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An exact analytical solution describing the evolution of nonlinear optical envelope pulses in an op
fiber is obtained. The propagation of the pulse is modeled by a higher order nonlinear Schröd
equation containing third order and nonlinear dispersive terms. This solution includes pulses th
symmetric solitary waves, asymmetric solitary waves, and asymmetric structures that develop in
optical shock. [S0031-9007(98)08242-8]
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Envelope pulses propagating in nonlinear dispersi
media experience group velocity dispersion and nonline
effects such as self-phase modulation. In the anomalo
dispersive regime these are competing effects, and wh
these two effects balance, the initial pulse can evolve into
soliton or solitary wave. In particular, monomode optica
fibers support soliton propagation owing to an intensity
dependent index of refraction. The propagation of the
picosecond optical pulses is modeled [1] by the nonline
Schrödinger (NLS) equation, which is integrable [2] by th
inverse scattering method yielding multisoliton solution
The validity of the NLS equation as a reliable model i
dependent on the assumption that the spacial width of t
soliton is much larger than the carrier wavelength. Th
is equivalent to the condition that the width of the solito
frequency spectrum is much less than the carrier frequen
dv ø v0. The robustness of the optical soliton makes
useful for long distance optical communication system
the high frequency of the optical carrier makes possib
a high bit rate, and to increase the bit rate further it
desirable to use shorter femtosecond pulses. In ord
to model these shorter pulses additional terms such
third order and nonlinear dispersion have been includ
[3] in the NLS equation, resulting in the so-called highe
order nonlinear Schrödinger (HONLS) equation. Man
authors have relied on the inclusion of extra terms to mod
ultrashort pulses, but recently it was proven [4,5] that the
pulses cannot be modeled by simply including higher ord
terms in the NLS equation. Generally, the NLS model o
any order will break down [6] ifdv , v0. Nevertheless,
it is still useful to study the HONLS equation since i
does model optical solitons in fibers when the conditio
dv ø v0 is satisfied.

The form of the HONLS equation has been previous
derived [7–9] for monomode optical fibers

iwz 1
1
2 wtt 2 N2jwj2w 1 i´wttt 2

iN2fb1jwj2wt 1 b2wsjwj2dtg ­ 0 , (1)

where the independent variables are related to the fib
coordinatez and the timet by
0031-9007y99y82(4)y723(4)$15.00
ve
ar
us
en
a
l
-

se
ar
e
s.
s
he
is
n
cy,
it
s,
le
is
er
as

ed
r
y
el
se
er
f

t
n

ly

er

z ­
jD2jz

T2
0

, t ­
t 2 zyyg

T0
. (2)

In the above equationsD2 is the group velocity dispersion
coefficient, T0 is the pulse width, andyg is the group
velocity. The other coefficients are related to the fib
parameters by

N2 ­
n2v0P0T2

0

cAjD2j
, ´ ­

jD3j

6jD2jT0
,

b1 ­
2

v0T0
1

n0

nT0
1

2r 0

rT0
, b2 ­ b1 1

2r 0

rT0
,

(3)

whereD3 is the third order dispersion coefficient,n is the
linear index of refraction,n2 is the Kerr coefficient,c is
the speed of light,A is the effective core area,P0 is the
peak input power, andr is the frequency-dependent cor
radius. The primes indicate differentiation with respe
to frequency and all frequency-dependent parameters
evaluated at the carrier frequencyv0. The first three
terms of Eq. (1) comprise the NLS equation, the four
term is the third order dispersive term, and the last tw
terms are generalized self-steepening terms resulting fr
an intensity dependence of the group velocity. Fro
Eq. (3) it is obvious that these last three terms beco
more important as the pulse width decreases. In t
Letter we obtain an exact analytical solution of Eq. (1
which includes both solitary wave solutions and sho
solutions for arbitrary values of the fiber parameters.

Previous analytical solution of the HONLS equatio
began with the special case wheń­ 0. Kaup and
Newell [9] have shown that whenD2 ­ 0 Eq. (1) is
integrable by the inverse scattering method leading
soliton solutions. In the more general case of arbitra
D2 exact solitary wave solutions [10–12] were obtaine
and pulse distortion leading to shock formation [13–1
was also studied. These analytical solutions exhibit
interesting difference from the NLS soliton in that ther
is an intensity-dependent carrier wave phase shift acr
the pulse that is not a property of the NLS soliton
When a nonzeró is included in Eq. (1) exact solitary
wave solutions [8,17–20] have been obtained for spec
© 1999 The American Physical Society 723
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t,
values of the parameters, and there are two recent arti
[21,22] giving solitary wave solutions for arbitrary value
of parameters in the HONLS equation.

