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We measure the joint distribution of the energy transmission coeffieignand the single channel
delay timer,, for microwave radiation propagating through a random medium in the limit of zero pulse
bandwidth. For fixed,, the distribution ofr,;, is Gaussian with variance inversely proportionakg.

In contradistinction tor,,, the dynamic matrix element,, 7., has substantial long-range correlation
with frequency shift. We present a new dynamic theory for a Gaussian process, which is in excellent
agreement with experiment. [S0031-9007(98)08297-0]

PACS numbers: 42.25.Dd

The focus of statistical optics and mesoscopic physictarly large for low values of the intensity when nulls in
has been on steady state transmittance quantities such the speckle pattern pass near a detector. The strong cor-
intensity, total transmission, and conductance. In practicaglation between static intensity and dynamic delay time is
however, all experiments are bounded in time and it igmportant since the single channel delay time weighted by
natural to consider the statistics of dynamical aspects ahe intensityW,, = I.,¢., [4] is the appropriate quan-
propagation. Key variables are the “single channel delayity for the delay time averaged over channels. For ex-
time” 7., and the energy transmission coefficiep; for  ample, the average delay for photons in madie W, =
a pulsel’"(¢) incident in spatial mode and scattered into  (1/2N)2, 1., ¢, and the sum over all pairs of modes is
outgoing modeb, defined in terms of the time-dependentthe Wigner delay timeV = (1/2N)2 1. $.5, Which is
transmission coefficientl,,(r) as 7., = [dtI,,(t)t/  the density of states of the sample multiplied by2N
[dt1,(t), and eu, = [dtl,(t)/{[dtI"(t)). The [13]. When the modes andb are restricted, respectively,
interplay between the single channel delay time and théo modes on the incident and output sides of the sample,
energy transmission coefficient is best expressed in termi&, andW can be considered as the dynamic equivalents,
of the joint probability distributio? (e, 7,5) and the cor-  respectively, of the total transmissi@h and the dimen-
relation functions with frequency of,;,, 745, ande,;, 745. sionless conductancgé, whose ensemble average value
In the limit of small bandwidth, the single channel delayis ¢g. Enhanced fluctuations ifi, and 7 as well as en-
time is found to approach the spectral derivatili¢,,/  hanced spectral correlations arise as a result of extended
do = ¢, of the phase accumulated by the field asspatial correlation [14—18]. Here we report the observa-
it propagates through the sample [1], while the energyion of a long-rangeC, correlation [14,18] in dynamics.
transmission coefficient,;, approaches the single channel This is seen in both the frequency correlation function of
static transmission coefficient,,(w). To initiate our W,;,, as well as in its probability distribution. In contrast,
study, we consider the important limiting case of narrowthe statistics of the single channel delay tighg, is found
bandwidth, which is commonly taken in discussions ofto be remarkably well described by the GaussianCer
group velocity and phase delay in homogeneous mediapproximation [19].

The concept of delay times has been discussed previously We report here measurements of the microwave
by Eisenbud [2] and Wigner [3] as ways of quantifying thefield transmission coefficient,,(w) = /I, explidas)
duration of collisions. Smith [4] has introduced the delaythrough a sample of randomly positionédnch polysty-
matrix to treat the many channel problem. Statisticalrene spheres between 18 and 19 GHz using a Hewlett-
aspects of dynamics have been considered for chaotieackard HP8722C network analyzer. The sample has
scattering [5—9], with potential applications to coherenta volume filling fraction of 0.52 and is contained in a
electrons in mesoscopic capacitances [10] and to mi5-cm-diam copper tube. New configurations are produced
crowave cavities. Here we consider statistics of dynamicafter each spectrum is taken by rotating the tube briefly
of microwave radiation in random media. about its axis. Ten thousand spectra are taken in a sample

An interplay between the statistics pfand ¢’ can be of length L = 100 cm with frequency steps of 100 kHz.
expected by noting that the phase is indeterminate at nullsleasurements at = 50 cm andL = 200 cm are taken
in the transmitted intensity speckle pattern. The phaséor 6000 sample configurations with frequency steps of
jumps by 7 when moving through a null in the speckle 625 kHz. The transport mean free path is approximately
pattern [11,12]. Thus the magnitude f can be particu- 7 cm [20]. The transmitted field excited by an incident
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pulse En(¢) is obtained by Fourier transforming into proximation fork complex field amplitude&; = ¢(i)E;"
the time domain the product of the frequency domain21]. Their joint distribution is given by

Fourier transforms of the incident pulse and the field K

transmission coefficier" (v)z,,(v). The single channel P(Ei,... . Ex) = _ 1 exp(— Z E,-C-‘E,»),
delay time 7,,(v, Av) is computed for each configura- K detC ij=1 Yo

tion for an incident pulse with carrier frequency near (@H)]
v = w/27 = 18.1 GHz and for various bandwidthsy.
From this we compute the probability distribution fay,
normalized to its ensemble average vatue = 7.5 /{Tap)

for a number of bandwidths. We find that the distribution
broadens with decreasing bandwidth and approaches
limiting distribution asAv — 0. We have previously
shown that the single channel delay time in the limit o
long pulses is equal te,, [1]. The limiting distribution
thus corresponds to the distribution ¢f,,.

whereC;; = (E;E,) is the normalized Hermitian variance
matrix, (E;E;) = 1. In our case, the index labels K
different frequencies for a given channel transitiégn For

all frequency difference; — w, = w, we can make
the expansiorC;, = 1 + iaw + bw? + O(w?), where
fa and b can be calculated from diffusion theory [15,18]
(involving diffusion constanD, sample lengtt, and the
absorption lengtiL,), or can simply be measured.

