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The inherent nodal structure in the wave functions of 6-nucleon systems is investigated using group
theory. The existence of a group of six low-lying states composed of mainly &n0 component is
deduced. In addition to thft, 2} spatial permutation symmetry, th2,2,2} symmetry is found to be
also important for the low-lying states. [S0031-9007(98)08131-9]
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In the context of nuclear physics, when the number ohodeless components should again dominate the low-lying
nucleonsN is small, sayN = 4, the nuclear structure spectra of 6-nucleon systems.
can be determined by exact diagonalization. On the other It has also been found that a specific class of nodal sur-
hand, there exist a few approximate methods based diace may be imposed on the wave functions by symmetry
model theories for systems with largé. The essential [9]. We denote¥ as an eigenstate antlas a geomet-
difficulty arises wherlV is neither small nor large. To be ric configuration. In some cases, may be invariant to
specific, for the intermediate values®f~ 5-10, the con- a set of operator®; (i = 1,2,...); i.e.,, 0;A = A. For
vergence of shell model calculations is usually poor (i.e.example, whem is a regular octahedron (OCTA) of a
the calculated energies do not converge rapidly when thé-body system (in Fig. 1a), itis invariant to a rotation about
number of basis functions is increased [1]), while in thea fourfold axis of the OCTA by 90together with a cyclic
cluster model it is necessarily complicated to include manyermutation of the four particles. In this case we have

different clus@er configurations (a parti'tion of tNenche- 0,V (A) = W(0,A) = W(A). @
ons is associated with a cluster configuration; eight con- _ _ .
figurations are used in &Li calculation [2]). Although From the inherent transformation property #f (i.e.,

many efforts have been made to investigate the-  the property with respect to rotation, space inversion, and
5-10 systems [1—7], no general theory has been estatRermutation), Eq. (1) can always be written in matrix
lished because of the complexity due to so many degred§m (as we shall see) and appears to be a set of
of freedom. homogeneous linear equations. It is well known that
The purpose of this paper is to explore a new approacRhomogeneous equations do not always have nonzero
using group theory to study the effects of the inherengolutions. Thus Eq. (1) imposes a very strong constraint
symmetries. The nodal structure of the few-body waveon ¥ so that¥ may be zero aid. This indicates that
functions will be investigated in detail in order to obtain there exists a class of nodal surfaces which are determined
certain important features of the wave functions and th&®y the intrinsic symmetry of the system instead of by the
energy spectra before actually solving the Schrodinger odynamics. This specific class of nodal surfaces is denoted
Faddeev equations. In particular, the quantum number@s the inherent nodal surfaces (INS).
of the low-lying states of 6-nucleon systems will be The INS are closely related to the geometric symmetry.
determined in this paper. For a 6-nucleon system, the OCTA has the strongest
It has been shown in Ref. [8] that (i) the ground state ofdeometric symmetry. We denote, in Fig. la,as the
“He is composed of components mainly with zero orbitalcenter of mass (c.m.) of the six particles,as the c.m. of
angular momentumZ( = 0), while all resonances below the particles 2, 3, and 5, and;’-k" as the body frame.
the2n + 2p threshold have mainly = 1. Since the ex- Referring toR; as a rotation about the axis along the
citation energies of all resonances are larg@( MeV),  vectorv by an angles (in degrees)p;; as an interchange
the increase of. leads to a great increase in energy. Thusof the particlesi and j, and P as a space inversion, one
the components with a largdr are not important for the can easily see that the OCTA is invariant to operations
low-lying states. (i) All of the above states are com- 0, = p(1432) R’ilgo, )
posed mainly of nodeless components (i.e., their internal . .
wave functions do not contain nodal surfaces: thereforeVherep(1432) denotes a cyclic permutation,

internal oscillations have not yet been excited). Since the 0> = p13p2upseP , 3
6-nucleon and 4-nucleon systems have comparable size ,
and weight, it is reasonable to assume that the- 0 O3 = p(253)p(146)R%y . (4)
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FIG. 1. The two favorite geometric shapes of a 6-nucleon system. (a) The regular octahedron, (b) the regular pentagon pyramid.

