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Photonic Crystal Optics and Homogenization of 2D Periodic Composites
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We study the long-wavelength limit for an arbitrary photonic crystal (PC) of 2D periodicity. Light
propagation is1ot restricted to the plane of periodicity. We proved that 2D PC'’s are uniaxial or biaxial
and derived compact, explicit formulas for the effective (“principal”) dielectric constants; these are
plotted for silicon-air composites. This could facilitate the custom design of optical components for
diverse spectral regions and applications. Our method of “homogenization” is not limited to optical
properties, but is also valid for electrostatics, magnetostatics, dc conductivity, thermal conductivity, etc.
Thus our results are applicable to inhomogeneous media where exact, explicit formulas are scarce. Our
numerical method yields results with unprecedented accuracy, even for very large dielectric contrasts
and filling fractions. [S0031-9007(98)08154-X]

PACS numbers: 42.70.Qs, 41.20.Jb, 42.25.Lc

Photonic crystals (PC’s) are arrays of dielectric ma-a parallelogram. These rods are assumed to be made
terials with one-, two-, or three-dimensional periodicity. of a homogeneous material (dielectric constap}, as
Since the suggestion [1] that PC's may be useful foiis the interstitial material€,). The cylinders occupy a
controlling light emission, their properties have been refractionf of space. For propagation of light parallel to the
searched intensively [2,3]. Recently, it was proposed thgplane of periodicity there are two independent modes: the
PC'’s could advance photonic information technology [4—E(H) mode has its electric (magnetic) field parallel to
6]. These ideas rely on the existence of a photonic banthe cylinders [2—4,26—28]. In a preliminary work we have
gap—a frequency region in which light propagation is for-examined the in-plane behavior of these modes in the low-
bidden. The region well below the gap received much lesfrequency limit [12]. We also note that homogenization
attention [7—12]. Here the wavelength is much greatehas been performed for tiemode in the case of metallic
than the lattice period; hence light “sees” a homogeneousylinders modeled withe, = 1 — wf,/aﬂ [29]. In this
medium. This situation is analogous to light propagationLetter we achieve a homogenization of our photonic crystal
in natural crystals, whose optical properties like birefrin-for an arbitrary direction of propagation in space; namely,
gence are described in crystal optics [13]. We studiedve take a 3D approach to composites of 2D periodicity.
analytically, for the first time, propagation in an arbitrary We are aware only of a single, numerical study (p. 66 of
direction in space for a 2D PC. Ref. [2]) of out-of-plane propagation.

In general, a PC supports two distinct propagation Crystal optics [13] is the product of homogenization of
modes. Independently of the existence of a band gaphe periodic atomic structure. In the same way photonic
for sufficiently low frequencies, the dispersion relations crystal optics is the result of homogenizing a periodic com-
o versus the vector of propagatida are linear for the posite with macroscopic inhomogeneities. Hence it should
two modes. The slopes/k define two effective dielec- be possible to give a complete description of this structure
tric constantse.;r = (ck/w)? [7—12]. Thus, in this long- in terms of a dielectric tensor, which becomes diagonal
wavelength limit the composite may be treated as if it weran the principal set of axes, embedded in the crystal. In
homogeneous. At the same timag; does depend on the this system of coordinates the dielectric response is simply
direction of propagatiofk /k), implying that the effective D; = €,E; (i = 1,2,3), thee; being theprincipal dielec-
medium is anisotropic [7,9,10,12]. An electrostatic calcu-tric constantsof the composite. Now there is a simple,
lation (w = 0) must yield the same values for thigr as  but crucial, consideration that for the (in-plang)mode
the previously described quasistatic approaech— 0). In  the displacement vectdd must be parallel to the cylin-
fact, thehomogenizatioof composites [14] has been stud- ders at every point. Then the coordinate axis parallel to
ied for many years by means of both the static [15—23] andhe cylinders (say;) must be grincipal axis Moreover,
the quasistatic [7,24,25] methods. The homogenization dt is well known [14] that ifE is parallel toall the dielec-
1D structures has been accomplished a long time ago [23fric interfaces, there.; is equal to the weighted average
Solution for 3D photonic crystals was given in Ref. [7]. of the dielectric constants of the constituents. This gives

The object of our investigation is a periodic, 2D array ofimmediately one of the principal dielectric constants,
infinitely long cylinders. The cross section of a cylinder
can have an arbitrary shape, and the unit cell is in general es=€=¢€,f + € —f). (@H)]
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The principal axes andy must be parallel to the plane 1250
of periodicity, and the corresponding dielectric constants
€1 ande, must be calculated from am — 0 expansion of
the wave equation. If the threg are known then, for an
arbitrary direction ok, the indices of refraction along with
the displacement vectors of the two propagating modes ar
found with the help of the normal ellipsoid [13] whose
axis is parallel to the rods [30].

