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Diffusion of lonic Particles in Charged Disordered Media
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The results of the first realistic computer simulation of diffusion of charged species in heterogeneous
media with a quenched distribution of charge centers are reported. They indicate that the charge
centers create deep traps that capture the mobile particles and slow down their motion for a long
time. However, the mobile particles eventually escape the traps. Their motion between the traps is
diffusive. These results explain several sets of hitherto unexplained experimental data and resolve
a long-standing controversy regarding the nature of transport of charged particles in a heterogeneous
charged medium. [S0031-9007(98)08280-5]

PACS numbers: 47.55.Mh, 05.40.—a

Transport in heterogeneous systems, such as flow igufficiently strong disorder there should be a crossover
porous media [1], conduction in composite solids [2] andfrom a weakly diffusive behavior to complete localized
in amorphous semiconductors [3], and diffusion througtstates, whereas Deem and Chandler [10] use renormaliza-
biological tissues [4] constitute an important set of phetion group techniques to argue that, even for sufficiently
nomena. Most of the previous studies have considerestrong disorder, one still has diffusive motion between lo-
transport of neutral particles in a disordered but neutratalized states. Therefore, over the years there have been
medium. However, transport of charged particles in a disseveral contradictory results with no consensus emerging.
ordered medium, especially one with a quenched distributhis has also prevented the interpretation of the experi-
tion of charge centers, is also very important, since it ismental data for diffusion of ions in random media with a
relevant to many important phenomena, such as dynamitistribution of charge centers. For example, in diffusion of
response of nonmetallic materials, e.g., ionic glasses aridns through zeolites, which are porous catalytic materials
polymeric and glassy conductors, highly defected crystalsyith a distribution of charge center (ions and cations), it
and porous materials that are used for catalytic and sep&as been observed [11] that, upon changing the charge on
ration processes. Although this problem has also beethe diffusing particles (i.e., making the disorder stronger),
studied extensively, no consensus regarding the nature tie diffusivity decreases by orders of magnitud&uch
the transport process has emerged. For example, Zhapgizzling data have remained unexplained.

[5] studied diffusion of a particle in a random potential Despite its great importance, there has been no com-
(generated by, e.g., quenched charge centers) and argugater simulation of this problem. This is due to the fact
that for sufficiently strong disorder localized states will ex-that simulation of diffusion of charged particles in a het-
ist which, however, do not live forever; rather, the local-erogeneous medium wittjuenched distribution of charge
ization center hops discontinuously with its displacemententersis extremely difficult, because (i) the Coulom-
R at timer given byR ~ ¢/In¢. Engel and Ebeling [6] bic interactions between the particles are long ranged and
argued that if in Zhang’'s model the potential energy fluc<(ii) as we show, the charge centers give rise to deep poten-
tuations contain short-range correlations, then the averagil wells that may capture the mobile particles and slow
time spent in a localized state grows as @E?2), where  down their motion for long times. In this Letter we report
B = (kT)~', with k and T being the Boltzmann’s con- the results of the first Monte Carlo simulation of this prob-
stant and the temperature, respectively, &nid the typi-  lem which we believe resolve the controversy and explain
cal depth of potential energy well. De Mast al.[7]  the hitherto unexplained experimental data.

predicted that the diffusivity of mobile charged particlesin We used both lattice and continuum representation of
a charged medium should have a finite bowvtdch can  the disordered medium with periodic boundary conditions.
be zero,thus allowing complete localization. Bouchaud Our simulations indicated that with large enough systems
and Georges [8] studied diffusion in disordered media inperiodic and free boundaries yield the same results. The
which the disorder exhibits long-range correlations, sucltontinuum representation was used when the fixed charge
as that induced by Coulombic interactions, and the forceeenters were distributed randomly in the medium. The
force correlation function decays @&&r) ~ r~“. They lattice, which was simple cubic, was utilized when we
argued that for a/-dimensional system witlx < d and used a potential-potential correlation function, defined
a < 2 transport is anomalous, i.e., the mean square dihelow, for generating the potentials due to the fixed charge
placement (MSDJR?(r)) ~ ¢* with z < 1. Chakraborty, centers. At timer = 0 the charged mobile particles are
Bratko, and Chandler [9] use a variational method to treatlistributed randomly in the system, but as they move
diffusion of charged particles in a disordered medium withcorrelations develop between them. In addition to the
random distribution of charge centers and argue that fo€Coulombic interaction, we also include a short-range,
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Lennard-Jones-type repulsive interaction (i.e]/r!?, poK’e
where r is the distance) between the particles. At each Xpp(X) = pod(r) = dlr] (2)
time step a random but finite displacement in a random

direction is selected for each particle. If the displacement¥/here po = (p(r)), and ' is the spatial correlation
are too large, the probabilities of their acceptance willength. The power spectrur, () for the potential is

