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Magnetic Linear X-Ray Dichroism as a Probe of the Magnetocrystalline Anisotropy

Gerrit van der Laan
Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

(Received 15 June 1998)

We show that for itinerant3d transition metal systems the magnetocrystalline anisotropy energy is
directly related to the anisotropic part of the spin-orbit interaction, rather than to the orbital part of the
magnetic moment as was previously suggested. We further show how the spin-orbit anisotropy can b
obtained by applying the sum rule for magnetic linear dichroism in x-ray absorption. This provides an
element specific tool to study metallic multilayer systems displaying novel magnetic properties, such as
perpendicular magnetic anisotropy. [S0031-9007(98)08258-1]

PACS numbers: 75.30.Gw, 75.25.+z, 75.70.– i, 78.70.Dm
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Although the microscopic origin of the magnetic
anisotropy has been studied for the last six decades [1
interest has recently been revived by the advent of art
cially made multilayers exhibiting perpendicular magnet
anisotropy (PMA). These layered structures, where ea
layer consists of different metals with a thickness of a fe
atomic layers, display a quasi-2-dimensional behavio
Anisotropy in the chemical bonding and crystallin
structure leads to different in-plane versus out-of-pla
properties which modify the magnetic moments. Th
preferred magnetization direction changes from in-pla
to perpendicular when the magnetocrystalline anisotro
energy (MAE) is strong enough to overcome the sha
anisotropy arising from the dipole-dipole interaction be
tween the individual magnetic moments. The large MA
is attributed to the symmetry breaking at the interface
which partially removes the quenching of the spin-orb
interaction normally occurring in bulk transition metals.

The behavior of the magnetic moments in3d transition
metals with respect to the structural properties is primar
controlled by the small components,10%d arising from
the orbital part of the wave function. Using second-ord
perturbation theory Bruno [3] showed that the MAE ca
be related to the expectation value of the orbital mome
kLl. This model was corroborated by Welleret al. [4]
who measured the anisotropy of the orbital moment wi
magnetic circular x-ray dichroism (MCXD). However
the observed orbital moment has to be scaled down
order to match value of the MAE. The issue continue
to be of great interest, also because the technologi
importance is high.

In this Letter we propose a radically different way t
obtain the element-specific MAE, namely by using ma
netic linear x-ray dichroism (MLXD). Although MLXD
has been recognized for its potential to measure besi
ferro- and ferrimagnets also antiferromagnets, there ha
been few reports [5–8] compared to hundreds of MCX
studies. This might be due to the fact that it is not gene
ally known what information is actually contained in th
MLXD spectrum. It is often mentioned that one measur
the square of the magnetic moment, i.e.,kM2l. However,
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this seems to be quite a crude portrayal of its capab
ties, especially if we compare this to MCXD where ap
plication of the sum rules enables a precise description
terms of orbital and spin magnetic moments. A detaile
specification ofkM2l in the case of MLXD is therefore
highly desirable. Another open question is the actual s
of the MLXD signal. If MCXD is proportional tokMl
and MLXD is proportional tokM2l then why is the latter
effect so much smaller in3d transition metals? In this
Letter we will show that the MAE can be directly relate
to the anisotropic spin-orbit interaction and by using th
results from the sum rules for linear dichroism we ca
develop a practical tool to study the anisotropic magne
properties of multicomponent heteromagnetic systems.

The expectation value of the spin-orbit interaction i
3d transition metals can be obtained with perturbatio
theory because the spin-orbit constant is between 40 a
80 meV, which is small compared to the3d bandwidth
of a few eV. If we assume an unperturbed statejsl with
energyes, which mixes with excited statesjkl due to the
interactionlzl, wherel ; l ? s and zl are the angular
and radial part, respectively, of the spin-orbit operator f
the l shell, the change in the ground state wave functi
is, in first order, given as

js0l ­
X
kfis

kkjlzl jsl
es 2 ek

jkl . (1)

The expectation value ofl up to second order is

kll ­ ks 1 s0jljs 1 s0l

­ ksjljsl 1 2
X
kfis

zljksjljklj2

es 2 ek
1 . . . . (2)

Comparison of Eq. (2) with the energy calculated in
similar perturbation scheme yields

zlkll ­ es1d
s 1 2es2d

s 1 . . . , (3)

whereesnd
s is the nth order correction to the energy. In

itinerant 3d transition metals the first-order term usuall
vanishes [9], so that

es2d
s ­

1
2 zlkll . (4)
© 1999 The American Physical Society
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When all d holes are in the minority spin band, such a
in a “hard” ferromagnet, we can substitutekll ­ 2

1
2 Ŝ ?