It is advantageous to solve the wave equation for the
magnetic fieldH(r). In addition to being continuous 250
across the interfaces and giving rise to a Hermitian eigen-
value problem [2], it has the added benefit thEr) van-
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ishes in the static case. The static dielectric constants 000 005 010 015 °-2°Fillinl;§act103'3° 035 040
and e, are calculated by taking the limk — 0 in the
wave equation written in thlerepresentation and using the 1250 ¢ . [ —

I'H6pital rule for the ratiow /k. The proof will be given
elsewhere, and here we state only the final result. This
involves the reciprocal dielectric constamtr) = 1/€(r)
and its Fourier coefficienyy(G), whereG is a reciprocal
vector of the general (oblique) 2D lattice. Defining the
matrix M(G,G') = G - G'n(G — G'), the principal di-
electric constants can be written as
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FIG. 1. Principal dielectric constants of arrays of circular Si

= ; _ rods in air and of cylindrical holes in a Si host as a function of
Here7; is the weighted average gf(r), and the summa the filling fraction. For a rectangular lattice (a, # €, and

tion s performed over alhonzerocompqnents ofz and _the crystal is biaxial. In this case we used 113®alues in the
G’ (in the crystal axes system). For high-symmetry unitcomputation, giving rise to a precision factor= 0.98. If the
cells A, = 0), the principal axes coincide with the crystal lattice is square (b)e; = €, and the crystal is uniaxial. Note
axes. Otherwise, the principal axes system is rotated abotitat € (f) falls within the Hashin-Shtrikman bounds (dashed).
the axisz by an angled = —(1/2) tanf‘[ZAxy/(Axx _ Here we employed only 1028 values; however, the precision
A,,)]. Equations (2) and (1) are the exact and explicit re_}[/zl)aii gtjrzgatttley)/(tl.ncreased by taking the geometric average referred
sults of homogenization for a 2D PC with arbitrary unit
cell. The values of the; depend only on the structure of
this cell and ore, ande,. For a square lattice of circular or square cylinders with
An oblique or a rectangular lattice gives risesto# ;. the sides of the rods either parallel to the lattice or ro-
This also occurs for a square or a hexagonal lattice if théated by45° we proved analytically that; = €,. We also
cylinders have a cross section of sufficiently low symme-checked numerically that this equality holds for a hexago-
try. Also, according to the Wiener bounds [14] < €;  nal lattice of circular or triangular cylinders with the sides
therefore the effective dielectric constant must be largestf the rods parallel to three sides of the hexagon. Isotropy
when the electric field is parallel to all interfaces. Then,in the plane of periodicity is a consequence of a third-
for anisotropy in thexy plane,e; # e, < e3. This situ-  or higher-order rotation axis [31]. These five photonic
ation results in aiaxial crystal [13]; namely, there are crystals are then uniaxial, with their optical axis coincid-
two specific optical axes or directions &f, for which  ing with the cylinder axes. This is then the only direction
the two wave modes have equal refractive indices. Wdor which theordinary and extraordinarywaves become
have computede;(f) for a rectangular array of cir- degenerate and have the same index of refractj@n, =
cular silicon rods in air, and for the conjugate case—,/e,. For off-axis propagation the ordinary mode still has
cylindrical holes in a silicon host, Fig. 1(a). A test on the same index of refraction, its electric field being paral-
the accuracy of our numerical results is provided by thdel to the (isotropic) plane of periodicity. The extraordi-
generalized Keller theorem [17], which states tha=  nary mode has its electric field parallel to the plane formed
€1(€q, €p)€x(€p, €4)/ €46, = 1 for any f. Becauses, < by k andz, and its refractive index depends on the angle
€1 < €3 (for air cylinders) the optical axes lie in the  between these two vectors. Figure 1(b) shows the prin-
plane, forming equal angles with the cylinders [13]. cipal dielectric constants of a square lattice of circular Si
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parent that PC’s could also be designed to exhibit optical
activity [32], conical refraction, dichroism, etc.

