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Mesoscopic Mechanism of Adiabatic Charge Transport
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We consider adiabatic charge transport through mesoscopic metallic samples caused by a periodically
changing external potential. We find that both the amplitude and the sign of the charge transferred
through a sample per period are random sample specific quantities. The characteristic magnitude of the
charge is determined by the quantum interference. [S0031-9007(98)08205-2]

PACS numbers: 73.23.-b, 72.15.Rn

Let us apply an external potentiah(r, ), which is  providedC encloses a finite area M. This requires that
changing slowly andperiodically in time to a metallic m = 2.
sample. This potential causes finite net chagyérans- To calculateQ we will use the Keldysh technique for
ported across the sample per period. This phenomenothe Green function matrix equation [9]
known as adiabatic charge transport [1], has been inves- . .
tigated in several papers [1—4] for a closed system char-  (id, — Hy — ¢(r,0))G(r,x';t,¢') — I,pn({G})

acterized by its ground state wave function corresponding =5 — )8t — 1) )
to the instantaneous value of the external potewtial 7). ’
However, in real experimental situations exact eigenfunc\—NhereG is a2 X 2 matrix, G;; = 0, G = G*, Goy =

tions of electrons are ill defined: The electron energy levelg;r 444 Gy = GK, with GRAX being the retarded, ad-

are broadened due to inelastic processds &t 0, and, in vanced, and Keldysh Green functions, respectivel
the case of an open system, are further broadened due {0 the Hamiltonian for electrons which includes impu-

finite dwell time. L rity scattering potentials, ang_,, denotes the electron-
Here we present a theory of adiabatic charge transpofihonon collision integral. The solution of Eq. (2) can

in “open mesoscopic systems.” We demonstrate that gfg expanded in terms of the changing rate of the exter-

low Tf.bOth th_g mag_ﬂitude ‘."‘n(il thle sign _Qf?jr_e sa:jmplz nal field ¢ (r, ¢), provided the time of the electron diffuses
speciticquantities. € typical value @@ in disordere across the sample is shorter than the period of the exter-

(chaotic) systems turns out to be determined by quanturg| potentialy. In general,G(r,r'; 1, ) depends on the

interference effects. We evaluate this value and find the\;alue of the potentiaks(r, ') at all the previous times

it is much larger th_an the one in ballistic systems. Th|st, = t. However, in the first order adiabatic approximation
enhancement manifests of the well-known fact that at Iov\b(r r’s1,1) is determined only by the external potential

temperatures, all electronic characteristics of mesoscopig,

samples are extremely sensitive to changes in the scatteri nd its first time derivative at tims, i.e., Glr.r's1,1) =
potential [5—8]. '?9({¢(r, N} (¢(r,1)}). The local time dependence in this

Let us start with a qualitative picture of the mesoscopicggrpgogrlirg;g%r;oﬂlgomseﬁﬁ g?rzéﬁgisgst he charge trargfer
adiabatic charge transport. The wave functions of elec-
trons in disordered systems exhibit sample specific spatial e fo K ;

fluctuations. Therefore, the spatial electron density profile ¢i = 7~ fo dt THPG™ (1,1)} = e /C @, (8) dga

is changing slowly in time, together with the external po- ’ (3)
tential ¢ (r,¢). According to the continuity relation, vari- ) )

ation of the charge density in time requires currents in th&/herep; is theith component of the momentum operator,
system. The question arises: What is the condition for 4 1S the dimension of the sample along tité direc-
total charge transfer during one period to be nonzero? Lo i = x,y,z,Tr means integration over the space co-
the pumping potentiad (r, 7) be characterized by a finite Ordinates, and

set of functionsg(¢) = {g.(¢)}, « = 1,...,m, which are , 9 P;

periodic with the same periog: wo(8) = = Tr{m—Li Gr(, t)}‘ (4)

8a
r,t) = ¢(r,gt) = 2(r)ga(2). 1
b0 = ¢(rg0)) % balr)ealt) @ Equation (4) is valid only in the leading order i3 =
The time evolution of the functiong(s) represents a 2/ty. We have introduced differential — form w/, (g)
motion of a point inm dimensional spacéM. Because on the m dimensional spaceM. Using Stokes the-
of the periodicity ofé(r, t), the trajectoryC of this point  orem one can convert — form integrals along a tra-
is closed. The above-mentioned currents leadtes 0, jectory C into 2 — form integrals over any surfac§
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spanningC, and depend on time only througjfr).
_ ; According to Egs. (2), (7), the first order correction to
Qi =e Sdg“ A dgpmap(8)., the adiabatic approximation f@X is
: . 1
mhpte) = | el P b saker =i | dr"[[; - m(e)}rm - Ta)
98a 98 08B 98a 2mL;
. . ®) an(e)