kLl, where Ŝ is the unit vector along the spin direction
and Bruno’s formula [3] is retrieved,

es2d
s ­ 2

1
4 zlŜ ? kLl , (5)

giving the relation between the MAE and the orbital mo
ment. Whereas the left and right hand sides of Eq. (
are invariant for symmetry operations of the lattice, th
is not the case for Eq. (5), where the energy has differe
transformation properties than the projected orbital m
ment. Because of time reversal symmetry the orbital m
ment changes sign when the spin direction is reverse
which means thates2d

s ­ 2
1
4 zlŜ ? fkL"l 2 kL#lg. How-

ever, the projected orbital moment measured with MCX
is Ŝ ? fkL"l 1 kL#lg, so that Eq. (5) becomes inadequat
when there are also holes in the majority spin band. Fu
thermore, as pointed out by Wanget al. [9] the orbital
moment operator acts only between states that conse
the spin and therefore cannot account for the spin-fl
excitations from the occupied to unoccupied states ne
the Fermi level. Therefore, Eq. (4) is better suited t
describe the MAE, but to turn it into practical bene
fit we require, of course, a measurement that gives t
spin-orbit interaction. It is well known that by using
the sum rule for the isotropic x-ray absorption spectru
the ground state spin-orbit interaction can be obtain
from the branching ratio of the spin-orbit split core leve
edges [10]. However, in practice the isotropic spectrum
rarely measured, since the x rays are either linearly or c
cularly polarized. An extension of this sum rule to MLXD
has been given by Carraet al. [11], and further general-
ized to resonant magnetic scattering by Luoet al. [12].
These theoretical studies give the result in a general fo
which is suited as a starting point of our treatment.

We consider an atom in an arbitrary ground state, whe
an electron from a core shellc is excited by electric dipole
radiation into a partly occupied valence shelll. The core
level is split by spin-orbit interaction into the levelsj6 ­
c 6

1
2 . We assume that there is no spectral weight trans

due to core-valence interactions, i.e.,j is a good quantum
number and also that the radial-matrix element is consta
over eachj6 manifold. Under these assumptions the us
of angular momentum algebra allows a straightforwa
derivation of the sum rules with the results described b
a linear combination of tensor operators [13]. Takin
the intensity measured with linearly polarized light equa
to 1

3 sI0 1 I2d, where I0 and I2 are the isotropic signal
and linear dichroism, respectively, we find [e.g., by usin
Eq. (20) in Ref. [13] ] the integrated absorption signal a
thej6 edge as

Ij6
­ h 2j611

6 fkw000l 1 kw202
0 lg

6
c
3 fkw110l 1

2
5 kw112

0 l 1
3
5 kw312

0 lgj jPl,j6
j2,

(6)
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where Pl,j6
represent the radial-matrix elements of th

j6 ! l transitions andkwxyz
0 l are the expectation values

of the ground state moments in theZ direction [14]. wxyz

are tensor operators, where the orbital momentx and spin
momenty are coupled to a total momentz. The underscore
denotes that the operators act on hole states, instead
electron states, as is appropriate for XAS. Tensors w
y ­ 0 are spin independent and whenz is even they
describe the shape of the charge distribution, i.e.,

kw000l ­ knhl , (7)

kw202
0 l ­

1
ls2l21d f3kl2

z l 2 l2g ; kqzl , (8)

give the number of holes and the quadrupole moment
the l shell, respectively. Tensorswx1z describe spin-orbit
correlations,

kw110l ­
1
ls kl ? sl ­

1
3ls klxsx 1 lysy 1 lzszl ; klil ,

(9)

kw112
0 l ­

1
2ls f3klzszl 2 kl ? slg ; 3

2 klal , (10)

give the isotropic and anisotropic part of the spin-orb
coupling, respectively. The latter relates to the differen
in probability for l ands parallel and perpendicular to the
Z direction. Similarly,kw312

0 l gives the coupling between
the charge octupole moment and the spin moment to a
tal magnetic quadrupole moment. An explicit expressio
can be found in Refs. [11,13]. All tensors are normalize
such thatkwxyz

0 l ­ s21dz for the magnetic ground state
level M ­ 2J of thel shell containing a single hole, e.g.
d9 2D5y2sM ­ 25y2d.

