
VOLUME 82, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 4 JANUARY 1999

hina

p

Deduction of the Quantum Numbers of Low-Lying States of 6-Nucleon Systems
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The inherent nodal structure in the wave functions of 6-nucleon systems is investigated using grou
theory. The existence of a group of six low-lying states composed of mainly anL ­ 0 component is
deduced. In addition to theh4, 2j spatial permutation symmetry, theh2, 2, 2j symmetry is found to be
also important for the low-lying states. [S0031-9007(98)08131-9]
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In the context of nuclear physics, when the number
nucleonsN is small, sayN # 4, the nuclear structure
can be determined by exact diagonalization. On the oth
hand, there exist a few approximate methods based
model theories for systems with largeN . The essential
difficulty arises whenN is neither small nor large. To be
specific, for the intermediate values ofN , 5 10, the con-
vergence of shell model calculations is usually poor (i.e
the calculated energies do not converge rapidly when t
number of basis functions is increased [1]), while in th
cluster model it is necessarily complicated to include man
different cluster configurations (a partition of theN nucle-
ons is associated with a cluster configuration; eight co
figurations are used in a6Li calculation [2]). Although
many efforts have been made to investigate theN ,
5 10 systems [1–7], no general theory has been esta
lished because of the complexity due to so many degre
of freedom.

The purpose of this paper is to explore a new approa
using group theory to study the effects of the inhere
symmetries. The nodal structure of the few-body wav
functions will be investigated in detail in order to obtain
certain important features of the wave functions and th
energy spectra before actually solving the Schrödinger
Faddeev equations. In particular, the quantum numbe
of the low-lying states of 6-nucleon systems will be
determined in this paper.

It has been shown in Ref. [8] that (i) the ground state
4He is composed of components mainly with zero orbit
angular momentum (L ­ 0), while all resonances below
the2n 1 2p threshold have mainlyL ­ 1. Since the ex-
citation energies of all resonances are large ($20 MeV),
the increase ofL leads to a great increase in energy. Thu
the components with a largerL are not important for the
low-lying states. (ii) All of the above states are com
posed mainly of nodeless components (i.e., their intern
wave functions do not contain nodal surfaces; therefo
internal oscillations have not yet been excited). Since t
6-nucleon and 4-nucleon systems have comparable s
and weight, it is reasonable to assume that theL ­ 0
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nodeless components should again dominate the low-ly
spectra of 6-nucleon systems.

It has also been found that a specific class of nodal s
face may be imposed on the wave functions by symme
[9]. We denoteC as an eigenstate andA as a geomet-
ric configuration. In some cases,A may be invariant to
a set of operatorsOi (i ­ 1, 2, . . .); i.e., OiA ­ A. For
example, whenA is a regular octahedron (OCTA) of a
6-body system (in Fig. 1a), it is invariant to a rotation abo
a fourfold axis of the OCTA by 90± together with a cyclic
permutation of the four particles. In this case we have

ÔiCsAd ; CsOiAd ­ CsAd . (1)

From the inherent transformation property ofC (i.e.,
the property with respect to rotation, space inversion, a
permutation), Eq. (1) can always be written in matr
form (as we shall see) and appears to be a set
homogeneous linear equations. It is well known th
homogeneous equations do not always have nonz
solutions. Thus Eq. (1) imposes a very strong constra
on C so thatC may be zero atA. This indicates that
there exists a class of nodal surfaces which are determi
by the intrinsic symmetry of the system instead of by th
dynamics. This specific class of nodal surfaces is deno
as the inherent nodal surfaces (INS).

The INS are closely related to the geometric symmet
For a 6-nucleon system, the OCTA has the strong
geometric symmetry. We denote, in Fig. 1a,o as the
center of mass (c.m.) of the six particles,o0 as the c.m. of
the particles 2, 3, and 5, andi0-j0-k0 as the body frame.
Referring to R $y

d as a rotation about the axis along th
vector $y by an angled (in degrees),pij as an interchange
of the particlesi and j, andP as a space inversion, one
can easily see that the OCTA is invariant to operations

O1 ­ ps1432dRk0

290 , (2)

whereps1432d denotes a cyclic permutation,

O2 ­ p13p24p56P , (3)

O3 ­ ps253dps146dRoo0

2120 , (4)
© 1998 The American Physical Society 61
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pyramid.
FIG. 1. The two favorite geometric shapes of a 6-nucleon system. (a) The regular octahedron, (b) the regular pentagon
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whereoo0 is the vector connectingo ando0, and

O4 ­ p14p23p56Ri0

180 . (5)

It is certain that the OCTA is also invariant to some
other operations, e.g., theps152dps364dRoo00

2120 (whereo00

is the c.m. of the particles 1, 2, and 5). Howeve
since Roo00

2120 ­ Rk0

290Roo0

2120Rk0

90, no additional constraints
are thereby introduced. Thus, one can prove that the o
erationsO1 to O4 are sufficient to specify the constraints
arising from symmetry.

