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Photonic Crystal Optics and Homogenization of 2D Periodic Composites
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We study the long-wavelength limit for an arbitrary photonic crystal (PC) of 2D periodicity. Lig
propagation isnot restricted to the plane of periodicity. We proved that 2D PC’s are uniaxial or biax
and derived compact, explicit formulas for the effective (“principal”) dielectric constants; these
plotted for silicon-air composites. This could facilitate the custom design of optical components
diverse spectral regions and applications. Our method of “homogenization” is not limited to opt
properties, but is also valid for electrostatics, magnetostatics, dc conductivity, thermal conductivity,
Thus our results are applicable to inhomogeneous media where exact, explicit formulas are scarce
numerical method yields results with unprecedented accuracy, even for very large dielectric con
and filling fractions. [S0031-9007(98)08154-X]

PACS numbers: 42.70.Qs, 41.20.Jb, 42.25.Lc
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Photonic crystals (PC’s) are arrays of dielectric ma
terials with one-, two-, or three-dimensional periodicity
Since the suggestion [1] that PC’s may be useful fo
controlling light emission, their properties have been re
searched intensively [2,3]. Recently, it was proposed th
PC’s could advance photonic information technology [4
6]. These ideas rely on the existence of a photonic ba
gap—a frequency region in which light propagation is for
bidden. The region well below the gap received much le
attention [7–12]. Here the wavelength is much great
than the lattice period; hence light “sees” a homogeneo
medium. This situation is analogous to light propagatio
in natural crystals, whose optical properties like birefrin
gence are described in crystal optics [13]. We studie
analytically, for the first time, propagation in an arbitrary
direction in space for a 2D PC.

In general, a PC supports two distinct propagatio
modes. Independently of the existence of a band ga
for sufficiently low frequenciesv, the dispersion relations
v versus the vector of propagationk are linear for the
two modes. The slopesvyk define two effective dielec-
tric constantseeff ­ sckyvd2 [7–12]. Thus, in this long-
wavelength limit the composite may be treated as if it we
homogeneous. At the same timeeeff does depend on the
direction of propagationskykd, implying that the effective
medium is anisotropic [7,9,10,12]. An electrostatic calcu
lation sv ­ 0d must yield the same values for theeeff as
the previously described quasistatic approachsv ! 0d. In
fact, thehomogenizationof composites [14] has been stud
ied for many years by means of both the static [15–23] an
the quasistatic [7,24,25] methods. The homogenization
1D structures has been accomplished a long time ago [2
Solution for 3D photonic crystals was given in Ref. [7].

The object of our investigation is a periodic, 2D array o
infinitely long cylinders. The cross section of a cylinde
can have an arbitrary shape, and the unit cell is in gene
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a parallelogram. These rods are assumed to be m
of a homogeneous material (dielectric constantea), as
is the interstitial material (eb). The cylinders occupy a
fractionf of space. For propagation of light parallel to th
plane of periodicity there are two independent modes:
EsHd mode has its electric (magnetic) field parallel
the cylinders [2–4,26–28]. In a preliminary work we hav
examined the in-plane behavior of these modes in the lo
frequency limit [12]. We also note that homogenizatio
has been performed for theE mode in the case of metallic
cylinders modeled withea ­ 1 2 v2

pyv2 [29]. In this
Letter we achieve a homogenization of our photonic crys
for an arbitrary direction of propagation in space; name
we take a 3D approach to composites of 2D periodic
We are aware only of a single, numerical study (p. 66
Ref. [2]) of out-of-plane propagation.

Crystal optics [13] is the product of homogenization
the periodic atomic structure. In the same way photo
crystal optics is the result of homogenizing a periodic co
posite with macroscopic inhomogeneities. Hence it sho
be possible to give a complete description of this struct
in terms of a dielectric tensor, which becomes diago
in the principal set of axes, embedded in the crystal.
this system of coordinates the dielectric response is sim
Di ­ eiEi si ­ 1, 2, 3d, theei being theprincipal dielec-
tric constantsof the composite. Now there is a simple
but crucial, consideration that for the (in-plane)E mode
the displacement vectorD must be parallel to the cylin-
ders at every point. Then the coordinate axis paralle
the cylinders (say,z) must be aprincipal axis. Moreover,
it is well known [14] that ifE is parallel toall the dielec-
tric interfaces, theneeff is equal to the weighted averag
of the dielectric constants of the constituents. This giv
immediately one of the principal dielectric constants,

e3 ­ e ­ eaf 1 ebs1 2 fd . (1)
© 1999 The American Physical Society 719
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The principal axesx andy must be parallel to the plane
of periodicity, and the corresponding dielectric constan
e1 ande2 must be calculated from anv ! 0 expansion of
the wave equation. If the threeei are known then, for an
arbitrary direction ofk, the indices of refraction along with
the displacement vectors of the two propagating modes
found with the help of the normal ellipsoid [13] whosez
axis is parallel to the rods [30].

