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Optical Solitary Wave and Shock Solutions of the Higher Order
Nonlinear Schroédinger Equation
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An exact analytical solution describing the evolution of nonlinear optical envelope pulses in an optical
fiber is obtained. The propagation of the pulse is modeled by a higher order nonlinear Schrédinger
equation containing third order and nonlinear dispersive terms. This solution includes pulses that are
symmetric solitary waves, asymmetric solitary waves, and asymmetric structures that develop into an
optical shock. [S0031-9007(98)08242-8]

PACS numbers: 42.81.Dp, 41.20.Jb, 42.65.Tg, 42.79.5z

Envelope pulses propagating in nonlinear dispersive |Ds|z t—z/v,

media experience group velocity dispersion and nonlinear 72 To (2)
effects such as self-phase modulation. In the anomalo
dispersive regime these are competing effects, and wh
these two effects balance, the initial pulse can evolve into
soliton or solitary wave. In particular, monomode optical
fibers support soliton propagation owing to an intensity-

;1% the above equationB, is the group velocity dispersion
(poefficient, Ty is the pulse width, and/, is the group
9e|ocity. The other coefficients are related to the fiber
parameters by

dependent index of refraction. The propagation of these 2 _ nywoPoT; _ |Ds|

picosecond optical pulses is modeled [1] by the nonlinear cA|lD,| ° ¢ 6|D,|Ty°
Schrodinger (NLS) equation, which is integrable [2] by the 5 R o 3)
inverse scattering method yielding multisoliton solutions. g, = + — + =, Br= B + —,
The validity of the NLS equation as a reliable model is wolo  nTo 1Ty T

dependent on the assumption that the spacial width of th&hereD; is the third order dispersion coefficiemt,s the
soliton is much larger than the carrier wavelength. Thidinear index of refractionsn, is the Kerr coefficientc is

is equivalent to the condition that the width of the solitonthe speed of lightA is the effective core ared), is the
frequency spectrum is much less than the carrier frequencpeak input power, and is the frequency-dependent core
dw <K wy. The robustness of the optical soliton makes itradius. The primes indicate differentiation with respect
useful for long distance optical communication systemsto frequency and all frequency-dependent parameters are
the high frequency of the optical carrier makes possiblevaluated at the carrier frequeney,. The first three

a high bit rate, and to increase the bit rate further it isterms of Eq. (1) comprise the NLS equation, the fourth
desirable to use shorter femtosecond pulses. In ordeerm is the third order dispersive term, and the last two
to model these shorter pulses additional terms such a&srms are generalized self-steepening terms resulting from
third order and nonlinear dispersion have been includedn intensity dependence of the group velocity. From
[3] in the NLS equation, resulting in the so-called higherEqg. (3) it is obvious that these last three terms become
order nonlinear Schrédinger (HONLS) equation. Manymore important as the pulse width decreases. In this
authors have relied on the inclusion of extra terms to modeletter we obtain an exact analytical solution of Eq. (1)
ultrashort pulses, but recently it was proven [4,5] that thesevhich includes both solitary wave solutions and shock
pulses cannot be modeled by simply including higher ordesolutions for arbitrary values of the fiber parameters.
terms in the NLS equation. Generally, the NLS model of Previous analytical solution of the HONLS equation
any order will break down [6] iBw < w(o. Nevertheless, began with the special case when= 0. Kaup and

it is still useful to study the HONLS equation since it Newell [9] have shown that whe, = 0 Eq. (1) is
does model optical solitons in fibers when the conditionintegrable by the inverse scattering method leading to

dw <K wy is satisfied. soliton solutions. In the more general case of arbitrary
The form of the HONLS equation has been previouslyD, exact solitary wave solutions [10—12] were obtained,
derived [7—9] for monomode optical fibers and pulse distortion leading to shock formation [13—16]
] ! - . was also studied. These analytical solutions exhibit an

ior + 30 — Nolel"e + igprr — interesting difference from the NLS soliton in that there

iN[BilelPe, + Baro(lel?),]=0, (1) Iis anintensity-dependent carrier wave phase shift across
: ? the pulse that is not a property of the NLS soliton.
where the independent variables are related to the fibadvhen a nonzere is included in Eq. (1) exact solitary
coordinatez and the time by wave solutions [8,17—-20] have been obtained for special
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values of the parameters, and there are two recent articles (£, 7) = u(l, 1)e! ket (4)
[21,22] giving solitary wave solutions for arbitrary values
of parameters in the HONLS equation. whereu(Z, 7) and o (£, 7) are real amplitude and phase