Let an eigenstate of a 6-nucleon system with a give
total angular momentumJ, parity P, and total isospinT ,
be written as

C ­
X

L,S,l

CLSl , (6)

CLSl ­
X
iM

C
JMJ
LM,SMS

Fli
LSMxl̃i

SMS
, (7)

whereS is the total spin andMsMSd is theZ component
of the LsSd. The L and S are coupled toJ. Fli

LSM is
a function of the spatial coordinates. It is theith basis
function of the representationl of the permutation group
S6. Thex

l̃i
SMS

is a basis function in the spin-isospin spac
with givenS, T and belonging to the representationl̃, the

TABLE I. The allowed representationl in Eq. (6).

S T l

0 0 h16j, h2, 2, 1, 1j, h3, 3j, h4, 1, 1j
1 0 h2, 14j, h3, 13j, h2, 2, 2j, h3, 2, 1j, h4, 2j
2 0 h2, 2, 1, 1j, h3, 2, 1j
3 0 h2, 2, 2j
0 1 h2, 14j, h3, 13j, h2, 2, 2j, h3, 2, 1j, h4, 2j

h16j, h2, 14j, 2h2, 2, 1, 1j, h3, 13j,1 1
2h3, 2, 1j, h3, 3j, h4, 1, 1j

2 1 h2, 14j, h2, 2, 1, 1j, h3, 13j, h2, 2, 2j, h3, 2, 1j
3 1 h2, 2, 1, 1j
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conjugate ofl. Thel representations allowed in (6) are
listed in Table I, depending on theS andT [10].

TheFli
LSM can be expanded in the body framei0-j0-k0 as

Fli
LSMs123456d ­

X
Q

DL
QMs2g, 2b, 2ad

3 Fli
LSQs102030405060d , (8)

where a, b, g are the Euler angles to specify the rota
tion. DL

QM is the well-known Wigner function.Q is the
projection of theL along thek0 axis. The (123456) and
(102030405060) specify that the coordinates are relative to th
fixed frame and body frame, respectively.

Since theFli
LSQ spans a representation of the rotatio

group, space inversion group, and permutation group, t
invariance of the OCTA to the operatorsO1 to O4 leads
to four sets of equations. For example, from

Ô1Fli
LSQsAd ; Fli

LSQsO1Ad ­ Fli
LSQsAd (9)

[sAd denotes that the coordinates are given at an OCT
for a Q with Q # L, we getX

i0

fgl
ii0sssps1234dddde2ispy2dQ 2 dii0gFli0

LSQsAd ­ 0 , (10)

where gl
ii0 are the matrix elements of the representatio

l, which are known from group theory (see, for example
Ref. [11]). FromO2, O3, andO4, we haveX

i0

fgl
ii0sp13p24p56dP 2 dii0gFli0

LSQsAd ­ 0 , (11)

X
Q0i0

(
gl

ii0fps235dps164dg
X
Q00

DL
QQ00s0, u, 0de2is2py3dQ00

3 DL
Q0Q00s0, u, 0d 2 dii0dQQ0

)
Fli0

LSQ0sAd ­ 0 , (12)

X
Q0i0

fs21dLgl
ii0sp14p23p56ddQ̄Q0 2 dii0dQQ0gFli0

LSQ0sAd ­ 0 .

(13)
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p

1y3. Equations (10)–(13)
are the equations that theFli

LSQsAd have to fulfill. In some
cases there is at least one common nonzero solution
(i.e., not all of theFli

LSQsAd are zero) for all of these equa-
tions. However, in some other cases, there are no co
mon nonzero solutions. In the latter case, theCLSl has to
be zero at the OCTA configurations despite their size a
orientation. Accordingly, an INS emerges and the OCT
is inaccessible. It is evident that the above equations d
pend only on theL, P, andl and therefore the existence
of the INS is independent of the dynamics.

The results of theL ­ 0 components are given directly
(in Table II), neglecting the evaluation of nonzero solu
tions of linear equations.