whereoo' is the vector connecting ando’, and conjugate ofA. The A representations allowed in (6) are
0, = p14p23p56Rf;;0. (5) listed in ;Ii'able I, depending on tieandT [10]. L
) ) , ) , The Fis) can be expanded in the body fratg’-k’ as
It is certain that the OCTA is also invariant to some
other operations, e.g., th®(152) p(364)R%%,y (Whereo” F}},,(123456) = ZDéM(—y,—B,—a)
is the c.m. of the partlcles 1, 2, and 5). However, o
since R% = RX0R%5R%,, no additional constraints X Flgo(1'2'3'4'5'6') (8)

are thereby introduced. Thus, one can prove that the opy,
erationsO; to 04 are sufficient to specify the constraints
arising from symmetry.

Let an eigenstate of a 6-nucleon system with a give
total angular momenturd, parity I1, and total isospirT’,
be written as

here a, B, y are the Euler angles to specify the rota-

tion. DéM is the well-known Wigner function.Q is the
rojection of theL along thek’ axis. The (123456) and
1'2/3'4’5'6') specify that the coordinates are relative to the

fixed frame and body frame, respectively.

Since theFLSQ spans a representation of the rotation

V= Z v ©6) group, space inversion group, and permutation group, the
50 LSA» invariance of the OCTA to the operatogy to O, leads
to foursets of equations For example from
JM,

[(A) denotes that the coordinates are given at an OCTA]

wheres is the total spin and/(Ms) is the Z component foraQ with 0 = L, we get

of the L(S). TheL and S are coupled taJ. Fi%y is
a function of the spatial coordinates. It is tié basis D Tek(p(1234))e /22 — 5,1F,(A) = 0, (10)
function of the representatioh of the permutation group il

Se- TheXSM is a basis function in the spin- |sosp|n spacewhere g,,/ are the matrix elements of the representation

with givenS, T and belonging to the representatidnthe A, which are known from group theory (see, for example,
Ref. [11]). FromO,, 03, andOy4, we have

TABLE I. The allowed representatioh in Eq. (6). Z[ " T — 807N (4) = 0 an
8ii'\ P13P24 P56 i’ LS =0,
i ¢

S T A
0 0 {19%,42,2,1,1},{3,3},{4,1, 1} A . om0
1 0 {2, 19,3, 1P}, {2.2.21, 3.2, 11, 14,2} D 18 [p(235)p(164)] > Dj(0.6,0)e 70
2 0 {2,2,1,1},{3,2, 1} o'’ o
3 0 {2,2,2} L S LAl _
O 1 {2’ 14}, {3’ 13}’ {27 2, 2}, {3’2’ 1}, {4, 2} X DQ’Q”(Oa 05 O) 611 SQQ ]FLSQ’(A) 0, (12)
1 1 {10}, {2, 14}, 2{2,2, 1, 1}, {3, 1%},
2{3,2,1},{3,3},{4,1, 1} EPNAwY 5o — S8 TFM. (A) = 0
2 1 {2’ 14}’ {2’ 2’ 1’ 1}’ {3’ 13}’ {2’ 2’ 2}, {3’2’ 1} QZIZI[( ) gu (p14p23l756) 00 12 QQ] LSQ ( )
3 1 2,2,1,1} (13)

(o]
N
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whereQ = —Q,6 = arccos/1/3. Equations (10)-(13) surrounding the C-PENTA, in particular, at the pentagon
are the equations that th]%f’SQ(A) have to fulfill. Insome pyramid (Fig. 1b).
cases there is at least one common nonzero solution(s) In addition to the OCTA and the C-PENTA, there are
(i.e., not all of theFLAng(A) are zero) for all of these equa- other regular shapes, e.g., hexagons, where the INS might
tions. However, in some other cases, there are no conemerge. However, among the 15 pairwise bonds linking
mon nonzero solutions. In the latter case, thg, hasto the nucleons, 12 bonds can be optimized in an OCTA,
be zero at the OCTA configurations despite their size and0 in a pentagon pyramid, but only 6 in a hexagon. There-
orientation. Accordingly, an INS emerges and the OCTAfore, in the neighborhood of the hexagon (and other regular
is inaccessible. It is evident that the above equations deshapes), the total potential energy is considerably higher.
pend only on thd., IT, and A and therefore the existence Since the wave functions of low-lying states are distributed
of the INS is independent of the dynamics. mainly in the domains with a relatively lower potential en-

