x̂ffsvd ­

µ
qfqm

´

∂2 r0

v2sv2 1 k2d
. (3)

Hence, a realization of the potential field is generat
as follows. Random numbers, distributed uniformly
f2

p
3,

p
3d (this ensures that their power spectrum is 1,

it should be), are assigned to the sites of the system. T
resulting array is then Fourier transformed and multiplie

by
q

x̂ffsvd and then inverse Fourier transformed.

f
s fmd
i and f

smmd
i were also calculated by a multipole

expansion method [13]. In this method particlei interacts
with the nearby particles through the usual Coulom
potential, and with the far away particles through the
precalculated multipole expansions of the potential. T
total potentialfsgdsrd ­

PN
j fjsrd produced by a group of

N charges is

fsgdsrd ­
q
r

2 P ? ===

µ
1
r

∂
1

1
2

Q:======

µ
1
r

∂
2

1
6

O
...=========

µ
1
r

∂
1 . . . , (4)

where q, P, Q, and O are, respectively, the monopole
dipole, quadrupole, and octapole moments of the group
charges around the origin. In practice we writefsgdsrd ­
qyr 1 s1yr3d

P
a Para 1 1ys2r5d s

P
a Qaarara 1P

a

P
b Qabrarb 2 r2Qd 1 1ys6r7d f15s

P
a Oaaara 3

rara 1
P

a

P
b Oaabrararb 1

P
a

P
b

P
g Oabgra 3

rbrgd 2 9r2s
P

a Oadg 1 . . . , with q ­
P

i qi, Pa ­P
i qiRia, Qaa ­

P
i qiR

2
ia , Qab ­

P
i qiRiaRib, Q ­P

i qiR
2
i , Oaaa ­

P
i qiR

3
ia , Oaab ­

P
i qiR

2
iaRib,

Oabg ­
P

i qiRiaRibRig, andOa ­
P

i qiR
2
i Ria, where

r ­ jrj, Ri is the position vector of theith charge,a, b,
andg stand for the coordinatesx, y, andz, andqi is the
charge of theith (fixed or mobile) particle.

A highly efficient simulation technique is fundamenta
to this study. Hence, in addition to taking advantag
of the multipole expansion, the 3D simulation box
divided into eight smaller equal boxes, calledchildren
of the original box [14]. Each child box is aparent to
eight smaller boxes, with the division continuing up t
a certain level which is called the maximum level o
division (maxlevel). The data needed for each partic
i.e., its position and type (mobile or fixed), are stored in
particle object. A cell objectcontains a list of itscurrent
particles. Each particle is also “connected” to the ne
and previous particle in the list. After setting up the enti
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data structure, the multipoles of each cell around its cen
at the maxlevel are calculated using the above expressio
Then, the multipoles of the parent cells are computed b
translating and adding the multipoles of their children b
a displacement vector,,, ­ s,x , ,y , ,zd. In terms of the
old quantities, the new translated (primed) quantities a
given by P0

a ­ Pa 2 q,a, Q0
aa ­ Qaa 2 2,aPa 1

q,2
a , Q0

ab ­ Qab 2 ,bPa 2 ,aPb 1 q,a,b , Q0 ­
Q0

aa 1 Q0
bb 1 Q0

gg, O0
aaa ­ Oaaa 2 3,a 1 2,2

a 2 q,3
a ,

O0
aab ­ Oaab 2 ,bOaa 1 ,af22Qab 1 2,bPa 1 ,a 3

sPb 2 q,bdg, and O0
abg ­ Oabg 1 ,gs,bPa 2

Qabd 1 ,bs,aPg 2 Qagd 1 ,as,gPb 2 Qbgd 2 q 3

,a,b,g .
Each particle’s potential energy is divided intof

near
i

and f
far
i . A particle in a cell at the maxlevel interacts

with all other particles in the same cell and in the neigh
boring cells by the usual Coulomb potential, thus yield
ing f

near
j . It also interacts with its parent’s neighbors

children through the corresponding multipole expansion
Computations continue up to the whole simulation box
hence yieldingffar

i . In this way the number of the cells
that interact with each particle is drastically reduced a
one gets away from the particle. For example, in 3D wit
four levels of division the number of the interacting cell
is only 415, rather than the original 4069 cells.

