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Statistics of Wave Dynamics in Random Media
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We measure the joint distribution of the energy transmission coefficient´ab and the single channel
delay timetab for microwave radiation propagating through a random medium in the limit of zero puls
bandwidth. For fixed́ ab the distribution oftab is Gaussian with variance inversely proportional to´ab .
In contradistinction totab , the dynamic matrix element́abtab has substantial long-range correlation
with frequency shift. We present a new dynamic theory for a Gaussian process, which is in excel
agreement with experiment. [S0031-9007(98)08297-0]
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The focus of statistical optics and mesoscopic physi
has been on steady state transmittance quantities such
intensity, total transmission, and conductance. In practic
however, all experiments are bounded in time and it
natural to consider the statistics of dynamical aspects
propagation. Key variables are the “single channel dela
time” tab and the energy transmission coefficient´ab for
a pulseIin

a std incident in spatial modea and scattered into
outgoing modeb, defined in terms of the time-dependen
transmission coefficientIabstd as tab ­

R
dt IabstdtyR

dt Iabstd, and ´ab ­
R

dt Iabstdyk
R

dt Iin
a stdl. The

interplay between the single channel delay time and t
energy transmission coefficient is best expressed in ter
of the joint probability distributionPs´ab , tabd and the cor-
relation functions with frequency of́ab, tab, and´abtab .
In the limit of small bandwidth, the single channel dela
time is found to approach the spectral derivativedfaby
dv ; f

0
ab of the phase accumulated by the field a

it propagates through the sample [1], while the energ
transmission coefficient́ab approaches the single channe
static transmission coefficientIabsvd. To initiate our
study, we consider the important limiting case of narrow
bandwidth, which is commonly taken in discussions o
group velocity and phase delay in homogeneous med
The concept of delay times has been discussed previou
by Eisenbud [2] and Wigner [3] as ways of quantifying th
duration of collisions. Smith [4] has introduced the dela
matrix to treat the many channel problem. Statistica
aspects of dynamics have been considered for chao
scattering [5–9], with potential applications to coheren
electrons in mesoscopic capacitances [10] and to m
crowave cavities. Here we consider statistics of dynami
of microwave radiation in random media.

An interplay between the statistics ofI andf0 can be
expected by noting that the phase is indeterminate at nu
in the transmitted intensity speckle pattern. The pha
jumps byp when moving through a null in the speckle
pattern [11,12]. Thus the magnitude off0 can be particu-
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larly large for low values of the intensity when nulls in
the speckle pattern pass near a detector. The strong c
relation between static intensity and dynamic delay time
important since the single channel delay time weighted b
the intensityWab ­ Iabf

0
ab [4] is the appropriate quan-

tity for the delay time averaged over channels. For ex
ample, the average delay for photons in modea is Wa ­
s1y2NdSbIabf

0
ab, and the sum over all pairs of modes is

the Wigner delay timeW ­ s1y2NdSabIabf
0
ab, which is

the density of states of the sample multiplied bypy2N
[13]. When the modesa andb are restricted, respectively,
to modes on the incident and output sides of the samp
Wa andW can be considered as the dynamic equivalent
respectively, of the total transmissionTa and the dimen-
sionless conductanceT , whose ensemble average value
is g. Enhanced fluctuations inTa and T as well as en-
hanced spectral correlations arise as a result of extend
spatial correlation [14–18]. Here we report the observa
tion of a long-rangeC2 correlation [14,18] in dynamics.
This is seen in both the frequency correlation function o
Wab, as well as in its probability distribution. In contrast,
the statistics of the single channel delay timef

0
ab is found

to be remarkably well described by the Gaussian orC1
approximation [19].

We report here measurements of the microwav
field transmission coefficienttabsvd ­

p
Iab expsifabd

through a sample of randomly positioned1
2 -inch polysty-

rene spheres between 18 and 19 GHz using a Hewle
Packard HP8722C network analyzer. The sample h
a volume filling fraction of 0.52 and is contained in a
5-cm-diam copper tube. New configurations are produce
after each spectrum is taken by rotating the tube briefl
about its axis. Ten thousand spectra are taken in a sam
of length L ­ 100 cm with frequency steps of 100 kHz.
Measurements atL ­ 50 cm andL ­ 200 cm are taken
for 6000 sample configurations with frequency steps o
625 kHz. The transport mean free path is approximate
7 cm [20]. The transmitted field excited by an inciden
© 1999 The American Physical Society 715
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pulse Ein
a std is obtained by Fourier transforming into

the time domain the product of the frequency doma
Fourier transforms of the incident pulse and the fie
transmission coefficientEin

a sndtabsnd. The single channel
delay time tabsn, Dnd is computed for each configura-
tion for an incident pulse with carrier frequency nea
n ­ vy2p ­ 18.1 GHz and for various bandwidthsDn.
From this we compute the probability distribution fortab
normalized to its ensemble average valuebtab ­ tabyktabl
for a number of bandwidths. We find that the distributio
broadens with decreasing bandwidth and approache
limiting distribution asDn ! 0. We have previously
shown that the single channel delay time in the limit o
long pulses is equal tof0

ab [1]. The limiting distribution
thus corresponds to the distribution off

0
ab.