In order to obtain both solitary wave and shoc
solutions we proceed as in [16] and express the comp
envelope functionwsz , td as
724
cles
s

k
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wsz , td ­ usz , tdeiskz 2Vtd1issz ,td, (4)

whereusz , td and ssz , td are real amplitude and phase
functions, respectively, withk andV being small devia-
tions from the carrier wave number and frequency. Nex
Eq. (1) is split into its real and imaginary parts
1
2 s1 1 6´Vdutt 2 usz 2 sk 1

1
2 V2 1 ´V3 2 Vst 2 3´V2stdu 2

1
2 s1 1 6´Vds2

tu 2

N2s1 1 b1V 2 b1stdu3 2 ´susttt 1 3sttut 1 3stutt 2 s3
tud ­ 0 , (5)

´uttt 1 uz 1
1
2 s1 1 6´Vd sustt 1 2stutd 2 sV 1 3´V2dut 2 N2sb1 1 2b2du2ut 2 3´susttst 1 s2

tutd ­ 0 .

(6)
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The first step in the solution of these two equations is u
of the ansatz

st ­ Au (7)

to eliminate the dependent variables resulting in an
overdetermined system. In order for these two equatio
to be compatible we use the next ansatz

2uutt 2 u2
t ­ gsud , (8)

whereg is a function ofu that will be determined later.
Using these, Eq. (6) can be integrated and expressed
the form of a nonlinear wave equation

su2dz 1 ysud su2dt ­ 0 , (9)

which has as a solution

usz , td ­ fft 2 ysudz g (10)

in terms of an arbitrary functionf. In Eqs. (9) and (10)
y is the amplitude-dependent function leading to shoc
formation, which is given by

ysud ­ 2V 2 3´V2 1
3A
2

s1 1 6´Vdu

2 f6´A2 1 N2sb1 1 2b2dgu2 1
´

2u
g0, (11)

where the prime denotes differentiation with respect tou.
The integration of Eq. (5) can proceed aftersz is

determined as a function ofu, which is accomplished by
integration of Eq. (7) with respect tot and differentiation
with respect toz resulting in the expression

sz ­ k 1 AsV 2 3´V2du 2
3
4 A2s1 1 6´Vdu2

1

√
2´A3 1

N2A
3

sb1 1 2b2d

!
u3 2 ´Autt ,

(12)

wherek is an arbitrary constant. The amplitude functio
u is next obtained by substitution of Eqs. (7) and (12) int
Eq. (5) resulting in

utts1 2 aud 2 au2
t 1 a1u 1 a2u2 1 a3u4 ­ 0 ,

(13)

with the coefficients given by
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a ­
6´A

1 1 6´V
,

a1 ­ 2
2

1 1 6´V

√
k 1 k 1

V2

2
1 ´V3

!
,

a2 ­
A2

2
2

2N2

1 1 6´V
s1 1 b1Vd ,

(14)

a3 ­
2

1 1 6´V

"
2AN2

3
sb1 2 b2d 2 ´A3

#
.

With 1 2 au as an integrating factor, the first integral o
Eq. (13) is easily found to be

u2
ts1 2 aud2 1 a1u2 2

2aa3

3
u3 1

a2

2
u4 1

2
5 sa3 2 aa2du5 2

aa3

3
u6 ­ 0 ,

(15)

and factoring the five polynomial terms ass1 2 aud2 3

u2sr1 1 r2u 1 r3u2d, we obtain the first integral

ut ­ u
q

r1 1 r2u 1 r3u2 . (16)

Here the coefficients are given byr1 ­ a1, r2 ­ 4aa1y3,
and r3 ­ sa2y2d 1

5
3 a2a1 with the factorization condi-

tion

2a3 1 3aa2 1 10a3a1 ­ 0 . (17)

Finally the arbitrary functiong is determined by use of
this first integral together with Eq. (8) giving

g ­ r1u2 1 2r2u3 1 3r3u4. (18)

Before looking at the nature of the different solutions w
will use Eq. (18) in Eq. (11) to obtain an expression fo
the functiony that involves only fiber parameters and th
arbitrary constantsk, A, andV:

y ­ a1 2 V 2 3´V2 1

"
3A
2

s1 1 6´Vd 1 4aa1

#
u

2 f6´A2 1 N2sb1 1 2b2d 2 3a2 2 10a2a1gu2,

(19)
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where use has been made of the factorization condition
eliminatea3.

At this point Eq. (16) is integrated yielding the initia
pulse structuresz ­ 0d, and the pulse shapes for arbitrar
values ofz are found from Eq. (10). In the following we
consider only localized pulses resulting in the conditio
a1 , 0 giving the following solution:

usz , td ­
24a1Z

sZ 1 r2d2 1 4r3
, (20)

with Z ­ exps6h
p

2a1 d and the variablet has been
replaced byh ­ t 2 ysudz . Defining u0 to be the
maximum amplitude of the pulse, we can use Eq. (2
to find the following expression relating coefficients:

u2
0a2 1

10
3 aa2 1 5a3a1 ­ 0 , (21)

which will be used later to obtain the values ofA anda1.
The evolution of two types of pulses is described b