In order to obtain both solitary wave and shockfunctions, respectively, witlk and ) being small devia-
solutions we proceed as in [16] and express the completions from the carrier wave number and frequency. Next,
envelope functionp (£, 7) as | Eaq. (1) is splitinto its real and imaginary parts

%(1 + 6eQ)urr — uoy — (k + %Qz + eQ® — Qo — 3eQ%0,)u — %(1 + 6eQ)o’u —
N2(1 + B1Q — Bio)u — e(uorrr + 30,71y + 307Upr — aiu) =0, (5)

EUrrr + Uy + %(1 + 68Q) (uo,, + 20,u;) — (Q + 3eQPu, — NX(B1 + 2B)u*u, — 3e(uo,,0, + o2u,) =0.

(6)
The first step in the solution of these two equations is l|Jse a = ﬂ,
of the ansatz 1 + 680}
= 2 0?

or = Au (7) a1=—7ﬂ<k+K+—+SQ3>,
to eliminate the dependent variable resulting in an 1+ 6¢ 2 (14)
overdetermined system. In order for these two equations A2 N2
to be compatible we use the next ansatz “= 5 T T 6e0) (1 +pB1Q),

2ulr; — u%— = g(”), (8) B 2 2AN2 B oA

whereg is a function ofu that will be determined later. BT 1Y 6:0 3 (Br = B2) — eA” |.

Using these, Eg. (6) can be integrated and expressed jn . . . .
the form of a nonlinear wave equation With 1 — au as an integrating factor, the first integral of

Eq. (13) is easily found to be

W) + v(w) ?); =0, 9)
. : 2 2 2 2eaz 3 ax 4
which has as a solution u;(1 — au)” + ayu” — 3 WUt
u({,7) = flr — v(Ww){] (10) 5 aa
. . . as — aa)u® — =2 uS =0
in terms of an arbitrary functioif. In Egs. (9) and (10) 5143 2 3 ’
v is the amplitude-dependent function leading to shock (15)
formation, which is given by . _ _
34 and factoring the five polynomial terms & — au)? X
v(w) = —Q — 3:0% + 7(1 + 6eQ)u u*(ri + rou + r3u?), we obtain the first integral

e u, = u\/r1 + rou + r3u?. (16)

/
ws (11) Here the coefficients are given by = a;, r» = 4aa;/3,
where the prime denotes differentiation with respeat.to and r; = (a,/2) + %azal with the factorization condi-
The integration of Eq. (5) can proceed aftet is  tion
determined as a function of, which is accomplished by

— [68A + N*(B, + 2B2)u* +

integration of Eq. (7) with respect toand differentiation 2as + 3aa, + 10a’a; = 0. (17)
with respect t/ resulting in the expression Finally the arbitrary functiorg is determined by use of
o=k +AQ — 360 )u — §A2(1 + 6eQ)u? this first integral together with Eq. (8) giving
g = riu® + 2rmu’ + 3ryut. (18)

2A
+ (ZSA3 + N—(,Bl + 2,82)>u3 — gAu,,,
3 Before looking at the nature of the different solutions we
(12)  will use Eq. (18) in Eq. (11) to obtain an expression for

wherek is an arbitrary constant. The amplitude functionthe functionv that involves only fiber parameters and the
u is next obtained by substitution of Egs. (7) and (12) into@rbitrary constants, A, and(}:
Eqg. (5) resulting in

3A
=a — Q0 —3:0%+ | =— (1 + 68Q) + 4
u--(1 —au)—aui+a1u+a2u2+a3u4=0, v a € |:2( 241) aa1:|u

(13) — [6eA? + N*(B1 + 2B2) — 3as — 10a’a;Ju?,
with the coefficients given by (29)
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where use has been made of the factorization condition t8; = 8,, andN? = 1, resulting in the quadratic system
eliminateas. 3.242 1,2 _ 36
. . . - i + 5A° — T =
At this point Eq. (16) is integrated yielding the initial 0'e A% + 24 0 =0
pulse structur¢{ = 0), and the pulse shapes for arbitrary ~ , ) A? 222
values of are found from Eq. (10). In the following we ay(l + 8eAuo) + up| 1 = o |~ 00emATupar = 0,
consider only localized pulses resulting in the condition (25)

