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We study mixing andCP violation of three left-handed Majorana neutrinos in the limit of exactly
degenerate masses, identify the weak-basis invariant relevant forCP violation, and show that the
leptonic mixing matrix is parametrized only by two angles and one phase. After the lifting of th
degeneracy, this parametrization accommodates the present data on atmospheric and solar neutrino
well as doubleb decay. Some of the leptonic mixingAnsätzesuggested in the literature correspond to
special cases of this parametrization. [S0031-9007(98)08204-0]
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The Super-Kamiokande Collaboration [1] has recent
provided evidence confirming the atmospheric neutrin
anomaly, as well as the solar neutrino deficit. The interpr
tation of these experimental results within the framewor
of three left-handed neutrinos, without sterile neutrinos, t
gether with the assumption that relic neutrinos constitu
the hot dark matter of the Universe [2], inescapably lead
to highly degenerate neutrinos [3].

In this Letter, we analyze in detail neutrino mixing
andCP violation in the case of three Majorana neutrino
with exactly degenerate masses and then consider the c
of quasidegenerate masses. We identify the weak-ba
invariant, which controls the strength ofCP violation in
the limit of exact mass degeneracy and point out tha
in this limit, the neutrino mixing matrix is in general
parametrized by two angles and one phase. We th
show that a two-angle parametrization suggested by t
exact degeneracy limit can fit all the present atmosphe
and solar neutrino data and complies with the boun
imposed by neutrinoless beta decay. Furthermore, w
point out that various of the recently suggested neutrin
mixing schemes, such as the bimaximal mixing [4], th
democratic mixing [5], as well as the scheme suggest
by Georgi and Glashow [6], correspond to specific cas
of our two-angle parametrization.

The limit of exact degeneracy.—Let us consider three
left-handed neutrinos and introduce a generic Majora
mass term,

Lmass ­ 2snLa
dT C21mabnLb

1 H.c., (1)

wherem ­ smabd is a 3 3 3 complex symmetric mass
matrix, andnLa

denote the left-handed weak eigenstate
We shall work in the weak basis (WB) where the
charged lepton mass matrix is diagonal, real, and positiv
The neutrino mass matrix can be diagonalized by th
transformation [7]

UT ? m ? U ­ diagsmn1 , mn2 , mn3 d . (2)
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The weak eigenstates,nLa
, are related to the mass

eigenstates,nLi , by nLa
­ UainLi , so that the charged

current of the lepton weak interactions is given by

LW ­
g
2

se, m, tdLgmU

0B@ n1
n2
n3

1CA
L

Wm 1 H.c. (3)

It is well known that for the nondegenerate case th
neutrino diagonalization matrixU can be parametrized by
three angles and three phases that areCP violating. In
the limit of exact degeneracy, we shall show here that,
general,U cannot be rotated away, and its parametrizatio
requires two angles and oneCP violating phase. Further-
more, we shall see that only if the theory isCP invariant
and the three degenerate neutrinos have the sameCP parity
can the matrixU be rotated away. This is to be contrasted
to the case of Dirac neutrinos, where there is no mixing o
CP violation in the exact degeneracy limit.

Let us consider the limit of exact degeneracy withm

the common neutrino mass. It is useful to define th
dimensionless matrixZ0 ­ mym which from Eq. (2) can
be written as

Z0 ­ U?
0 ? U

y
0 , (4)

whereU0 denotes the mixing matrix in the exact degen
eracy limit. It follows from Eq. (4) thatZ0 is a unitary
symmetric matrix. By making a WB transformation, un-
der which Z0 ! K ? Z0 ? K, with K a diagonal unitary
matrix, it is possible to choose the first line and the firs
column ofZ0 real, while keeping the charged lepton mas
matrix diagonal real and positive. Without loss of gener
ality, the matrixZ0 can then be written as

Z0 ­

0B@ 1 0 0
0 cf sf

0 sf 2cf

1CA ?

0B@ cu su 0
su z22 z23
0 z23 z33

1CA
?

0B@ 1 0 0
0 cf sf

0 sf 2cf

1CA . (5)
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Unitarity of Z0 then implies that eithersu or z23 must
vanish. It can be readily verified that the casesu ­ 0
automatically leads toCP invariance. Assumingsu fi 0,
then the most general form for the symmetric unitar
matrix Z0 is given by

Z0 ­

0B@ 1 0 0
0 cf sf

0 sf 2cf

1CA ?

0B@ cu su 0
su 2cu 0
0 0 eia

1CA

?