The probability distribution of the normalized single Probability distr?butions can be de'rived tr = 2 using
A a change of variable€; = A;expi¢;). As w — 0,

. / — / / . . .
channel delay timep” = ¢ay/(bap) is shown in Fig. 1. oo o0 chastic variables becothes A2, ¢/ = d ey /de.

Figure 2 shows that the distributions @f for fixedl., g = glogA,,/dw, and¢.,. Integrating outh,, andR
are well fit by Gaussian functions. Their variances argjields for the joint distribution

found to be inversely proportional faas shown in the inset

of the figure. The spectral correla.tion fungtions of single PU.$) = _ exp—1) exp{—%(d)’ _ }
channel delay timep’ and the weighted single channel 7Qa Qa
delay tinj\eWa;, are shown in Fig. 3. The correlation func- (2)

. , : .
t'ﬁn of ¢| fallsfequnent;/z‘a/lly ;N:}h frelqu\tjz_cy, \/Tvrr:ereas The distribution depends on the dimensionless parameter
the correlation function oW,, falls as1/+vAv. ese = —2b/a® — 1 > 0. For constant intensity, ' is

decays are reminiscent, respectively, of the decays of t ormally distributed with standard deviatidng' /(') =

C, andC, terms in the intensity correlation function with P /
frequency [14,15,18,19]. ,E/qQ/(zzl).. The distributions forg,;, and W, follow from

To our knowledge, neitherC,” nor “C,” theory has
been developed previously for dynamic variables. We be- P(%’ _ ¢ ) 1 0
- 2

gin our calculations by considering tiig or Gaussian ap- (3)

[0 + (3 — 1PPR

FIG. 2. Probability distributions for the normalized local
delay time ¢’ in transmission of a tube with Length =
100 cm for fixed \Lalues of the norm,glized intensity circles:

I = 0.1; squares:I = 1.0; triangles: 7 = 10. The Gaussian
FIG. 1. Probability distribution function of the normalized curves denote the theoretical predictions for= 0.31. Inset:
single channel delay time' = &, /(L) in transmission. Normalized varianc¢A¢’)* of the single channel delay time at

The solid line is the theoretical prediction using the measuredixed normalized intensity. The solid line gives the theoretical
valueQ = 0.31. prediction forQ = 0.31.
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UB 2T . T of the delay time are shown as functions of the absorption
107 & E L/L, in transmission through a thick slab of length calcu-
E . E lated from the diffusion approximation. The functidn (0)
r NG denotes the short rangeC{” contribution to (W?2) — (W)?;
107° N I N B lF2(0) is the non-GaussianC3” contribution. Q is the di-

mensionless parameter determining the probability distribution
' of the quantitiesW and ¢’; the average delay tim&p/) has
<¢> Ao been normalized to the diffuse traversal tinid/6D. The

. . . dashed lines indicate the positions of the samples used in the
FIG. 3. Normalized frequency correlation functions for measurements? = 0.37, 0 = 0.31, andQ = 0.18 have been
(a) single channel phase delay,, and (b) single channel explicitly measured. ' ’
phase delay weighted by intensity,,. Solid lines denote

theoretical predictions using the value/L, = 2.5 obtained In order to compare the measured d|str|but|B('¢’)
from the measurement of the field correlation function. Thetg theory, we must find the single parametgr A

¢.,-correlation function exhibits no significant long-range cor- measurement of the field frequency correlation function

relation, and is well described by the Gaussian approximation.
The W,,-correlation function exhibits a long-range/Aw /2 with frequency steps that are 1% of the correlation

tail. The solid line is the theoretical prediction fe, + ¢,  frequency for thGL = 100 cm S{imple give® = 031 * _
usingg = 6.0; the dashed line shows; only. 0.01. The solid line in Fig. 1 is a plot of Eq. (3) using

this value forg and is in agreement with experiment over
(A W ) —2|W| ) 7 decades imp..,.
P{W = 7| = ex = . The theoretical dependence of the vanancd:g,f upon
w VO + 1 O+ 1
W) ¢ oW) + VO + 1 7 is shown as the straight line in the inset of Fig. 2, and
again found to be in excellent agreement with experiment.

The distributionP(¢') decays algebraically in a way simi- The agreement of the measurementsPQfﬁ) and the

lar to delay times in single channel chaotic cavities [9].  .qngitional probabllltyP(¢’/1) with C, theory shows

Correlation functions at two close frequencies can bgy ¢ jong-range correlation does not influence the statistics
obtained from Egq. (1) withk = 4 at the frequencies £ 50 This i firmed by th t sh .
v+ w/2 * O /2inthe limit @ — 0. The calculation of ©F ¢~ This is confirmed by the agreement shown in
the normalized frequency correlation function W, (») Fig. 3a of the spectral correlation function ¢f with the

involves integrations that can all be done analytically, €1 Prediction obtained numerically using Eq. (1) and the
measured valué./L, = 2.5. In the limit Aw — 0 this

<ﬁ/ab(,, - Q/g)ﬁ/ab(,, + Q/2)). correlation function is predicted to diverge logarithmically.
We see in Fig. 3a that this correlation function rises to a
1 [IC(Q)]? — ReC(Q)C"(Q)] = F(Q).  Vvalue of3.5, which is limited by the finite frequency step
2 and the measurement noise.
(5) The relationship of both the dimensionless conductance
g and the Wigner delay tim& to the density of states
The details of the frequency correlation function of[23,24] leads us to anticipate that long-range correlations
¢ap(v) must be worked out numerically and are left towill be displayed in the single channel dynamic quantities
future publications. Figure 4 shows, F(Q2 = 0), and W, as itis in the static intensit,, [14—18]. The pres-
the average phase delay calculated from the diffusiomnce of long-range correlation for a single polarization
approximation [22]. component was seen in the increasing deviation from a
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