The probability distribution of the normalized single
channel delay timebf0 ; f

0
abykf0

abl is shown in Fig. 1.
Figure 2 shows that the distributions ofbf0 for fixed Iab
are well fit by Gaussian functions. Their variances a
found to be inversely proportional tobI as shown in the inset
of the figure. The spectral correlation functions of sing
channel delay timebf0 and the weighted single channe
delay timeWab are shown in Fig. 3. The correlation func
tion of bf0 falls exponentially with frequency, wherea
the correlation function ofWab falls as1y

p
Dn. These

decays are reminiscent, respectively, of the decays of
C1 andC2 terms in the intensity correlation function with
frequency [14,15,18,19].

To our knowledge, neither “C1” nor “C2” theory has
been developed previously for dynamic variables. We b
gin our calculations by considering theC1 or Gaussian ap-

FIG. 1. Probability distribution function of the normalized
single channel delay timebf0 ; f

0
abykf0

abl, in transmission.
The solid line is the theoretical prediction using the measur
valueQ ­ 0.31.
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proximation forK complex field amplitudesEi ­ tsidEin
i

[21]. Their joint distribution is given by

PsE1, . . . , EK d ­
1

pK detC
exp

√
2

KX
i,j­1

ĒiC
21
ij Ej

!
,

(1)

whereCij ­ kEiĒjl is the normalized Hermitian variance
matrix, kEjĒjl ­ 1. In our case, the indexi labels K
different frequencies for a given channel transitionab. For
small frequency differencev1 2 v2 ­ v, we can make
the expansionC12 ­ 1 1 iav 1 bv2 1 O sv3d, where
a and b can be calculated from diffusion theory [15,18
(involving diffusion constantD, sample lengthL, and the
absorption lengthLa), or can simply be measured.

Probability distributions can be derived forK ­ 2 using
a change of variablesEj ­ Aj expsifjd. As v ! 0,
the stochastic variables becomeI ­ A2, f0 ; dfabydv,
R ; d logAabydv, andfab. Integrating outfab andR
yields for the joint distribution

PsI , f0d ­

s
I

pQa2 exps2Id exp

"
2

I
Qa2 sf0 2 ad2

#
.

(2)

The distribution depends on the dimensionless parame
Q ; 22bya2 2 1 . 0. For constant intensityI, f0 is
normally distributed with standard deviationDf0ykf0l ­p

Qy2I. The distributions forf0
ab andWab follow from

Eq. (2):

P

√bf0 ;
f0

kf0l

!
­

1
2

Q

fQ 1 sbf0 2 1d2g3y2
; (3)

FIG. 2. Probability distributions for the normalized loca
delay time bf0 in transmission of a tube with lengthL ­
100 cm for fixed values of the normalized intensitybI; circles:bI ­ 0.1; squares:bI ­ 1.0; triangles: bI ­ 10. The Gaussian
curves denote the theoretical predictions forQ ­ 0.31. Inset:
Normalized variancesDbf0d2 of the single channel delay time at
fixed normalized intensitybI. The solid line gives the theoretical
prediction forQ ­ 0.31.
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FIG. 3. Normalized frequency correlation functions fo
(a) single channel phase delayf0

ab and (b) single channel
phase delay weighted by intensityWab . Solid lines denote
theoretical predictions using the valueLyLa ­ 2.5 obtained
from the measurement of the field correlation function. Th
f

0
ab-correlation function exhibits no significant long-range cor

relation, and is well described by the Gaussian approximatio
The Wab-correlation function exhibits a long-range1yDv1y2

tail. The solid line is the theoretical prediction forC1 1 C2
usingg ­ 6.0; the dashed line showsC1 only.

P

√ bW ;
W

kW l

!
­

1
p

Q 1 1
exp

√
22j bW j

us bWd 1
p

Q 1 1

!
.

(4)

The distributionPsbf0d decays algebraically in a way simi-
lar to delay times in single channel chaotic cavities [9].