In an isolated quantum mechanical system, the 2-form — Crat, (8)
e COrresponds to the generalized adiabatic curvature of de

discrete eigenstates discussed in [3]. The wedge product . .
is skew symmetric, i.edg, A dgg = —dgp A dga. Where for anyp = (R,A).q = (R.A),
In the zero order adiabatic approximation Keldysh
Geen functionGX (r,r’,¢) can still be expressed through r
retarded and advanced onesf4(r,r’,z) and Fermi

distribution functionng(e)

per,r' x" (1) = 2GP(r,x",1)0,GL (x",x', 1) 5,

+ GP(r,x", )0, (x", 0)GI(x", ¥, 1).

GE = (GE = GHI1 — 2np(e)]. ©) ®)
where matrix elements df. correspond to thinstanta-  The contribution of the first two terms in Eq. (8) € can
neousHamiltonianH, + ¢(r,g), be neglected providedl; is much bigger than the elastic

Ger.r', 1) = f Gl vt — f_/ r+ f_/ et 7 mean free pathl. Using Eq. (8) we presemf;,g(g),
o o 27’ 2 |Eq.(5)as
Tap(8) = - ,
EET Taga) T agsn)
— o 1 i _ i anF(f) R A /
S = [ daranda) oo (5 - ) [ e "ED Gl en G mr Ol (0

Because of the disorder, the char@e is a random| in Fig. 1a,
sample-specific quantity. To characterizg we calculate ; vDy , 0D (r, 1)
its average(Q,) and variance(8Q;)?) (() stands for the (Tap(@) = 2urL; f dr dr'¢o(r)p(r) T
averaging over realizations of the random potential). In the l " an
following, we assume thaty, > L.,L.,Ly > I, where  \herey is the mean density of states in the metghis the
Ly is the electron dephasing length. In this case one capermi energy, and, is the electron diffusion coefficient.
express(Q) and((8Q;)*) through(w,s(g)) and variance Note that(r. ;) does not depend on the external field, i.e.,
l_[’a,ga,ﬂ,(g,g’) = (67,p(8)0 7 (g'). These quantities ong in the leading order of /.
can be evaluated in a standard way [10]. Following Iz, (diagrams Fig. 1b) can be presented in the
Eq. (10),{(m,p) can be calculated in terms of diagrarr]lsform

Hi)zﬁa'ﬁ’ = Hlaﬁa’ﬁ’ + Hlﬁaﬁ’a’ - H;Bﬁ/a/ - Hlﬁaa'ﬁ’

oy D3 onp(e + w/2) onp(e — w/2)
Hl 13! N = 0 f F
aﬁaﬁ(gvg) 4Ll2 dedw de de
/ / ! azA
X drydrydrdr'¢,(r)) ¢ (r))Ve, D (r;,r) ———, (12)
9gp I8

which explicitly demonstrates antisymmetry of the pumping perturbatignss given as

A =RdD(w,r,v’;g,¢8)D(w,r',r;g,¢) Ve D(r},r') + 2D(w,r,v';g,8)D*(w,r',r;g,8")\Vy D(r],x')

+2D(w,r,r';g,8)D"(w,r',r; 8,8 )V D(r],r). (13)

D(r,r') andD (w,r,1’; g, g') satisfy the following equations:
DoV?*D(r,r') = 8(r — r'), (14)
{iow +i6¢p + D\VID(w,r,r’;g,8)=6r — 1), (15)
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] >"\ FIG. 2. Geometry of the sample. Shaded bars represent gates
= | H R 1 and 2; crosses represent random scatters.
T — .
A ! R Given the volume of the sample = L,L,L, and the
total number of electrons inside the samMewe present

(Q.) as

R
. 3 2 2
. %\/\ — >/\ (0,) = foe Siﬂ(ﬁ)(m) N. (19)
3 [ A vHE
R

fo ~ 1is a geometry-dependent factor.
To determindl, s, One has to solve Eq. (15). When

(20)