0B@ 1 0 0
0 cf sf

0 sf 2cf

1CA . (6)

The parametrization ofZ0 in Eq. (6) does not include
the trivial case whereCP is a good symmetry and all
neutrinos have the sameCP parity. In order to show that
this is indeed the case, let us assume that the most gen
Z0 for degenerate neutrinos given by Eq. (4) is a re
matrix, so thatCP invariance holds. In that case,Z0 can
be diagonalized by an orthogonal transformationZ0 !
OT ? Z0 ? O, which leaves invariant both TrsZ0d and
detsZ0d. Apart from trivial permutations, the eigenvalues
of Z0 will be s1, 1, 1d, s1, 21, 1d, or s1, 21, 21d. It is
well known [8] that the first case corresponds to thre
neutrinos with the sameCP parity, while the other two
cases correspond to one of the neutrinos having aCP
parity opposite to that of the other two. Now, in the
parametrization of Eq. (6), one obtains detsZ0d ­ 2eia,
TrsZ0d ­ eia, and therefore the casess1, 21, 1d and
s1, 21, 21d can be obtained, corresponding toa ­ 0 and
a ­ p, respectively. Obviously the cases1, 1, 1d cannot
be obtained by the parametrization of Eq. (6). As w
previously mentioned, this case corresponds to a trivi
mixing matrix, which can be rotated away. The matri
Z0 given by Eq. (6) can be diagonalized through th
transformation of Eq. (2), withU0 given by

U0 ­

0B@ 1 0 0
0 cf sf

0 sf 2cf

1CA ?

0BB@ coss u

2 d sins u

2 d 0

sins u

2 d 2 coss u

2 d 0
0 0 e2iay2

1CCA
?

0B@ 1 0 0
0 i 0
0 0 1

1CA . (7)

The matrix U0 is then the mixing matrix appearing
in the leptonic charged currents. Given the Majoran
character of neutrino masses and the fact thatU0 is not an
orthogonal matrix, it is clear that one cannot rotate awa
U0 through a redefinition of the neutrino fields. This is
the case even in theCP invarance limit, i.e.,a ­ 0, p.

The strength of CP violation and a WB invariant.—We
have seen thatCP violation may arise even when the three
Majorana neutrinos have identical mass [9]. Now, w
present a weak-basis invariant which controls the streng
of the CP violation in the limit of exact degeneracy.
It can be readily verified that a necessary and sufficie
condition forCP invariance, in the degenerate limit, is
684
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G ; Trfsm ? h ? m?d, h?g3 ­ 0 , (8)

whereh ­ m, ? m
y
, , andm, denotes the charged lepton

mass matrix. The nonvanishing ofG signalsCP viola-
tion, while the vanishing ofG implies CP invariance in
the limit of mass degeneracy. SinceG is a WB invariant,
it can be expressed in terms of lepton masses and m
ings. In the evaluation ofG, it is convenient to choose
the WB whereh is diagonal, i.e.,h ­ diagsm2

e , m2
m, m2

td.
One obtains

G ­ 6iDm ImfsZ0d11sZ0d22sZ0d?
12sZ0d?

21g

­
3i
2

Dm cossud sin2sud sin2s2fd sinsad , (9)

where Dm ­ m6sm2
t 2 m2

md2sm2
t 2 m2

ed2sm2
m 2 m2

ed2 is
a multiplicative factor which contains the different masse
of the charged leptons and the common neutrino massm.
In Ref. [9] various examples ofCP-odd WB invariants
were constructed, but all of those invariants automatica
vanish in the limit of exact degeneracy. The speci
feature of the WB invariant of Eq. (8) is the fact tha
in general, it does not vanish, even in the limit of exa
degeneracy of the three Majorana neutrino masses.

Since in the limit of exact degeneracy there is only on
independent WB invariant controlling the strength ofCP
violation, it is meaningful to ask when isCP violation
maximal. From Eq. (9), it follows thatG assumes its
maximal value forf ­ py4, a ­ py2 and sinsud ­p

2y
p

3, cossud ­ 1y
p

3. For these values off, u, a the
matrix Z0 assumes a very special form:

Z0 ­ K ? 1y
p

3

0B@ v 1 1
1 v 1
1 1 v

1CA ? K (10)

with v ­ e2i2py3 and K ­ diagseipy3, e2ipy3, e2ipy3d.
Thus the imposition of maximalCP violation leads to a
structure of the Majorana neutrino mass of the type th
one obtains in the framework of universal strength fo
Yukawa couplings [10].