It is advantageous to solve the wave equation for t
magnetic fieldHsrd. In addition to being continuous
across the interfaces and giving rise to a Hermitian eige
value problem [2], it has the added benefit thatHsrd van-
ishes in the static case. The static dielectric constantse1
and e2 are calculated by taking the limitk ! 0 in the
wave equation written in thek representation and using the
l’Hôpital rule for the ratiovyk. The proof will be given
elsewhere, and here we state only the final result. T
involves the reciprocal dielectric constanthsrd ­ 1yesrd
and its Fourier coefficienthsGd, whereG is a reciprocal
vector of the general (oblique) 2D lattice. Defining th
matrix MsG, G0d ­ G ? G0hsG 2 G0d, the principal di-
electric constants can be written as

e1 ­ fh 2 Axx sin2u 2 Ayy cos2u 2 Axy sin2ug21,

e2 ­ fh 2 Axx cos2u 2 Ayy sin2u 1 Axy sin2ug21,
(2)

Aik ­
1
2

X
sGiG

0
k 1 G0

iGkdhsGdhs2G0dM21sG, G0d .

Hereh is the weighted average ofhsrd, and the summa-
tion is performed over allnonzerocomponents ofG and
G0 (in the crystal axes system). For high-symmetry un
cells (Axy ­ 0), the principal axes coincide with the crysta
axes. Otherwise, the principal axes system is rotated ab
the axis z by an angleu ­ 2s1y2d tan21f2AxyysAxx 2

Ayydg. Equations (2) and (1) are the exact and explicit r
sults of homogenization for a 2D PC with arbitrary un
cell. The values of theei depend only on the structure o
this cell and onea andeb.

An oblique or a rectangular lattice gives rise toe1 fi e2.
This also occurs for a square or a hexagonal lattice if t
cylinders have a cross section of sufficiently low symm
try. Also, according to the Wiener bounds [14]ei , e;
therefore the effective dielectric constant must be large
when the electric field is parallel to all interfaces. The
for anisotropy in thexy plane,e1 fi e2 , e3. This situ-
ation results in abiaxial crystal [13]; namely, there are
two specific optical axes or directions ofk, for which
the two wave modes have equal refractive indices. W
have computede1,2s fd for a rectangular array of cir-
cular silicon rods in air, and for the conjugate case—
cylindrical holes in a silicon host, Fig. 1(a). A test o
the accuracy of our numerical results is provided by th
generalized Keller theorem [17], which states thatr ;
e1sea, ebde2seb , eadyeaeb ­ 1 for any f. Becausee2 ,

e1 , e3 (for air cylinders) the optical axes lie in thezy
plane, forming equal angles with the cylinders [13].
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FIG. 1. Principal dielectric constants of arrays of circular S
rods in air and of cylindrical holes in a Si host as a function
the filling fraction. For a rectangular lattice (a),e1 fi e2 and
the crystal is biaxial. In this case we used 1130G values in the
computation, giving rise to a precision factorr ­ 0.98. If the
lattice is square (b),e1 ­ e2 and the crystal is uniaxial. Note
that e1s fd falls within the Hashin-Shtrikman bounds (dashed
Here we employed only 1028G values; however, the precision
was greatly increased by taking the geometric average refer
to in the text.

For a square lattice of circular or square cylinders wi
the sides of the rods either parallel to the lattice or r
tated by45± we proved analytically thate1 ­ e2. We also
checked numerically that this equality holds for a hexag
nal lattice of circular or triangular cylinders with the side
of the rods parallel to three sides of the hexagon. Isotro
in the plane of periodicity is a consequence of a thir
or higher-order rotation axisz [31]. These five photonic
crystals are then uniaxial, with their optical axis coincid
ing with the cylinder axes. This is then the only directio
for which theordinary andextraordinarywaves become
degenerate and have the same index of refraction,

p
e1 ­

p
e2. For off-axis propagation the ordinary mode still ha

the same index of refraction, its electric field being para
lel to the (isotropic) plane of periodicity. The extraord
nary mode has its electric field parallel to the plane form
by k andz, and its refractive index depends on the ang
between these two vectors. Figure 1(b) shows the pr
cipal dielectric constants of a square lattice of circular
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FIG. 2. Design of a prism using a 2D photonic crystal. Th
circular dots represent cylinder cross sections. The birefring
prism polarizes the outcoming light.

cylinders and of the conjugate crystal. We also plot th
Hashin-Shtrikman bounds [15] as a check of consisten
It is interesting to note that forf & 0.5 the upper (lower)
bound is a reasonable approximation for the Si (air) cyli
ders. We stress that Fig. 1(b) provides a complete char
terization of this PC in the low-frequency limit. Note tha
the ratioe3ye2 can be greater than2s3d for the uniaxial (bi-
axial) crystal. Such anisotropy is substantially larger th
that occurring in natural crystals. In fact, unlike 3D PC’
[7], 2D PC’s cannot be isotropic becausee3 ­ e is always
greater thane1 ande2.