Intuitively, the result of Eq. (6) can be understood
we consider the sum,r ; Ij1

1 Ij2
, and the weighed

difference, d ; Ij1
2

c11
c Ij2

, of the integrated signals
over the j6 edges and take the radial-matrix elemen
equal. The sum signal,r, depends only on tensors with
x even andy ­ 0. It gives the charge density of the
unoccupied states of thel shell along theZ axis. The
light acts only on the orbital part of the wave function
so that the integrated signal summed over the two edg
is independent of the spin. Also by integrating ove
the entire spectrum we average over all possible co
hole orientations, therefore the core hole properties dr
out and only the ground state properties of thel shell
remain. The difference signal,d, is determined by spin-
orbit coupled tensorss y ­ 1d. The strong spin-orbit
interaction of the core hole couples the orbital moment
the spin moment, which allow the measurement of sp
dependent properties. If the total angular momentumj
of the core hole is a good quantum number, we c
integrate over a complete set of basis states and
core hole properties disappear. However, this criteriu
is only fulfilled in the absence ofjj mixing, i.e., when
the core-valence electrostatic interaction can be neglec
with respect to the core spin-orbit interaction. If no
641
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there will be a transfer of spectral weight between th
two j levels [10].

The sum rules have been derived for a colline
geometry, where the directions of the polarization an
magnetization are parallel. For a generalization we ne
to include the anisotropic properties of the material. Th
sample can have an easy axis of magnetization,´, which
is along a high-symmetry direction of the crystal lattice
and it can be magnetized in a directionM by an applied
magnetic field. Then the expectation values of the tens
along the directionP, which coincide with the linear
polarization direction of the x rays, are given by [15]

kw110l ­ klil 1 klalU220s ˆ́ , M̂, P̂d , (11)

kw112l ­
3
2 klalU222s ˆ́ , M̂, P̂d , (12)

kw202l ­ kqzlU202s ˆ́ , M̂, P̂d , (13)

kw312l ­ kw312
0 lU422s ˆ́ , M̂, P̂d , (14)

where Uabc are multipole functions, which give the
angular dependence with respect to the directionsˆ́ , M̂,
and P̂. The explicit form of these functions depends o
the specific symmetry. For instance, a multilayer syste
homogeneous within the planes of the layers can
treated in cylindrical symmetry withZ along the surface
normal. In that caseU220 ­ 1

2 f3s ˆ́ ? M̂d2 2 1g and with
Eq. (11) kw110l is independent ofP̂. This illustrates
that c ­ 0 corresponds to a monopole distribution wit
respect toP̂ and thatb ­ 2 corresponds to a quadrupole
distribution with respect toM̂. The U functions are
normalized to unity for´ k M k P, in which case the
expectation values become equal tokwxyz

0 l, i.e., the values
along theZ direction. In the derivation of Eqs. (11)–
(14) we considered only magnetic moments up toM2

and assumed a point group symmetry higher thanD2. In
lower symmetry there can be more than one quadrup
moment, which requires an extra index [15].

Generalization of Eq. (6) to include the angular depe
dence of Eqs. (11)–(14) gives the total signal over thej6

edge as
Ij6

s ˆ́ , M̂, P̂d ­ h 2j611
6 fknhl 1 kqzlU202g

6
c
3 fklil 1 klal sU220 1

3
5 U222d

1
3
5 kw312

0 lU422gj jPl,j6
j2. (15)

In an arbitrary MLXD experiment we measure th
difference in signal between the geometriess ˆ́ , M̂, P̂d and
s ˆ́ , M̂0, P̂0d, which will lead to changes in the multipole
functions equal to

DUabc ­ Uabcs ˆ́ , M̂, P̂d 2 Uabcs ˆ́ , M̂0, P̂0d . (16)
With Eq. (15) the sum and weighted difference of th
integrated signals over thej6 edges of the MLXD
spectrum are

r ­ kqzlDU202s c11
3 jPl,j1

j2 1
c
3 jPl,j2

j2d , (17)
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d ­ fklal sDU220 1
3
5 DU222d 1

3
5 kw312

0 lDU422g

3 s c
3 jPl,j1

j2 1
c11

3 jPl,j2
j2d . (18)

When the radial-matrix elements are equal the ra
becomes

d

r
­

klal sDU220 1
3
5 DU222d 1

3
5 kw312

0 lDU422

kqzlDU202 ,

(19)

which is generally valid for dipole transitionsc ! c 1 1,
such ass ! p, p ! d, andd ! f.

MLXD can be measured in various ways. A commo
way is to keep the magnetization along the easy direct
sM k ´d and to rotate the polarization direction. I
cylindrical symmetry this givesUab0 ­ 1 and Uab2 ­
1
2 f3s ˆ́ ? P̂d2 2 1g so that

d

r
­

3
5

klal 1 kw312
0 l

kqzl
. (20)

Alternatively, we can keep the linear polarizatio
along the easy directionsP k ´d but change the mag
netization direction, which gives thatUa0c ­ 1 and
Ua2c ­ 1

2 f3s ˆ́ ? M̂d2 2 1g. This results inr ­ 0 and
d ~

8
5 klal 1

3
5 kw312

0 l, hence the dependence on th
spin-orbit anisotropy is enhanced. The origin of this e
hancement becomes clear if we consider Eq. (11) wh
shows that the scalar spin-orbit interaction in a magne
material is no longer isotropic when there is a preferr
magnetic orientation. This effect can be observed o
upon rotation ofM but not whenP is rotated.

