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We consider adiabatic charge transport through mesoscopic metallic samples caused by a perio
changing external potential. We find that both the amplitude and the sign of the charge trans
through a sample per period are random sample specific quantities. The characteristic magnitude
charge is determined by the quantum interference. [S0031-9007(98)08205-2]
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Let us apply an external potentialfsr, td, which is
changing slowly andperiodically in time to a metallic
sample. This potential causes finite net chargeQ trans-
ported across the sample per period. This phenome
known as adiabatic charge transport [1], has been in
tigated in several papers [1–4] for a closed system ch
acterized by its ground state wave function correspond
to the instantaneous value of the external potentialfsr, td.
However, in real experimental situations exact eigenfu
tions of electrons are ill defined: The electron energy lev
are broadened due to inelastic processes atT fi 0, and, in
the case of an open system, are further broadened du
finite dwell time.

Here we present a theory of adiabatic charge trans
in “open mesoscopic systems.” We demonstrate tha
low T both the magnitude and the sign ofQ are sample
specificquantities. The typical value ofQ in disordered
(chaotic) systems turns out to be determined by quan
interference effects. We evaluate this value and find
it is much larger than the one in ballistic systems. T
enhancement manifests of the well-known fact that at l
temperatures, all electronic characteristics of mesosc
samples are extremely sensitive to changes in the scatte
potential [5–8].

Let us start with a qualitative picture of the mesosco
adiabatic charge transport. The wave functions of e
trons in disordered systems exhibit sample specific spa
fluctuations. Therefore, the spatial electron density pro
is changing slowly in time, together with the external p
tentialfsr, td. According to the continuity relation, vari
ation of the charge density in time requires currents in
system. The question arises: What is the condition fo
total charge transfer during one period to be nonzero?
the pumping potentialfsr, td be characterized by a finit
set of functionsgstd ­ hgastdj, a ­ 1, . . . , m, which are
periodic with the same periodt0:

fsr, td ­ fsssr, gstdddd ­
X
a

fasrdgastd . (1)

The time evolution of the functionsgstd represents a
motion of a point inm dimensional spaceM . Because
of the periodicity offsr, td, the trajectoryC of this point
is closed. The above-mentioned currents lead toQ fi 0,
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providedC encloses a finite area inM . This requires that
m $ 2.

To calculateQ we will use the Keldysh technique fo
the Green function matrix equation [9]

si≠t 2 H0 2 fsr, tddĜsr, r0; t, t0d 2 Ie-phshĜjd

­ dsr 2 r0ddst 2 t0d , (2)

whereĜ is a 2 3 2 matrix, G11 ­ 0, G12 ­ GA, G21 ­
GR, andG22 ­ GK , with GR,A,K being the retarded, ad
vanced, and Keldysh Green functions, respectively.H0
is the Hamiltonian for electrons which includes imp
rity scattering potentials, andIe-ph denotes the electron
phonon collision integral. The solution of Eq. (2) ca
be expanded in terms of the changing rate of the ex
nal field Ùfsr, td, provided the time of the electron diffuse
across the sample is shorter than the period of the ex
nal potentialt0. In general,Ĝsr, r0; t, td depends on the
value of the potentialfsr, t0d at all the previous times
t0 # t. However, in the first order adiabatic approximatio
Gsr, r0; t, td is determined only by the external potenti
and its first time derivative at timet, i.e., Ĝsr, r0; t, td ­
Ĝssshfsr, tdj, s Ùfsr, tdjddd. The local time dependence in th
approximation allows us to express the charge transferQi

per periodt0 along theith direction as

Qi ­
e

Lim

Z t0

0
dt TrhPiG

K st, tdj ­ e
Z

C
vi

asgd dga ,

(3)

wherePi is theith component of the momentum operato
Li is the dimension of the sample along theith direc-
tion, i ­ x, y, z, Tr means integration over the space c
ordinates, and

vi
asgd ­

≠

≠ Ùga

Tr

Ω
Pi

mLi
GK st, td

æ
. (4)

Equation (4) is valid only in the leading order inV ­
2pyt0. We have introduced differential1 2 form vi

asgd
on the m dimensional spaceM . Using Stokes the-
orem one can convert1 2 form integrals along a tra-
jectory C into 2 2 form integrals over any surfaceS
© 1999 The American Physical Society
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spanningC ,

Qi ­ e
Z

S
dga ^ dgbp i

absgd ,

p i
absgd ­

(
≠

≠ga

≠

≠ Ùgb

2
≠

≠gb

≠

≠ Ùga

)
Tr

(
Pi

2mLi
GK st, td

)
.