While the wave functions are strongly constrained at th
OCTA, they are less constrained in the neighborhood
the OCTA. For example, when the shape in Fig. 1a
prolonged alongk0, it is called a prolonged octahedron
This shape (denoted byB ) is invariant toO1, O2, andO4,
but not toO3. Hence, theFli0

LSQ0sBd should fulfill only the
Eqs. (10), (11), and (13), but not (12). Evidently, a com
mon nonzero solution of Eqs. (10)–(13) is necessarily
common solution of Eqs. (10), (11), and (13). Thus, if
CLSl is nonzero at an OCTA, it remains nonzero in th
neighborhood. In other words, an OCTA-accessible com
ponent is inherently nodeless in the domain surroundi
the OCTA.

Another shape with a stronger geometric symmet
of a 6-nucleon system is the regular centered-pentag
[(C-PENTA), plotted in Fig. 1b with theh ­ 0]. The
C-PENTA is invariant to (i) a rotation aboutk0 by 72±

( 2p

5 ) together with a cyclic permutation of the five par
ticles of the pentagon, (ii) a rotation aboutk0 by 180± to-
gether with a space inversion, and (iii) a rotation abouti0

by 180± together withp14p23. These invariances lead to
constraints embodied by three sets of homogeneous eq
tions, and therefore the accessibility of the C-PENTA ca
be identified as listed in Table II. As before, a C-PENTA
accessible component is inherently nodeless in the dom

TABLE II. The accessibility of the OCTA and the C-PENTA
to the Lp ­ 01 and 02 wave functions with different spatial
permutation symmetryl. The figures in the blocks are the
numbers of independent nonzero solutions.

01 01 02 01

l OCTA C-PENTA OCTA C-PENTA

h6j 1 1 0 0
h5, 1j 0 1 0 0
h4, 2j 1 1 0 0
h3, 3j 0 1 0 0

h2, 2, 2j 1 1 1 0
h2, 2, 1, 1j 0 1 0 0

h2, 14j 0 1 0 0
h16j 0 1 0 0

h3, 2, 1j 0 2 0 0
h4, 1, 1j 0 0 0 0
h3, 13j 0 0 1 0
(s)
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surrounding the C-PENTA, in particular, at the pentago
pyramid (Fig. 1b).

In addition to the OCTA and the C-PENTA, there are
other regular shapes, e.g., hexagons, where the INS mig
emerge. However, among the 15 pairwise bonds linkin
the nucleons, 12 bonds can be optimized in an OCTA
10 in a pentagon pyramid, but only 6 in a hexagon. Ther
fore, in the neighborhood of the hexagon (and other regul
shapes), the total potential energy is considerably highe
Since the wave functions of low-lying states are distribute
mainly in the domains with a relatively lower potential en
ergy, we shall concentrate only on the domains surroun
ing the OCTA and the C-PENTA.

Referring to Table II, one can find that, when aCLSl

has sLPld ­ s01h6jd, s01h4, 2jd, or s01h2, 2, 2jd, it can
access both the OCTA and the C-PENTA. These an
only theseCLSl are inherently nodeless in the two mos
important domains. They should then be the domina
components of the low-lying states. All other states mu
contain at least one INS which may result in a larg
increase in energy. From Table I, it is clear that th
s01h6jd component is completely forbidden, whereas th
s01h4, 2jd component is allowed to thefS, T g ­ f1, 0g and
f0, 1g states, and thes01h2, 2, 2jd component is allowed to
the fS, T g ­ f1, 0g, f3, 0g, f0, 1g, andf2, 1g states.

Let us study the contribution of these two favorite
L ­ 0 components. WhenfS, T g ­ f1, 0g, both theh4, 2j
and h2, 2, 2j components are available. Therefore, two
Jp ­ 11 partner states would be generated (as shown
Table III). Each of them is mainly a specific mixture
of the h4, 2j and h2, 2, 2j components. Similarly, when
fS, T g ­ f0, 1g, two partner states withJp ­ 01 would
also be generated. Since only theh2, 2, 2j is available for
fS, T g ­ f3, 0g and f2, 1g, there would be oneJp ­ 31

state (T ­ 0) and oneJp ­ 21 state (T ­ 1). Therefore,
a total of six low-lying states dominated by theL ­ 0 in-
herently nodeless components are predicted [cf. Table I
where theL, S, andl are only the quantum numbers of
the dominant component(s)].

It is expected that these low-lying states should b
split by the nuclear force. Because of the interferenc
of the h4, 2j and h2, 2, 2j components, there would be a
gap between the partner states. Based on experimen
data, Ajzenberg-Selove analyzed the low-lying spectru
of 6Li f12g. The result is replotted in Fig. 2 and listed

TABLE III. Prediction of the quantum numbers of low-lying
states of the 6-nucleon systems based on a symmetry analy
The last column shows the energies (in MeV) of the states
6Li taken from Ref. [12].