Eq. (20): The first that we will consider is the solitar
wave that occurs wheny is independent ofu, and the
second exhibits pulse distortion and shock formatio
occurring in the more general case wheny depends on
u. The linear and quadratic terms in Eq. (19) lead to pul
distortion, so the solitary wave solution requires addition
conditions relating parameters resulting in these two ter
equating to zero. Equating the linear term to zero giv
a simple expression fora1 and use of Eq. (21) gives the
coefficienta1 in terms of´ andV:

a1 ­ 2
1

16´
s1 1 6´AVd . (22)

Next the quadratic term is equated to zero giving a
expression fora2:

a2 ­ 2´A2 1
N2

2
sb1 1 2b2d 2

10
3 a2a1 , (23)

which can be used along with the factorization conditio
given by Eq. (17) to find relations between the param
ters. For example, it is possible to calculate a simp
expression forA,

A2 ­
9´N2sb1 1 2b2d 1 4

6´s1 2 9´d
, (24)

as well as a more complicated expression relating t
parametersA, V, andk by use of Eq. (23) along with the
definition of a2. The constant term in Eq. (19) is relate
to the pulse speed, and the form of the solution is giv
by Eq. (20). Notice that this solution is asymmetric owin
to the nonzero value of the parameterA. The symmetric
solution of Ref. [22] is obtained from Eq. (16) ifA ­ 0
which results inr2 ­ 0, and the sech function will be a
particular solution.

For the less restrictive case when Eq. (19) has au
dependence, we being by using the factorization conditi
(17) and Eq. (21) to find values for the parametersA and
a1. This is done for the special case whenV ­ 0, k ­ 0,
to
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b1 ­ b2, andN2 ­ 1, resulting in the quadratic system

63´2A2a1 1
1
2 A2 2

36
10 ­ 0 ,

a2
1s1 1 8´Au0d 1 u2

0

√
1 2

A2

4

!
2 60´2A2u2

0a1 ­ 0 ,

(25)

which can be solved fora1 and A in terms of ´ and
u0. These equations have been solved numerically
obtain solutions. However, only one solution is used
the following because the others result in either compl
values forA, contrary to the initial requirement thatu is
a real function, or they result in positive values fora1
contrary to the assumption that the solution is localize
The solution of Eq. (25) for the case wheń­ 0.1 is
shown in Fig. 1 illustrating a dependence ofA anda1 on
u0. It is also remarked that there is a maximumu0 above
which all roots of Eq. (24) are imaginary; wheń­ 0.1
this value is 0.1203.

Next pulse distortion is seen by solution of Eq. (20) fo
u using y given by Eq. (19). This is done numerically
for various values ofz again using the special values o
parametersV ­ 0, N2 ­ 1, b1 ­ b2, and´ ­ 0.1 with
A given by the values in Fig. 1. The calculated puls
shapes for different values ofz are shown in Fig. 2 where
one can clearly notice thez -dependent asymmetry leading
to shock formation occurring at the critical value ofz

found to be 15.04. From these data it is noticed that there
an intensity-dependent shock formation distancezc defined
to be the propagation distance where the maximum slo
of the pulse goes to infinity, which is given by

zc ­ 2
1

sfhyudmax
, (26)

where the subscript refers to the maximum value. T
shock formation distance was obtained from the abo
equation for the values of parametersV ­ 0, N2 ­ 1, and
b1 ­ b2 again using the values ofA from Fig. 1. The

FIG. 1. The quantitiesA (solid curve) anda1 (dashed curve)
versus the initial pulse amplitudeu0.
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FIG. 2. Plot of the normalized pulse intensity versust
showing the initial pulse,z ­ 0 (solid curve), with self-
steepening illustrated,z ­ 8 (dashed curve), andz ­ 15
(dotted curve).

quantity sfhyudmax was found numerically with́ ­ 0.1
as a function ofu0 and these data are used to calculate th
u0 dependence of the shock formation length which is i
lustrated in Fig. 3. As in Ref. [16] it is noticed from Fig. 3
that the shock formation distance is an increasing functi
of the pulse intensity, but owing to the complicated form
of this initial pulse shape in Eq. (20) it is not possible t
derive a simple analytical expression forzc.

In conclusion, solitary wave and shock solutions of th
HONLS equation are obtained from the assumption th

FIG. 3. Plot of the critical propagation distancezc versus the
initial pulse amplitude.
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the phase function is a linear function ofu. The solitary
wave solutions are more general than previous solita
wave solutions because they are asymmetric as a re
of the phase function. Furthermore, they exhibit a carr
wave phase shift across the pulse, which is not a prope
of the previous HONLS solitary wave solutions. Usin
Eq. (2) an estimate of the propagation distance requi
for shock formation in a typical fiber is found. For th
values D2 ­ 20 ps2ykm, T0 ­ 1 ps, and u0 ­ 0.1 we
estimate a value ofzc to be about 0.75 km.
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