Lifting the degeneracy.—We have seen that, in the
limit of exact degeneracy, the leptonic mixing matri
can be parametrized by two anglesu, f, and one phase
a. Obviously, the physically interesting case correspon
to quasidegenerate neutrinos. The degeneracy is lif
through a small perturbation:

Z ­ Z0 1 ´Q , (11)

wheré is a small parameter andQ is a symmetric complex
matrix of order one. At this stage, it is worth recalling
that in the exact degeneracy limit, the neutrino mixin
matrix U0 is defined only up to an arbitrary orthogona
transformationU0 ! U0 ? O. In the presence of a smal
perturbatioń Q, the full matrixZ will be diagonalized by
a matrixU ­ sU0 ? Od ? W , whereW is a unitary matrix
close to the identity. In first order we have

W ­ ' 1 i´P (12)
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with P a Hermitian matrix. In view of the above, it is
useful to diagonalizeZ in two steps. First, we make the
transformation

Z ! Z0 ; UT
0 ? Z ? U0 ­ ' 1 ´Q0, (13)

where we have used the fact thatUT
0 ? Z0 ? U0 ­ ' and

have definedQ0 ­ UT
0 ? Q ? U0. The matrixZ0 is then

diagonalized by

Z0 ! sOW dT ? Z0 ? sOWd ­ ' 1 ´d , (14)

whered is diagonal and real. Using Eqs. (12), (13), an
(14) one obtains in leading order of the perturbation

OT ? A ? O ­ d; P 1 PT ­ 2OT ? B ? O , (15)

whereA, B are real symmetric matrices defined byA ­
ResQ0d, B ­ ImsQ0d. Equations (15) have a simple inter
pretation. In the presence of a small perturbation arou
the degeneracy limit, the mixing matrix becomes, to lea
ing order,U0 ? O, whereO is no longer arbitrary, being the
orthogonal matrix which diagonalizes the symmetric re
matrix A. We have, of course, assumed that the degen
acy is lifted in first order of perturbation. From the abov
discussion it is clear that for quasidegenerate neutrinos
leading order, only oneCP violating phase appears in the
leptonic mixing matrix, namely, the phasea present inU0.

Phenomenological implications.—At this stage, one
may ask whether, after the lifting of the degeneracy, t
two-angle parametrization given by Eq. (7) can still a
commodate the present experimental data on atmosph
and solar neutrinos, as well as the constraints on dou
beta decay. It will be shown that this is indeed the ca
and, in fact, some of theAnsätzesuggested in the litera-
ture are special cases of this parametrization.

Double beta decay.—Let us first consider the con-
straints arising from neutrinoless double beta deca
which can only occur if neutrinos are of Majorana typ
irrespective of whether or not there isCP violation or
nontrivial neutrino mixing. The amplitude for neutrino
less double beta decay is proportional tokml, an average
neutrino mass, given in standard notation by

kml ­
X

i

U2
eimni ­ m?

ee , (16)

where theUei denote the elements of the first row o
the mixing matrix U, and mee is the s1, 1d element of
the mass matrixm. The experimental upper bound o
kml depends on the model that is used for the nucle
matrix elements. At present, the strongest bound
jkmlj ­ jmeej , 0.46 eV [11]. In the limit of exact
degeneracy, we havemee ­ m cossud, where we have
used the parametrization of Eq. (6). If we fixm ­ 2 eV,
then neutrino masses are equal to a precision suffici
to neglect their differences, and the experimental bou
on mee immediately translates into a single bound on th
parameteru, namely,jcossudj , 0.23.

Atmospheric and solar neutrino data.—The atmo-
spheric neutrino data support the existence of oscil
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tions of atmospheric neutrinos to tau neutrinos or to
sterile neutrino, with a large mixing angle satisfying th
bound sin2s2uatmd . 0.82, and the neutrino mass squar
difference in the range5 3 1024 eV2 , Dm2

atm , 6 3

1023 eV2. Recent data from the CHOOZ Collaboratio
[12] provides on the other hand some evidence against
possibility that atmospheric muon neutrinos oscillate in
electron neutrinos, although in some special scenarios
possibility might still be open [13].

In the context of three left-handed neutrinos, the prob
bility for a neutrinona to oscillate to other neutrinos is

1 2 Psna ! nad ­ 4
X
i,j

UaiU
?
aiU

?
ajUaj

3 sin2

"
Dm2

ji

4
L
E

#
, (17)

whereDm2
ji ­ jm2

j 2 m2
i j, E is the neutrino energy, and

L denotes the distance traveled by the neutrino betw
the source and the detector. Since in the rangeLyE
that is relevant for atmospheric neutrinos the term
sin2fsDm2

21y4d sLyEdg can be disregarded, we may identif
sin2s2uatmd with 4sU21U?

21U?
23U23 1 U22U?

22U?
23U23d. In

the framework of our two-angle parametrization of Eq. (7
the above combination of matrix elements has a sim
form and one obtains sin2s2uatmd ­ sin2s2fd, i.e., uatm
can be identified with the anglef and thus the atmospheric
neutrino data lead to the constraint sin2s2fd . 0.82.