FIG. 1. (a) Diagrams for (map(g)); (b) diagrams for this can be done by using perturbation theory with
o parp(8.8'). Solid lines represent retarde@®) and ad- respect tog, (). Keeping only the bilinear irg and g’
vanced(A) electron Green functions, dashed lines denote th ontributions toD (w, r,r'; g, g'), we express the solution

impurity averaging, and wavy lines represent the externa - 0 )
potential. Shaded triangles stand fé(r,r’), shaded boxes of Eq. (15) in terms of D% (w, z,7’), the g independent

for diffusions D (w,r,r’;g,g’). In (b), the shaded triangles Solution of Eq. (15) with¢(r,g) = 0. As usual, in the

with two dashed lines represent Hikami boxes. quasi-one-dimensional case, we neglect dependences
of DY Using Eq. (12), we expresH; zq5(g,g') in

N , , terms of DY, It is important that1%, «p 1S independent
whered¢(r,g.g') = ¢(r.g) — ¢(r.g). For Egs. (14) of g, g’ in the leading order o€ Vyry/vEr << 1. Thus,

and (15), we use usual boundary conditiofi3(r,r’) = . o :
DT N At . according to Eq. (5)4/{(60Q.,)?) is proportional to the
[11)1(612] e’.r,r’) = O whenr or r' is at open boundaries area§ enclosed by the trajector¢’. As a result for
Let us now consider the sample sketched in Fig. 2 withe Voro/v < Er, -~
two gates (labeled by = 1,2), biased with ac voltages of ((80.)%) = (esin )2 <m> fi (l) (21)
the same frequency and with a phase shift §; — &, vET Er
V,(t) = Vosin(Qr + 8,). (16) Here the functiory(n) has the following asymptotics:
In this case,;m = 2. Let us assume that the potential fi(n) = {1, n <1, 22)
induced in the metal by the voltag¥s is screened with a JIN n o> 1.
screening lengtiny much less thaid., and In the limit CVorg /v > Er, wp(g) is a random quantity
ga(t) = sin(Qr + §,), in 2D spaceM of {g} with the “correlation length”
CVoro e |6g.| ~ Erv/CVorg (which is much less than unity).
alr) = W 6(ro — X)9<T —(Zo — 2)2), V(80,)?) is determined by the amount of “flux” of
Y 17) randomr,, 5(g) field that threads the loof’ and should
) ] , increase slower than the enclosed asatself. This limit
where C is the capacitance of the gaté] > ry is the il pe considered elsewhere.
width of the gate along the direction, Z,, are thez It follows from Egs. (19) and (21) that the standard
coordinates of the center of the gate 1,2; @d) is the  geviation ofQ, far exceeds its average, providsds G?
step function:(z = 0) = 1 while 6(z < 0) = 0. (G. is the dimensionless conductance in thdirection),

To evaluate(Q.) in the leading order iVo/ur < 1, gnd the amplitude of the external perturbation is not too
one has to substitute Egs. (11) and (17) into Egs. (5) anhrge. In this case the value @, is entirely determined

take into account that by quantum interference effects. In the opposite limgit,
(" can be characterized by its average given by Eq. (19).
/Sdg"‘ Adgp = fo dt{0:8a(1)gp(t) = 1gp(1)ga (1)} According to Eq. (19XQ.) is proportional to sit, i.e.,

(18) this quantity changes sign together wittand vanishes at
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& = 0. Infact, that is correct for the charge transfgrin 72, as the frequency dependence of the absorption rate of
a specific sample of given realization of disorder. One carthe external field is. In an open sample in the low fre-
see this from Eq. (5), taking into account thefs(g) isa  quency limit, the photovoltaic current is smaller than the
random quantity independent gfwheng is small. More adiabatic current by a fact® /Er < 1.

generally, the charge transfé changes sign whef — We want to emphasize that the value @fin a finite

—& for arbitrary amplitude of the external perturbation, open mesoscopic systenmist quantized.An approximate
although the simplé dependence in Egs. (19) and (21) is quantization ofQ can be achieved in a Coulomb blockade
valid only in the weak external field. Inde€lljnvariance regime, for a pumping of the charge through a quantum dot,
requires that changing the direction of the trajectéryn  which is weakly connected with the source and drain [14—
the spaceéM (which corresponds to changing signdfor  16]. Q turns out to be rather well quantized provided the
the case of two gates) should result in the change of sigdimensionless conductance of the device is small. How-
of the chargep— = —Q<, where— (<) corresponds ever, under these conditions, pumping is an entirely classi-
to clockwise (counterclockwise) motion along the samecal effect and has nothing to do with quantum interference.
closed trajectory”. Inthe presence of magnetic field, this We acknowledge useful discussions with I. Aleiner,
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can neglect the dependence ofr,g. In this limit, Q

is proportional to the ared enclosed by trajectory”
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