be small and the simulation does not generate much ne@alculated from that of the charge densjty,(w), since
statistics, whereas although very small displacements afed. (1) is a convolution integral of the charge density and
accepted more often, they do not contribute significantlyfhe Green function for the potential generated by a single
to the statistics of the particles’ motion. Thus, a displacecharge particle, and therefore in 3D

ment vectoré = (4., 6y, 5;) was selected [12] such that Grdm\2

6o = R, — 1)8,,, wherea = x,y,z; R, is a random Xoop(w) = < ! m) 5 fo > - 3)
number distributed uniformly in (0,1]; and,, is the e ) ol + K7

maximum allowed displacement, which we took it to beHence, a realization of the potential field is generated
of the order of a lattice constant, hence ensuring that thgs follows. Random numbers, distributed uniformly in
displacements are smaller than the correlation lergth [—+/3,+/3) (this ensures that their power spectrum is 1, as
of the potential distribution (see below) due to the fixedit should be), are assigned to the sites of the system. The
charge centers (otherwise the simulations are not meamesulting array is then Fourier transformed and multiplied

ingful). A displacement is accepted with probability 1 if p,, /o and then inverse Eourier transformed
A¢; < 0, or with probability exp—BA ;) if Agp; = 0, y\/(/};f)¢(w) o .

whereA ¢, is the difference between the potential energy ¢~ and¢; ~ were also calculated by a multipole

of the system in its present state and that of the new stag@xpansion method [13]. In this method particieteracts

obtained by moving théth particle to its new position. With the nearby particles through the usual Coulomb

The mean square displacemerf®(s)) of the mobile potential, and with the far away particles through their

particles are then calculated and averaged over all therecalculated multipole expansions of the potential. The

particles and many realizations of the medium. total potentiakp©)(r) = 3V ¢;(r) produced by a group of
The charge centers are either distributed explicitlyN charges is

throughout the medium or are represented by their po- 1 | |

tential distribution, generated by the potential-potential d@(r) = 4 _p. V<—> + —Q:VV(—)

correlation function. To make the system neutral, equal r r 2 r

numbers of the centers with opposite charges are inserted 1 .. 1

in the system, and the same is done with the mobile par- 6 OVVV(?) T 4)

ticles. The Coulomb potentiag; acting on theth mobile herea. P and O are. respectively. the mononole
particle is written asp; = ¢./" ) \where ™ WHeTed, T Q, » Fespectively, pole,

+ ¢ -
! . . . . ipole, quadrupole, and octapole moments of the group of
is due to the interaction between the mobile particle an harges around the origin. In practice we widté(r) =

(mm)

the fixed centers, whilep; " is contributed by the in- /. "+ (13 Pore + 1/2r%) (X, Qualare
teraction between the mobile particles themselv¢éfm) Ya2p Qaprarg — r*Q) + 1/(6r)[15(2, Oaaara
is calculated by two different methods (yielding identical ror, + 3., 3 5 Ovaprararp + 20252y Oapyra
results). In one methodp.”™ (and alsop\™™) is com-  rgry) — 92y Oa)] + ..., With g =3, qi, Pa
puted by the multipole expansion method discussed b€ ; giR;a, Qua = 2, qiR%,, Qup = 2.iqiRiaRip, O =
low. In the second method, we use the fact that diffusior’; ¢;R?,  Owaa = Y. qiR}s  Ouwap = D qiRIxRip,
of c_harde p_articles in disordered_ m(_adia can be viewed ag y = 2.iqiRiaRigR;y, and0, = Y ¢iR?R; o, Where
their motion in an external potential fleld_ generated by the. = ||, R, is the position vector of théth charge g, S,
quenched disorder that represents the fixed charge centeghd y stand for the coordinates y, andz, andg; is the
Thus, instead of directly distributing the charge centergharge of theth (fixed or mobile) particle.
with a given densityp(r), ¢>§fm) is formally represented A highly efficient simulation technique is fundamental
by the solution of the Poisson’s equation which, e.g., into this study. Hence, in addition to taking advantage
three dimensions (3D), is given by of the multipole expansion, the 3D simulation box is
divided into eight smaller equal boxes, calletildren
_4dfqm ] gy p(r’) of the original box [14]. Each child box is parentto
47re r — r/| eight smaller boxes, with the division continuing up to
a certain level which is called the maximum level of
where ¢, and ¢, are the charges for the fixed and division (maxlevel). The data needed for each particle,
mobile particles, respectively, andis the permittivity. i.e., its position and type (mobile or fixed), are stored in a
The charge density(r) is represented by its correlation particle object A cell objectcontains a list of itcurrent
function x,,(r) which, in the case of Debye-Hiickel particles. Each particle is also “connected” to the next
statistics, is given by and previous particle in the list. After setting up the entire
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data structure, the multipoles of each cell around its centgveriods of time. In between the jumps one has a slow
at the maxlevel are calculated using the above expressionsiotion that causes the overall transport to be anomalous,
Then, the multipoles of the parent cells are computed byot only in 1D but also in 2D and 3D (see below). For
translating and adding the multipoles of their children byfixed p, and «~! the slopes of the straight lines that
a displacement vectof = ({,,¢,,€;). In terms of the represent the faster part of the motion are essentially
old guantities, the new translated (primed) quantities ar¢he same, indicating theamediffusion coefficient for
given by P!, =P, — gls, 0L, = Oua — 2¢4,P, +  all of them. The jumps represent the mobile particles’
qt?, Q;ﬁ = Qap — €pPa — £aPp + qlofp, Q' =  escape from the potential wells (traps) that the quenched
wa 0B+ QL Ohaa=Oaaa — 3o +20% —ql3, distribution of the charge centers creates. The traps have
020(,3 = Onap —00aq + €al—20ap + 205Py + €4 X a finite sphere of influence, such that for any particle