The discrepancy between the observed and the ca
lated [14] solar neutrino fluxes also requires neutrino o
cillations, although at this stage various schemes are
possible, namely, within the framework of the Mikheye
Smirnov-Wolfenstein mechanism [15] there is a sm
angle solution sin2s2usold ø 7 3 1023 with Dm2

sol ø
6 3 1026 eV2, and a large angle solution sin2s2usold ,
0.6 0.8 with Dm2

sol ø 9 3 1026 eV2. Another solu-
tion could be vacuum oscillations with sin2s2usold ø
0.9 and Dm2

sol ø 10210 eV2. Since in our two-angle
parametrization one hasU13 ­ 0 we obtain sin2s2usold ­
4U11U?

11U?
12U12 leading to sin2s2usold ­ sin2sud, i.e., in

our parametrization2usol ­ u.
From the above analysis it follows that an attracti

feature of this two-angle parametrization is the fa
that each of the experiments considered independe
constrains a single parameter: double beta decay and s
neutrino data only constrainu, while atmospheric neutrino
data only put a bound onf.

There have been several attempts to fit solar a
atmospheric neutrino data. The form of the matrixU
strongly depends on the scheme adopted to explain
solar puzzle, with large or small mixing. It is clea
that with small mixing, no strong cancellation in th
summation in Eq. (16) can occur, so in this case t
double beta decay would forbid quasidegenerate neutri
with masses in the range of cosmological relevance.

Next, we show that some of the neutrino mixing schem
proposed in the literature correspond to specific cases
685
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the two-angle parametrization suggested by Eq. (7).
(a) Bimaximal mixing [4].—In this scheme the lines of

the neutrino mixing matrix have the following structure:

L1 ­ s1y
p

2, 21y
p

2, 0d; L2 ­ s 1
2 , 1

2 , 1y
p

2 d;

L3 ­ s 21
2 , 21

2 , 1y
p

2 d .
(18)

This pattern of neutrino mixing is obtained within the two
angle parametrization for the following values ofu, f,
anda:

a ­ 0;

cossuy2d ­ 2 sinsuy2d ­ 2 cossfd ­ sinsfd ­
1

p
2

.

(19)

(b) Democratic mixing [5].—This mixing has been
proposed within the framework of a “democratic” struc
ture for the quark and lepton mass matrices. It w
pointed out [5] that this neutrino mixing automaticall
arises if one assumes that in the exact democratic lim
neutrinos have no mass, and acquire mass only thro
diagonal democracy-breaking terms. In this case the n
trino mixing matrix has, to a very good approximation
the following form:

L1 ­ s1y
p

2, 21y
p

2, 0d;

L2 ­ s1y
p

6, 1y
p

6, 22y
p

6 d; (20)

L3 ­ s1y
p

3, 1y
p

3, 1y
p

3 d .

Within the two-angle parametrization, one obtains th
democratic mixing for the following values of the pa
rameters:

a ­ 0; cossuy2d ­ 2 sinsuy2d ­
1

p
2

;

cossfd ­
1

p
2

sinsfd ­
21
p

3
.

(21)

In the above analysis, we have not paid attention to t
factors “i” appearing in our two-angle parametrization o
Eq. (7). As we have previously emphasized, these fact
of i have to do with the fact that in the construction of th
two-angle parametrization, we have implicitly assume
that in the limit ofCP invariance [i.e., sinsad ! 0], one
of the Majorana neutrinos has relativeCP parity opposite
the other two. The factors ofi do not play any role in
the analysis of atmospheric and solar neutrino data but
crucial in the analysis of double beta decay.

(c) Georgi-Glashow mass matrix [6].—Using an
analysis of the present neutrino data Georgi and Glash
have suggested the following approximate form for th
Majorana neutrino mass matrix:

smd1i ­ ms0, 1y
p

2, 1y
p

2 d; smd2i ­ ms1y
p

2, 1
2 , 21

2 d;

smd3i ­ ms1y
p

2, 21
2 , 1

2 d . (22)

From Eq. (6) it follows that this neutrino mass matri
is obtained, within the two-angle parametrization for th
686
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following values of its parameters:

a ­ 0; sinsud ­ 1; cossfd ­ sinsfd ­ 1y
p

2 .

(23)

To summarize, we have built a general parametrizati
for the leptonic mixing matrix in the case of three ex
actly degenerate Majorana neutrinos, characterized by
angles and one phase and have shown that for quas
generate neutrinos, this parametrization accommoda
all present neutrino data. A remarkable feature of th
parametrization is the fact that each of the relevant e
periments considered (solar, atmospheric, and double b
decay) independently constrains a single angle. We h
also presented a weak-basis invariant which controls
strength of CP violation in the case of exact degenerac
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