We propose that PC’s could be useful not only as ph
tonic band-gapmaterials, but also asoptical materials.
They could be custom designed for applications in des
able spectral regions—for instance, the far infrared e
ploying nanofabricated arrays, and in the microwave f
macroscopic structures. As an example, in Fig. 2 we sh
a birefringent prism constructed of suitably shaped 2D ph
tonic crystals (square arrays of circular cylinders). It is a
ith
TABLE I. Comparison of our results for the effective dielectric constante with Refs. [19,21]
for a square array in air. The penultimate column gives our results (ep) for the corresponding
conjugate composite. The last column demonstrates that the Keller theorem is obeyed w
extremely high precision.

Ref. [21] Ref. [19] Present Work
f e e e ep eepyeaeb

ea ­ 50

0.1 1.2339 1.29 6 0.01 1.239 010 40.354 793 0.999 999
0.2 1.5377 1.63 6 0.04 1.511 636 33.076 744 0.999 999
0.3 1.9662 2.2 6 0.1 1.971 824 25.357 226 0.999 999
0.4 2.683 3.0 6 0.2 2.644 923 18.904 143 1.000 000
0.5 7.07 8.87 6 0.01 7.071 068 7.071 068 1.000 000

ea ­ 100

0.1 1.2402 1.34 6 0.05 1.249 889 80.007 121 1.000 000
0.2 1.5548 1.7 6 0.1 1.569 954 63.696 132 0.999 999
0.3 2.0039 2.4 6 0.3 2.000 515 49.987 129 1.000 000
0.4 2.775 3.3 6 0.5 2.935 262 34.068 509 1.000 000
0.5 10. 15.4 6 0.2 10.000 000 10.000 000 1.000 000
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parent that PC’s could also be designed to exhibit optic
activity [32], conical refraction, dichroism, etc.

Next we put the accuracy of our calculations to a toug
test. While Eq. (2) is exact, the computation necessitat
cutting down the matrixMsG, G0d to finite size. This
happens to underestimate the values ofei . On the other
hand, a similar solution of the wave equation forD, derived
for the special case of a uniaxial crystal, overestimate
the ei . If Axy ­ 0 (symmetric unit cell), this alternative
formula for ei is given by the denominator in Eq. (2),
however, with all of theh replaced bye. Our numerical
simulations show that the geometric average of the tw
expressions forei is almost independent of the size ofM
(the number ofG vectors).

In Table I we present results for a square array o
prismatic rods in air. Dielectric contrasts as large as 5
and 100 have been selected. Our values are compa
with those of Refs. [19,21] and are also tested by th
Keller theorem [16], according to which the product o
the effective dielectric constants of the crystal (e) and
of the conjugate crystal (ep) is equal toeaeb . The last
column demonstrates that the theorem is obeyed with gre
precision (we give only significant figures). This has bee
achieved with an array of only 1812G values and modest
computational effort. So our method gives practically
exact results even for very large dielectric contrastseayeb .

The important formula Eq. (2) has direct analogies i
other areas of transport properties of inhomogeneous m
dia. Thus all thee’s may be replaced by the correspond
ing m’s, s’s, or K ’s, and one gets useful formulas for the
effective static magnetic permeability, the conductivity, o
the thermal conductivity, respectively. This is because th
validity of Eq. (2) rests only on the equations= ? D ­ 0,
= 3 E ­ 0, andD ­ eE, and the basic equations of mag-
netostatics, electric transport, and heat transport have
very same structure.
721
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We have added the technologically promising 2D PC
to the brief list of inhomogeneous systems for which exa
homogenization has been previously accomplished. Th
has been achieved for an arbitrary structure of the PC a
with unprecedented numerical precision. Because of t
linearity of the dispersion curves below the gap, Eqs. (
and (2) are applicable even for frequenciesv close to the
value cya, wherea is the lattice constant. These idea
could lead to the homogenization ofphononic crystals
(elastic composites) and could also have implications f
random composites.
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