Correlation functions at two close frequencies can b
obtained from Eq. (1) withK ­ 4 at the frequencies
n 6 vy2 6 Vy2 in the limit v ! 0. The calculation of
the normalized frequency correlation function ofWabsnd
involves integrations that can all be done analytically,

k bWabsn 2 Vy2d bWabsn 1 Vy2dlc

­
1

2a2 fjC0sVdj2 2 ReCsVdC̄00sVdg ; F1sVd .

(5)

The details of the frequency correlation function o
f

0
absnd must be worked out numerically and are left to

future publications. Figure 4 showsQ, F1sV ­ 0d, and
the average phase delay calculated from the diffusi
approximation [22].
r

e
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FIG. 4. Several parameters which appear in the statist
of the delay time are shown as functions of the absorpti
LyLa in transmission through a thick slab of lengthL, calcu-
lated from the diffusion approximation. The functionF1s0d
denotes the short range “C1” contribution to kW2l 2 kW l2;
1
g F2s0d is the non-Gaussian “C2” contribution. Q is the di-
mensionless parameter determining the probability distributi
of the quantitiesW and f0; the average delay timekf0

nl has
been normalized to the diffuse traversal timeL2y6D. The
dashed lines indicate the positions of the samples used in
measurements:Q ­ 0.37, Q ­ 0.31, andQ ­ 0.18 have been
explicitly measured.

In order to compare the measured distributionPsbf0d
to theory, we must find the single parameterQ. A
measurement of the field frequency correlation functi
with frequency steps that are 1% of the correlatio
frequency for theL ­ 100 cm sample givesQ ­ 0.31 6

0.01. The solid line in Fig. 1 is a plot of Eq. (3) using
this value forQ and is in agreement with experiment ove
7 decades inbf0

ab .
The theoretical dependence of the variance ofbf0

ab uponbI is shown as the straight line in the inset of Fig. 2, an
again found to be in excellent agreement with experime
The agreement of the measurements ofPsbf0d and the
conditional probabilityPsbf0ybId with C1 theory shows
that long-range correlation does not influence the statis
of bf0. This is confirmed by the agreement shown
Fig. 3a of the spectral correlation function ofbf0 with the
C1 prediction obtained numerically using Eq. (1) and th
measured valueLyLa ­ 2.5. In the limit Dv ! 0 this
correlation function is predicted to diverge logarithmically
We see in Fig. 3a that this correlation function rises to
value of3.5, which is limited by the finite frequency step
and the measurement noise.

The relationship of both the dimensionless conductan
g and the Wigner delay timeW to the density of states
[23,24] leads us to anticipate that long-range correlatio
will be displayed in the single channel dynamic quantiti
Wab, as it is in the static intensityIab [14–18]. The pres-
ence of long-range correlation for a single polarizatio
component was seen in the increasing deviation from
717
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FIG. 5. Probability distributions of the normalized single
channel phase delay weighted by intensitybWab ­ Iabf

0
aby

kIabf
0
abl, for three sample lengths:L ­ 50 cm, L ­ 100 cm,

andL ­ 200 cm. The dashed lines denote theC1 theory using
Q ­ 0.37, Q ­ 0.31, andQ ­ 0.18.

negative exponential statistics in the tail ofPsÎabd [16,25–
29], as well as in a significantC2 contribution to the in-
tensity correlation function with frequency, decaying a
1y

p
Dn [14,17,18]. In Fig. 5 we compare the measure

distribution of bWab for various lengths with the two sided
exponential given by Eq. (4). The increasing deviation
found in the tails of the distributions asL increases—with
corresponding decrease of the dimensionless conducta
g—signals the presence of long-range correlation. Th
is indicated as well in the spectral correlation function obWab , shown in Fig. 3b. The dashed lines show the pred
tion of Eq. (4). The difference between experiment an
C1 theory is of the orderg21y

p
Dn in the tail of the cor-

relation function. To understand this tail, theC2 contribu-
tion F2sVd of the spectral correlation function ofbWab has
been calculated from the theory of Berkovits and Fen
[22], using the Hikami box of Nieuwenhuizen and va
Rossum [30]. The sumF1sVd 1 s1ygdF2sVd is shown
as the solid line in Fig. 3b, whereg ø 6 is known from
measurements of the static intensity distribution in th
sample [26]. The results are in excellent agreement w
theory without the use of any free parameters.

In conclusion, we have reported the measurement a
calculation of key distributions and correlation function
of single channel dynamics in the limit of narrow-ban
incident pulses. This study forms the foundation for th
statistics of arbitrary pulses. These results reveal t
interplay between the delay time and intensity, which
associated with the structure of the transmitted spec
pattern. They also show that the weighted single chan
delay time is not a self-averaging quantity and that lar
mesoscopic fluctuations in delay times can be expected
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