The results of thé. = 0 components are given directly ergy, we shall concentrate only on the domains surround-
(in Table 1), neglecting the evaluation of nonzero solu-ing the OCTA and the C-PENTA.
tions of linear equations. Referring to Table I, one can find that, wheridg g,

While the wave functions are strongly constrained at théhas (L A) = (07{6}), (07{4,2}), or (0%{2,2,2}), it can
OCTA, they are less constrained in the neighborhood ofccess both the OCTA and the C-PENTA. These and
the OCTA. For example, when the shape in Fig. 1a ionly theseW, g, are inherently nodeless in the two most
prolonged alongt/, it is called a prolonged octahedron. important domains. They should then be the dominant
This shape (denoted ¥ ) is invariant toO,, 0,, andO,, = components of the low-lying states. All other states must
but not toO5;. Hence, thengg,(B) should fulfill only the ~ contain at least one INS which may result in a large
Egs. (10), (11), and (13), but not (12). Evidently, a com-increase in energy. From Table |, it is clear that the
mon nonzero solution of Eqgs. (10)—(13) is necessarily 407{6}) component is completely forbidden, whereas the
common solution of Egs. (10), (11), and (13). Thus, if a(0"{4,2}) component is allowed to tHes, 7] = [1,0] and
W, 5, is nonzero at an OCTA, it remains nonzero in thel0, 1] states, and th&*{2,2,2}) component is allowed to
neighborhood. In other words, an OCTA-accessible comthe[S, 7] = [1,0], [3,0], [0, 1], and[2, 1] states.
ponent is inherently nodeless in the domain surrounding Let us study the contribution of these two favorite
the OCTA. L = 0 components. Whe[s,T] = [1,0], both the{4, 2}

Another shape with a stronger geometric symmetryand {2,2,2} components are available. Therefore, two
of a 6-nucleon system is the regular centered-pentagoh” = 17 partner states would be generated (as shown in
[(C-PENTA), plotted in Fig. 1b with the: = 0]. The Table Ill). Each of them is mainly a specific mixture
C-PENTA is invariant to (i) a rotation about by 72>  of the {4,2} and{2,2,2} components. Similarly, when
(*Z) together with a cyclic permutation of the five par- [S.7] = [0,1], two partner states witd” = 0" would
ticles of the pentagon, (i) a rotation abatitby 180 to-  also be generated. Since only #22, 2} is available for
gether with a space inversion, and (iii) a rotation abéut [S,7]1 = [3,0] and[2, 1], there would be ong ™ = 3"
by 180 together withp,4pr;. These invariances lead to State { = 0) and one/” = 2" state { = 1). Therefore,
constraints embodied by three sets of homogeneous equatotal of six low-lying states dominated by the= 0 in-
tions, and therefore the accessibility of the C-PENTA carlerently nodeless components are predicted [cf. Table III,
be identified as listed in Table Il. As before, a C-PENTA-Where theL, S, and A are only the quantum numbers of
accessible component is inherently nodeless in the domafR€ dominant component(s)].

It is expected that these low-lying states should be

TABLE Il. The accessibility of the OCTA and the C-PENTA split by the nuclear force. Because of the interference
to the L™ = 0* and 0~ wave functions with different spatial Of the {4,2} and{2,2,2} components, there would be a
permutation symmetryA. The figures in the blocks are the gap between the partner states. Based on experimental

