Comment on "Nondipole Resonant X-Ray Raman Spectroscopy: Polarized Inelastic Scattering at the *K* Edge of Cl₂"

Recently, Mills et al. [1] obtained experimental evidence of the violation of the quadrupole selection rules for the resonant x-ray scattering (RXS) tensor at the K edge of Cl₂. Together with corresponding results obtained in the soft x-ray region [2], the novel experimental results of Ref. [1] concerning selection rules in the hard x-ray region relate to the core hole state symmetry and localization dilemma. There seems to be complete consensus [1-3] that the x-ray scattering tensor is invariant [3] with respect to localized (L) or delocalized (DL) representations for the core hole or to any orthogonal transformations between these representations. However, we cannot agree with Mills et al. [1] that this fact implies that "arguments involving localization or delocalization mechanisms are irrelevant to interpretations of resonant x-ray Raman emission measurements on homonuclear diatomic molecules" [1].

The violation of the quadrupole selection rules for hard x rays, predicted in [3] and observed in [1], is caused by interference scattering of x-ray photons and motivates a consideration of selection rules of the x-ray scattering process in terms of the classical Young's double-slit experiment (YDSE). In a localized representation the RXS amplitude, $F = F_1 + F_2$, contains partial amplitudes $F_n = f_n e^{i\mathbf{q}\mathbf{R}_n}$ expressed with the phase factor $\exp(i\mathbf{q}\mathbf{R}_n)$ [3] and which describes scattering through the core-excited state $|n\rangle$ with the core hole in the nth atom at the site \mathbf{R}_n . Here $f_n \propto (\mathbf{e}'\mathbf{D}_{fn})(\mathbf{e}\mathbf{D}_{no})$, and $\mathbf{q} = \mathbf{k}' - \mathbf{k}$ denotes the change of the photon momentum. The RXS cross section $(\sigma \propto \langle |F|^2 \rangle)$ is naturally divided into two contributions typical for quantum mechanics,

$$\sigma = \sigma_{\rm dir} + \sigma_{\rm int}^{12}, \qquad \sigma_{\rm dir} = \sigma_1 + \sigma_2, \qquad (1)$$

referring to the direct or "localized" term $\sigma_{\rm dir}$ and the interference contribution $\sigma_{\rm int}^{12}$ which provides a natural structure information [3] and forms a "bridge" between classical and wave mechanics. Here $\sigma_{\rm int}^{12} \propto 2 \, {\rm Re} \langle (f_1^* f_2 e^{i{\bf q}{\bf R}}) \rangle$, ${\bf R} = {\bf R_2} - {\bf R_1}$, and brackets denote the averaging over molecular orientations. The meaning of $\sigma_n \propto \langle |f_n|^2 \rangle$ as the cross section with core excitation only of the nth atom is very close to the meaning of the intensity I_1 in the YDSE: " I_1 is the intensity of the wave from hole 1 (which we find by measuring when hole 2 is blocked off)" (see [4], pp. 1–3). The coherence, $\sigma_{\rm int}^{12}$, between scattering channels defined by the interference parameter qR can be experimentally varied by means of the scattering angle and the wavelength [3].

Despite the equivalence of the L and DL representations for σ [3], statements can be made about RXS through L or DL core-excited states in reconciliation with the well-known paradigm of quantum physics that the

measurement selects the appropriate physical representation. The measurement thus projects an undetermined quantum state into some measurement eigenstate and acts as a *filtering process* (Ref. [4], pp. 5–8).

Indeed, Eq. (1) shows that $\sigma_{\rm dir}$ can be measured if the coherence between scattering channels 1 and 2 is absent: $\sigma_{\rm int}^{12} \propto 1/(qR) \rightarrow 0$ [3]. This is the limit of hard x rays $(qR \gg 1)$ when a short wave x-ray photon can "see" an individual atom (slit) because of the orientational dephasing of the scattering channels 1 and 2 [3]. Because of the independent scattering through the L core-excited states $(\sigma = \sigma_1 + \sigma_2)$ the parity selection rules for the RXS tensor are violated [3], as experimentally confirmed in [1].

In the opposite limit of soft x-ray or forward scattering $(qR \ll 1)$, the orientational dephasing is strongly suppressed and both scattering channels 1 and 2 are coherent $(\sigma \propto \langle |f_1 + f_2|^2 \rangle \neq \sigma_1 + \sigma_2)$. Hence, the photon "cannot distinguish" atoms (slits) and one cannot say that scattering through the L states $|1\rangle$ and $|2\rangle$ are independent events. Contrary to the total cross section σ (1), the interference contribution and hence the notion of coherence is not invariant. Moreover, it is possible to suppress the coherence $\sigma_{\rm int}^{\alpha\beta}$ between scattering channels α and β by an appropriate orthogonal transformation to the new intermediate states $|\alpha\rangle$ and $|\beta\rangle$ [3]. A transformation to the DL gerade $|g\rangle$ and ungerade $|u\rangle$ states makes the scattering channels totally independent, since they do not interfere ($\sigma_{\text{int}}^{\text{gu}} = 0$) [3], and leads directly to the strict parity selection rules for RXS [3]. The measurable quantities are now direct DL contributions $\sigma = \sigma_g$ or $\sigma = \sigma_u$ [2,3]. The experimental evidence of these parity selection rules for O2 shows that soft-x-ray photons scatter through DL independent channels. With resonant x-ray scattering of diatomics we thus have an example, not uncommon in quantum physics, that the measurement selects the appropriate physical representation ([4], pp. 5-8).

Faris Gel'mukhanov and Hans Ågren Institute of Physics S-58183, Linköping, Sweden

Received 14 October 1997 [S0031-9007(98)08145-9] PACS numbers: 33.20.Rm, 33.50.Dq, 33.70.Jg, 34.50.Gb

- [1] J. D. Mills, J. A. Sheehy, T. A. Ferrett, S. H. Southworth, R. Mayer, D. W. Lindle, and P. W. Langhoff, Phys. Rev. Lett. 79, 383 (1997).
- [2] P. Glans, K. Gunnelin, P. Skytt, J.-H. Guo, N. Wassdahl, J. Nordgren, H. Ågren, F. Gel'mukhanov, T. Warwick, and E. Rotenberg, Phys. Rev. Lett. 76, 2448 (1996).
- [3] F. Gel'mukhanov and H. Ågren, Phys. Rev. A 49, 4378 (1994).
- [4] R. P. Feynman, R. B. Leighton, and M. L. Sands, *The Feynman Lectures on Physics*, Quantum Mechanics Vol. III (Addison-Wesley, Menlo Park, CA, 1989).