The sum rules also allow us to determine the magnitu
of the MLXD signal. The atomic values ofkw112

0 l
and kw312

0 l are large (near unity, unless they vani
on symmetry grounds) which can be verified from t
calculated values for transition metal compounds [1
rare earths [11], and actinides [17]. However, in meta
3d systems the spin-orbit interaction is strongly reduc
by the crystalline field. Furthermore, inD4 and higher
symmetry the orbital octupole moment vanishes, so t
we can often neglectkw312

0 l.
At surfaces and interfaces the MAE can be strong

enhanced compared to bulk materials due to an incre
in klal. This can be related to a reduced coordinati
number which narrows thed band width and gives an
enhancement of the spin moment. Furthermore, a red
tion of the symmetry can change the orbital degenera
there can be a change in the density of states near
Fermi level; the presence of surface roughness, interdi
sion, steps, or terraces can increase the electron loca
tion, leading to more localized atomiclike wave function
confinement of the electronic wave function can lead
symmetry breaking and localization; and strain-induc
anisotropy due to the lattice mismatch of the substrate
break the lattice symmetry of the film. An estimate of t
spin-orbit anisotropy in3d transition metal thin films can



VOLUME 82, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 18 JANUARY 1999

nd

y
,

he
e
d

ed

t,
d

.
. P.

.

tt.

ter

tt.
v.

s.

te,
be obtained by looking at the value of the orbital mome
measured with MCXD. For instance, in the AuyCoyAu
system Welleret al. [4] found an anisotropy in the Co3d
orbital moment of,0.1mB. Assuming that alld holes are
in the minority spin band, this yieldsklal ø 0.05.

The branching ratio,B ­ Ij1
ysIj1

1 Ij2
d, provides a

useful way to monitor small changes inkll. Equa-
tion (15) yields

B ø B0 1 s1 2 B0d kllyknhl , (21)

whereB0 is the statistical value, which is equal tosc 1

1dys2c 1 1d when j is a good quantum number. Even
when the value ofB0 is modified due to core-valence
interaction, Eq. (21) can still be applied to determinekll
[10]. Changes in the branching ratio in the order o
a percent should be easily observable. The increa
photon flux of next generation synchrotron radiatio
devices will push this detection limit even further down
Imaging of magnetic domain structures with linearl
polarized x rays will allow us to obtain information on
a microscopic scale. The explicit dependence on t
spin-orbit coupling makes it also possible to separate t
MAE from macroscopic magnetic orientation effects, suc
as the shape anisotropy. This is of importance for t
understanding of phenomena such as PMA.

We note that for spectra taken with circularly polarize
x rays the branching ratio is [13]

B6 ø B0 6 s1 2 B0d kSzlyknhl , (22)

where the 6 sign refers to an alignment with the
light helicity and magnetization parallel and antiparalle
respectively. Comparison with Eq. (21) shows that th
MLXD signal will generally be much smaller than the
MCXD, especially for ferromagnetic materials, such a
Fe, Co, and Ni.

Although the original derivation of the sum rules i
based on an atomic approach, there have been sev
theoretical and experimental studies indicating that t
MCXD-sum rules can also be applied to metallic system
[18,19]. Since the spin-orbit coupling is a local interactio
the extension to metals should certainly hold for MLXD.

Equation (19) can also be used to analyze the line
dichroism in the d core spectra of lanthanides an
actinides. If the crystal field interaction in thef shell
is small compared to the spin-orbit interaction, whic
is often the case, then according to the Wigner-Eck
theorem the operators with the samez are proportional
to each other and their moments are aligned parallel [1
Thus for small crystal fields the ratioryd depends only
on the Coulomb interaction and spin-orbit coupling.
is further interesting to note that for the Hund’s rul
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ground state of thefn configuration,kw312l ­ 0 for n ­
2, 5, 6, 7, 9, and 12 [17].

Summarizing, we demonstrated that the sum a
weighted difference signals over thej6 edges in the
MLXD spectrum are proportional to the anisotrop
in the charge distribution and spin-orbit interaction
respectively. Because the latter is directly related to t
MAE, MLXD can become a valuable tool to measure th
magnetocrystalline anisotropy energy of thin films an
multilayers in an element-specific and laterally resolv
manner.
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