S T J p L l E

1 0 1 1 0 h4, 2j and h2, 2, 2j 0
1 0 1 1 0 h4, 2j and h2, 2, 2j 5.65
3 0 3 1 0 h2, 2, 2j 2.19
0 1 0 1 0 h4, 2j and h2, 2, 2j 3.56
0 1 0 1 0 h4, 2j and h2, 2, 2j
2 1 2 1 0 h2, 2, 2j 5.37
63
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FIG. 2. The low-lying energy levels (in MeV) of6Li nucleus
from Ref. [12]. TheT ­ 0 levels are shown by the solid lines,
and T ­ 1 by the dashed lines. TheJP values are given on
the right-hand side.

in Table III. Although our analysis is based simply on
symmetry, the results of the two analyses are close to ea
other.

For the T ­ 0 states, the two expected partners wit
Jp ­ 11 (fS, T g ­ f1, 0g) are found in Fig. 2 with an
energy split as expected. The split is so large (5.65 Me
that the lower state becomes the ground state, wh
the higher one becomes the highest state of this gro
The expectedJp ­ 31 state (T ­ 0) has been found in
Fig. 2 at 2.19 MeV. Nevertheless, the 4.31 MeV sta
with Jp ­ 21 and T ­ 0 in Fig. 2 does not appear
in our analysis. Perhaps this state is dominated
PENTA-accessible but OCTA-inaccessible componen
s01h3, 2, 1jd ands01h2, 2, 1, 1jd with S ­ 2, or dominated
by theL ­ 1 components, or other origins to be clarified

For theT ­ 1 states, one of the expected partners wi
Jp ­ 01 (fS, T g ­ f0, 1g) is found in Fig. 2 at 3.56 MeV.
However, the other state (maybe considerably higher) h
not yet been identified in Ref. [12]. Nonetheless, if thi
state exists, its spatial structure would be similar to that
the T ­ 0 state at 5.65 MeV. The third expectedT ­ 1
state has been found in Fig. 2 at 5.37 MeV with exact
the predicted quantum numberJp ­ 21.

Based on symmetry analysis, we have determined t
quantum numbers of the low-lying states of 6-nucleon sy
tems. In addition to theh4, 2j, the h2, 2, 2j is also found
to be important. Our explanation is very different from
that based on the shell model. For example, according
our analysis, theJp ­ 31 state at 2.19 MeV has mainly
the quantum numbersS ­ 3, L ­ 0, and l ­ h2, 2, 2j.
However, it is recognized in the shell model calculatio
that this state has mainlyS ­ 1, L ­ 2, and l ­ h4, 2j
[4]. Nevertheless, the following points should be no
ticeable: (i) This31 state is above the (a 1 d) chan-
nel, but the width is very narrow (only 24 keV). Since
the open channel hasS ­ 1 and l ­ h4j ≠ h2j (where
64
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≠ denotes the outer product), if this state hasS ­ 1 and
l ­ h4, 2j, it would couple strongly with the open channel
Alternatively, if l ­ h2, 2, 2j, the channel is closed. The
experimentally observed very narrow width supports th
latter. (ii) In Ref. [4], two types of calculations, namely
the variational Monte Carlo (VMC) and the Green’s func
tion Monte Carlo (GFMC), were performed. Based on th
shell model, the trial wave function for theJp ­ 31 state
is initiated with theh4, 2j component in both calculations.
It is noted that if there is a shortcoming in the trial wave
function, it can be cured in the GFMC, but cannot in th
VMC. It turns out that the calculated energy of the31

state in VMC is much higher than the experimental value
This discrepancy does not arise from the interactions (b
cause the result of the GFMC is good), but from the tria
wave function. Thus the effectiveness of the shell mod
for very light nuclei is questionable.

Up to now, the most accurate wave functions fo
6-nucleon systems were those obtained in Ref. [4] b
the GFMC. It was found in this calculation that the
kinetic energies of the low-lying states of6Li decrease
when excitation energies increase. This is due to a slig
increase in size during excitations. On the other hand, th
is strong evidence that the internal oscillations have n
yet been excited. In other words, the main componen
of these states do not contain nodal surfaces. This findi
supports the basic assumption of this paper.

In summary, we have carried out a model-independe
analysis for 6-nucleon systems based on basic symmet
It is shown that a class of wave functions exists which i
inherently nodeless. These wave functions are the mo
important building blocks which constitute the low-lying
states. The identification of these favorite componen
plays a key role in understanding the low-lying spectra
Our method provides a valuable alternative to the stud
of light nuclei. The general idea is presumably applicab
to other few-body systems as well, and thus enriches o
understanding of these important systems.
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