a; < 0 giving the following solution: ) )
which can be solved for; and A in terms of ¢ and

u(g,7) = —4a,Z (20) Ho- These equations have been solved numerically to
’ (Z + r)? + 4r3° obtain solutions. However, only one solution is used in

with Z = exp(+n/=a;) and the variabler has been the following because the others result in either complex
replaced by77_= 7 — v(u)¢. Defining uo to be the values forA, contrary to the initial requirement thatis

maximum amplitude of the pulse, we can use Eq. (20f €& functiﬁn, or they_resurl1t in hpositilve_ val_uels fm;r g
to find the following expression relating coefficients: contrary to the assumption that the solution is localized.
The solution of Eq. (25) for the case when= 0.1 is

whay + Raay + 5a’a; =0, (21)  shown in Fig. 1 illustrating a dependencesfinda; on

which will be used later to obtain the valuesAfinda;. \I//t\;)hl Clrt] |§”a Ir(sjgtrseg}aél;ed(ztg?t;?eeirﬁ] ;Z%g?,xwh"gnibgvle

The evolution of two types of pulses is described bythis value is 0.1203

Eq. (2(3%: tThe first tr?at we .W(ij” conjidetr iz the jotlri]tary Next pulse distortion is seen by solution of Eq. (20) for
wave that occurs whem IS Incependent ok, an € u using v given by Eqg. (19). This is done numerically

seconq e>.<h|b|ts pulse distortion and shock formatlor\‘or various values of again using the special values of
occurring in the more general case wherdepends on - o) — o N2 — | B = B», ands = 0.1 with

u. The_z linear and qu_adratlc terms in Eq. (19.) lead to PUISQ given by the \;alues in’ Fig. 1. 1I'he calculated pulse
distortion, so the solitary wave solution requires additional hapes for different values gfare shown in Fig. 2 where
condltllons relating parameters res_ultlng in these two terms e can clearly notice the-dependent asymmetry leading
equating to zero. Equating the linear term to ZET0 9IVe3,, shock formation occurring at the critical value of

a s'fr;?ﬁlenf)(pirr??s'rcr’;] fa]fl alqg(l;.se of Eq. (21) gives the found to be 15.04. From these data it is noticed that there is
coetlicienta, interms Ofe and=.2. an intensity-dependent shock formation distaficgefined

_ 1 to be the propagation distance where the maximum slope
4= T ee (I + 6eAQ). (22)  of the pulse goes to infinity, which is given by
Next the quadratic term is equated to zero giving an 1

{e = (26)

expression fou,:  (frVidmax

where the subscript refers to the maximum value. The

shock formation distance was obtained from the above
i __ 2

which can be used along with the factorization condition®duation for the va_Iuesr?f parlametgsf— 0,N" =1, ar;ld

given by Eq. (17) to find relations between the parame! = B2 again using the values of from Fig. 1. The

ters. For example, it is possible to calculate a simple

N2
ay = 2647 + - (B1 + 2B2) ~ Ya2ay, (29)

expression foH,
0
5 9eN%(By +2B,) + 4

A 6e(1 — 9¢) ’ (24) -0.02
as well as a more complicated expression relating the A o4 A
parameterg\, (), andk by use of Eq. (23) along with the )
definition ofa,. The constant term in Eq. (19) is related -0.06
to the pulse speed, and the form of the solution is given
by Eq. (20). Notice that this solution is asymmetric owing -0.08
to the nonzero value of the parameter The symmetric
solution of Ref. [22] is obtained from Eq. (16) £ = 0 -0.10
which results inr, = 0, and the sech function will be a

particular solution.
For the less restrictive case when Eg. (19) has a
dependence, we being by using the factorization condition

(17) and Eq. (21) to find values for the parametérand  F|G. 1. The quantitiest (solid curve) andz, (dashed curve)
ai. Thisis done for the special case wh@n= 0, k = 0,  versus the initial pulse amplitude.
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the phase function is a linear function @f The solitary
wave solutions are more general than previous solitary
wave solutions because they are asymmetric as a result
of the phase function. Furthermore, they exhibit a carrier
wave phase shift across the pulse, which is not a property
of the previous HONLS solitary wave solutions. Using
Eq. (2) an estimate of the propagation distance required
for shock formation in a typical fiber is found. For the
values D, = 20 ps’/km, To = 1 ps, andug = 0.1 we
estimate a value of. to be about 0.75 km.
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