(Pg — qtp)] and O0.., =0 + ¢,(¢zP, — 1 within a sphere the potential differencke; for a

] aBy aBy y\'Bla . ) ;
Qap) + €g(aPy — Quy) + €o(€,Pg — Qp,) — q X  displacement that can takieout of the sphere is very
Calply. large, and thus the probability of an appreciable jump is

Each particle’s potential energy is divided ing'e®  small. This is represgnteq by the glmqst horizontal parts
and . A particle in a cell at the maxlevel interacts Of the curves shown in Fig. 1, indicating very small, if
with all other particles in the same cell and in the neigh-N0t zero, diffusivity. The jumps occur when after some
boring cells by the usual Coulomb potential, thus yield-time the particles are close to the boundary of the traps
ing ¢, It also interacts with its parent's neighbors’ and escape with a displacement that takes them out of the
children through the corresponding multipole expansionslifaps. They then resume their diffusive (fast) motion until
Computations continue up to the whole simulation boxthey are captured by another trap, and so on.
hence yieldings!™. In this way the number of the cells !N Fig. 2 we present the time dependence of the MSD
that interact with each particle is drastically reduced adh Poth 1D and 3D for variousc. The results are the
one gets away from the particle. For example, in 3D with@verage over 50 realizations of the system. The depth of
four levels of division the number of the interacting cells the potential wells, and thus the radius of influence of the
is only 415, rather than the original 4069 cells. traps, is controlled by~'. The largerx ™', the deeper

To demonstrate the effect of the quenched disorder, wi§ the potential well, and thus the larger the time spent
present and compare the results for a single realization ¢f Such traps. This is indicated by the very small slopes
the system with those averaged over many realization®f the curves as decreases. In the limi™" — o, the
Figure 1 presents the time dependence of the MSEt)rappl_ng tlmes.b'ecpme infinitely large, and therefore the
of the mobile particles in a single realization of a €ffective diffusivity iszero[15].
1D medium. The fixed charge centers are represented P€8m and Chandler (DC) [10] proposed that the
by their potential distribution, i.e., the 1D version of effective d}foSlVlt)_/D of the particles ind dimensions
Eq. (3),p0(¢rqm/e)*(w? + «*)~1. The mobile particles obeys the inequality
can travel only in the spacbetweenthemselves, since D
they cannot “jump” over each other. There are many D= exd —B*xvu(0)/d], (5)
relatively fast diffusive jumps in the MSD after certain 0
where x,,(0) = (47€)*x44(0), and D, is the bulk dif-
fusivity (in the absence of the charge centers). Fur-
thermore, DC proposed that the equality in (5) holds
exactlyin 1D, and possibly foall values ofd. Because
the overall transport is nondiffusivel) varies with the
time. Therefore, it is not clear what DC mean by the ef-
fective diffusivity. Since between the traps the motion
is relatively fast and diffusive, we present in Fig. 3 the
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FIG. 1. Mean square displacement versus tinoé the mobile

charged particles in a single realization of a 1D medium forFIG. 2. MSD for (a) a 3D medium withp, = 0.005 and

x = 0.07 (top) and « = 0.05 (bottom), andpy, = 0.1 and T = 273 K and (b) for a 1D medium for the same conditions

T =273 K. as in Fig. 1. The results represent averages over 50 realizations.
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FIG. 3. The dependence of the diffusiviip (for the faster FIG. 4. Same as in Fig. 3, but in 1D.

part of the motion) on the potential-potential correlation
function y,,(0) in 3D for various values ofk. x,,(0) is

; —4 -1 - . :
changed by varying, from 107 to 10™", and7' = 273 K. Partial support of this work by the Petroleum Research

Fund, administered by the American Chemical Society, is
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dependence ofD on y,,(0) for 3D systems, wheréd)

now represents the diffusivity between the traps, while

Fig. 4 shows the same for 1D systems. As can be seen,
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