(5)
In an isolated quantum mechanical system, the 2-fo
p

i
ab corresponds to the generalized adiabatic curvature

discrete eigenstates discussed in [3]. The wedge prod
is skew symmetric, i.e.,dga ^ dgb ­ 2dgb ^ dga .

In the zero order adiabatic approximation Keldys
Geen functionGK

e sr, r0, td can still be expressed through
retarded and advanced onesGR,A

e sr, r0, td and Fermi
distribution functionnFsed

GK
e ­ sGR

e 2 GA
e d f1 2 2nFsedg , (6)

where matrix elements of̂Ge correspond to theinstanta-
neousHamiltonianH0 1 fsr, gd,

Ĝesr, r0, td ­
Z

dt0Ĝ

√
r, r0; t 2

t0

2
, t 1

t0

2

!
eiet0

(7)
rm
of
uct

h

and depend on time only throughgstd.
According to Eqs. (2), (7), the first order correction t

the adiabatic approximation forGK is

dGK
e sr, r0, td ­ i

Z
dr00

("
1
2

2 nFsed

#
sGRR 2 GAAd

2
≠nFsed

≠e
GRA

)
, (8)

where for anyp ­ sR, Ad, q ­ sR, Ad,

Gpqsr, r0, r00, std ­ 2Gp
e sr, r00, td≠tG

p
e sr00, r0, td dpq

1 Gp
e sr, r00, td≠tfsr00, tdGq

e sr00, r0, td .

(9)

The contribution of the first two terms in Eq. (8) toQi can
be neglected providedLi is much bigger than the elastic
mean free pathl. Using Eq. (8) we presentp i

absgd,
Eq. (5) as
p i
absgd ­

≠Jisb, gd
≠gastd

2
≠Jisa, gd

≠gbstd
,

Jisa, gd ­
Z

dr dr1fasr1d
1

2mLi

µ
≠

≠ri
2

≠

≠r 0
i

∂ Z
de

≠nFsed
≠e

GR
e sr, r1, tdGA

e sr1, r0, tdjr!r0 . (10)
.
.,

he
Because of the disorder, the chargeQi is a random
sample-specific quantity. To characterizeQi, we calculate
its averagekQil and varianceksdQid2l (k l stands for the
averaging over realizations of the random potential). In t
following, we assume thatLf ¿ Lz , Lx , Ly ¿ l, where
Lf is the electron dephasing length. In this case one c
expresskQl and ksdQid2l throughkp i

absgdl and varianceQi
aba0b0sg, g0d ­ kdp

i
absgddp

i
a0b0sg0dl. These quantities

can be evaluated in a standard way [10]. Followin
Eq. (10), kp i

abl can be calculated in terms of diagram
he

an

g
s

in Fig. 1a,

kp i
absgdl ­

nD0

2mFLi

Z
dr dr0fasrdfbsr0d

≠D sr, r0d
≠ri

,

(11)
wheren is the mean density of states in the metal,mF is the
Fermi energy, andD0 is the electron diffusion coefficient
Note thatkp i

abl does not depend on the external field, i.e
on g in the leading order offymF.