Next we put the accuracy of our calculations to a tough
test. While Eqg. (2) is exact, the computation necessitates
cutting down the matrixM (G,G’) to finite size. This
happens to underestimate the valuesof On the other
hand, a similar solution of the wave equationBrderived
for the special case of a uniaxial crystal, overestimates
thee;. If A, = 0 (symmetric unit cell), this alternative
formula for €; is given by the denominator in Eq. (2),
however, with all of then replaced bye. Our numerical
simulations show that the geometric average of the two
expressions fok; is almost independent of the sizef
FIG. 2. Design of a prism using a 2D photonic crystal. The(the number o6 vectors)
circular dots represent cylinder cross sections. The birefringent In Table | we present results for a square array of
prism polarizes the outcoming light. prismatic rods in air. Dielectric contrasts as large as 50

and 100 have been selected. Our values are compared
cylinders and of the conjugate crystal. We also plot thewith those of Refs. [19,21] and are also tested by the
Hashin-Shtrikman bounds [15] as a check of consistencyKeller theorem [16], according to which the product of
It is interesting to note that fof < 0.5 the upper (lower) the effective dielectric constants of the crysta) @nd
bound is a reasonable approximation for the Si (air) cylin-of the conjugate crystale{) is equal toe,e,. The last
ders. We stress that Fig. 1(b) provides a complete characelumn demonstrates that the theorem is obeyed with great
terization of this PC in the low-frequency limit. Note that precision (we give only significant figures). This has been
the ratioe;/ €, can be greater tha(3) for the uniaxial (bi- achieved with an array of only 1812 values and modest
axial) crystal. Such anisotropy is substantially larger tharcomputational effort. So our method gives practically
that occurring in natural crystals. In fact, unlike 3D PC’s exact results even for very large dielectric contrastse;, .

[7], 2D PC's cannot be isotropic because= € is always The important formula Eq. (2) has direct analogies in
greater thare; ande;. other areas of transport properties of inhomogeneous me-
We propose that PC’s could be useful not only as phodia. Thus all thee’s may be replaced by the correspond-

tonic band-gapmaterials, but also aseptical materials. ing u's, ¢’s, or K’s, and one gets useful formulas for the
They could be custom designed for applications in desireffective static magnetic permeability, the conductivity, or
able spectral regions—for instance, the far infrared emthe thermal conductivity, respectively. This is because the
ploying nanofabricated arrays, and in the microwave fowalidity of Eq. (2) rests only on the equatioNs: D = 0,
macroscopic structures. As an example, in Fig. 2 we show X E = 0,andD = €E, and the basic equations of mag-

a birefringent prism constructed of suitably shaped 2D phornetostatics, electric transport, and heat transport have the
tonic crystals (square arrays of circular cylinders). Itis apvery same structure.
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TABLE |I. Comparison of our results for the effective dielectric constantith Refs. [19,21]

for a square array in air. The penultimate column gives our resgil)sf@r the corresponding
conjugate composite. The last column demonstrates that the Keller theorem is obeyed with
extremely high precision.

Ref. [21] Ref. [19] Present Work

f € € € € €€’ /e €
e, = 50

0.1 1.2339 1.29 £ 0.01 1.239010 40.354793 0.999999

0.2 1.5377 1.63 = 0.04 1.511636 33.076 744 0.999 999

0.3 1.9662 22 *+0.1 1.971 824 25.357226 0.999 999

0.4 2.683 3002 2.644923 18.904 143 1.000 000

0.5 7.07 8.87 £ 0.01 7.071 068 7.071 068 1.000 000
e, = 100

0.1 1.2402 1.34 = 0.05 1.249 889 80.007 121 1.000 000

0.2 1.5548 1.7 £ 0.1 1.569 954 63.696 132 0.999 999

0.3 2.0039 24 +03 2.000515 49.987129 1.000 000

0.4 2.775 3305 2.935262 34.068 509 1.000 000

0.5 10. 154 = 0.2 10.000 000 10.000 000 1.000 000
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