To demonstrate the effect of the quenched disorder, w
present and compare the results for a single realization
the system with those averaged over many realization
Figure 1 presents the time dependence of the MS
of the mobile particles in a single realization of a
1D medium. The fixed charge centers are represent
by their potential distribution, i.e., the 1D version o
Eq. (3),r0sqfqmy´d2sv2 1 k2d21. The mobile particles
can travel only in the spacebetweenthemselves, since
they cannot “jump” over each other. There are man
relatively fast diffusive jumps in the MSD after certain

FIG. 1. Mean square displacement versus timet of the mobile
charged particles in a single realization of a 1D medium fo
k ­ 0.07 (top) and k ­ 0.05 (bottom), and r0 ­ 0.1 and
T ­ 273 K.
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periods of time. In between the jumps one has a slo
motion that causes the overall transport to be anomalo
not only in 1D but also in 2D and 3D (see below). Fo
fixed r0 and k21 the slopes of the straight lines tha
represent the faster part of the motion are essentia
the same, indicating thesamediffusion coefficient for
all of them. The jumps represent the mobile particle
escape from the potential wells (traps) that the quench
distribution of the charge centers creates. The traps h
a finite sphere of influence, such that for any partic
i within a sphere the potential differenceDfi for a
displacement that can takei out of the sphere is very
large, and thus the probability of an appreciable jump
small. This is represented by the almost horizontal pa
of the curves shown in Fig. 1, indicating very small,
not zero, diffusivity. The jumps occur when after som
time the particles are close to the boundary of the tra
and escape with a displacement that takes them out of
traps. They then resume their diffusive (fast) motion un
they are captured by another trap, and so on.

In Fig. 2 we present the time dependence of the MS
in both 1D and 3D for variousk. The results are the
average over 50 realizations of the system. The depth
the potential wells, and thus the radius of influence of t
traps, is controlled byk21. The largerk21, the deeper
is the potential well, and thus the larger the time spe
in such traps. This is indicated by the very small slop
of the curves ask decreases. In the limitk21 ! `, the
trapping times become infinitely large, and therefore t
effective diffusivity iszero[15].

Deem and Chandler (DC) [10] proposed that th
effective diffusivity D of the particles ind dimensions
obeys the inequality

D

D0
$ expf2b2xyys0dydg , (5)

wherexyys0d ­ s4ped2xffs0d, andD0 is the bulk dif-
fusivity (in the absence of the charge centers). Fu
thermore, DC proposed that the equality in (5) hold
exactlyin 1D, and possibly forall values ofd. Because
the overall transport is nondiffusive,D varies with the
time. Therefore, it is not clear what DC mean by the e
fective diffusivity. Since between the traps the motio
is relatively fast and diffusive, we present in Fig. 3 th

FIG. 2. MSD for (a) a 3D medium withr0 ­ 0.005 and
T ­ 273 K and (b) for a 1D medium for the same condition
as in Fig. 1. The results represent averages over 50 realizati
737
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FIG. 3. The dependence of the diffusivityD (for the faster
part of the motion) on the potential-potential correlatio
function xyys0d in 3D for various values ofk. xyys0d is
changed by varyingr0 from 1024 to 1021, andT ­ 273 K.

dependence ofD on xyys0d for 3D systems, whereD
now represents the diffusivity between the traps, whi
Fig. 4 shows the same for 1D systems. As can be se
even for this diffusivity the inequality in (5) does not hold
In 3D for small values ofk, the slope of the straight line
is positive [whereas according to (5) it should be nega
tive]. As k increases, the curves bend over, and final
for large enoughk the slopes become negative. As a fur
ther test, we simulated diffusion of charged particles in
3D medium in which the charge centers were random
distributed, rather than being represented by the poten
distribution (3). The results [15] indicated that (5) doe
not hold.

In summary, a quenched distribution of charge cente
gives rise to deep potential wells that capture mobi
charged particles and slow down their motion for som
time. The time scale for staying in the well depend
on the correlation lengthk21. For any finitek21 the
particles eventually escape from the wells. In betwee
the wells the motion is diffusive with the same diffusivity
The overall motion is subdiffusive with a diffusivity that
decreases with the time. Only when the correlation leng
k21 ! ` does the diffusivity vanish.

Our results also provide physical interpretation for th
experimental data for diffusion of ions in zeolites an
similar porous media mentioned above. As the ion
diffuse into the charged porous medium, they get trapp
in the potential wells and stay there over time scales th
are much larger than the measurement times, and th
their measured flux out of the medium and their measur
D are drastically reduced. Moreover,D would decrease
with the time. In such experiments, it is very difficult to
measureD betweenthe wells. All one measures is an
effectiveD which would be very small if the time scale
for leaving the potential wells is large.
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FIG. 4. Same as in Fig. 3, but in 1D.
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