numbers of independent nonzero solutions. data, Ajzenberg-Selove analyzed the low-lying spectrum
0+ 0+ 0- 0! of °Li [12]. The result is replotted in Fig. 2 and listed
A OcTA C-PENTA OcTA C-PENTA TABLE Ill. Prediction of the quantum numbers of low-lying
{6} 1 1 0 0 states of the 6-nucleon systems based on a symmetry analysis.
{5,1} 0 1 0 0 The last column shows the energies (in MeV) of the states of
{4,2} 1 1 0 0 °Li taken from Ref. [12].
{3,3} 0 1 0 0
(2.2.2} 1 1 1 0 S T J T L A E
(2,2,1,1} 0 1 0 0 1 0 1 + 0 {42 and{2,2,2} 0
{2,1%} 0 1 0 0 1 0 1 + 0 {4,2} and{2,2,2} 5.65
{16 0 1 0 0 3 0 3+ 0 {2,2,2} 2.19
{3,2,1} 0 2 0 0 0 1 0 + 0 {42}and{2,2,2} 356
{4,1,1} 0 0 0 0 0 1 0o+ 0 {42} and{2,2,2}
3,13} 0 0 1 0 2 1 2 + 0 {2,2,2} 5.37
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® denotes the outer product), if this state Isas- 1 and

5.65 1t X = {4,2}, itwould couple strongly with the open channel.

5.37 — — — — 2t Alternatively, if A = {2,2,2}, the channel is closed. The
experimentally observed very narrow width supports the

4.31 ot latter. (ii) In Ref. [4], two types of calculations, nhamely

the variational Monte Carlo (VMC) and the Green'’s func-
tion Monte Carlo (GFMC), were performed. Based on the
shell model, the trial wave function for th€” = 3" state
is initiated with the{4,2} component in both calculations.
2.19 3t It is noted that if there is a shortcoming in the trial wave
function, it can be cured in the GFMC, but cannot in the
VMC. It turns out that the calculated energy of thé
state in VMC is much higher than the experimental value.
This discrepancy does not arise from the interactions (be-
+ cause the result of the GFMC is good), but from the trial
0 L wave function. Thus the effectiveness of the shell model
FIG. 2. The low-lying energy levels (in MeV) éti nucleus  for very light nuclei is questionable.
from Ref. [12]. TheT = 0 levels are shown by the solid lines, Up to now, the most accurate wave functions for
andT = 1 by the dashed lines. The'" values are given on  6-nucleon systems were those obtained in Ref. [4] by
the right-hand side. the GFMC. It was found in this calculation that the
kinetic energies of the low-lying states BEi decrease
in Table Ill. Although our analysis is based simply on when excitation energies increase. This is due to a slight
symmetry, the results of the two analyses are close to eadhcrease in size during excitations. On the other hand, this
other. is strong evidence that the internal oscillations have not
For theT = 0 states, the two expected partners withyet been excited. In other words, the main components
J™ =1" ([S,T] =[1,0]) are found in Fig. 2 with an of these states do not contain nodal surfaces. This finding
energy split as expected. The split is so large (5.65 MeV}¥upports the basic assumption of this paper.
that the lower state becomes the ground state, while In summary, we have carried out a model-independent
the higher one becomes the highest state of this groumnalysis for 6-nucleon systems based on basic symmetry.
The expected™ = 3" state { = 0) has been found in It is shown that a class of wave functions exists which is
Fig. 2 at 2.19 MeV. Nevertheless, the 4.31 MeV stateinherently nodeless. These wave functions are the most
with J7 =2 and T = 0 in Fig. 2 does not appear important building blocks which constitute the low-lying
in our analysis. Perhaps this state is dominated bgtates. The identification of these favorite components
PENTA-accessible but OCTA-inaccessible componentplays a key role in understanding the low-lying spectra.
(07{3,2,1}) and(07{2,2,1,1}) with S = 2, or dominated Our method provides a valuable alternative to the study
by theL = 1 components, or other origins to be clarified. of light nuclei. The general idea is presumably applicable
For theT = 1 states, one of the expected partners withto other few-body systems as well, and thus enriches our
J™ =07 ((S,T] = [0,1]) is found in Fig. 2 at 3.56 MeV. understanding of these important systems.
However, the other state (maybe considerably higher) has We acknowledge support by the NSFC of China.
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