P
i
aba0b0 (diagrams Fig. 1b) can be presented in t

form
Pi
aba0b0 ­ P̃i

aba0b0 1 P̃i
bab0a0 2 P̃i

abb0a0 2 P̃i
baa0b0

P̃i
aba0b0 sg, g0d ­

D2
0

4L2
i

Z
de dv

≠nFse 1 vy2d
≠e

≠nFse 2 vy2d
≠e

3
Z

dr1 dr0
1 dr dr0fasr1dfa0sr0

1d=r1D sr1, rd
≠2L

≠gb ≠gb0

, (12)

which explicitly demonstrates antisymmetry of the pumping perturbations.L is given as

L ­ RefD sv, r, r0; g, g0dD sv, r0, r; g, g0dg=r0
1
D sr0

1, r0d 1 2D sv, r, r0; g, g0dD psv, r0, r; g, g0d=r0
1
D sr0

1, r0d

1 2D sv, r, r0; g, g0dD psv, r0, r; g, g0d=r0
1
D sr0

1, rd . (13)

D sr, r0d andD sv, r, r0; g, g0d satisfy the following equations:

D0=2D sr, r0d ­ dsr 2 r0d , (14)

hiv 1 idf 1 D0=2jD sv, r, r0; g, g0d ­ dsr 2 r0d , (15)
609



VOLUME 82, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 18 JANUARY 1999

ates

th

d

o

FIG. 1. (a) Diagrams for kp i
absgdl; (b) diagrams for

P
i
aba0b0 sg, g0d. Solid lines represent retardedsRd and ad-

vancedsAd electron Green functions, dashed lines denote t
impurity averaging, and wavy lines represent the extern
potential. Shaded triangles stand forD sr, r0d, shaded boxes
for diffusions D sv, r, r0; g, g0d. In (b), the shaded triangles
with two dashed lines represent Hikami boxes.

wheredfsr, g, g0d ­ fsr, g0d 2 fsr, g0d. For Eqs. (14)
and (15), we use usual boundary conditions:D sr, r0d ­
D se 2 e0, r, r0d ­ 0 whenr or r0 is at open boundaries
[11,12].

Let us now consider the sample sketched in Fig. 2 w
two gates (labeled bya ­ 1, 2), biased with ac voltages of
the same frequency and with a phase shiftd ­ d1 2 d2,

Vastd ­ V0 sinsVt 1 dad . (16)

In this case,m ­ 2. Let us assume that the potentia
induced in the metal by the voltagesVa is screened with a
screening lengthr0 much less thanLx and

gastd ­ sinsVt 1 dad ,

fasrd ­
CV0r0

LyW
usr0 2 xdu

µ
W2

4
2 sZa 2 zd2

∂
,

(17)

where C is the capacitance of the gate,W ¿ r0 is the
width of the gate along thez direction, Z1,2 are thez
coordinates of the center of the gate 1,2; anduszd is the
step function:usz $ 0d ­ 1 while usz , 0d ­ 0.

To evaluatekQzl in the leading order inV0ymF ø 1,
one has to substitute Eqs. (11) and (17) into Eqs. (5) a
take into account thatZ

S
dga ^ dgb ­

Z t0

0
dth≠tgastdgbstd 2 ≠tgbstdgastdj .

(18)
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FIG. 2. Geometry of the sample. Shaded bars represent g
1 and 2; crosses represent random scatters.

Given the volume of the sampley ­ LxLyLz and the
total number of electrons inside the sampleN, we present
kQzl as

kQzl ­ f0e sinsdd

√
CV0r2

0

ymF

!2

N . (19)

f0 , 1 is a geometry-dependent factor.
To determinePi

aba0b0 one has to solve Eq. (15). When

CV0r2
0

y
ø ET ­

D0

L2
z

, (20)

this can be done by using perturbation theory wi
respect togastd. Keeping only the bilinear ing and g0

contributions toD sv, r, r0; g, g0d, we express the solution
of Eq. (15) in terms ofD 0sv, z, z0d, the g independent
solution of Eq. (15) withfsr, gd ­ 0. As usual, in the
quasi-one-dimensional case, we neglectx, y dependences
of D 0. Using Eq. (12), we expressPz

aba0b0sg, g0d in
terms ofD 0. It is important thatPz

aba0b0 is independent
of g, g0 in the leading order ofCV0r2

0 yyET ø 1. Thus,
according to Eq. (5),

p
ksdQzd2l is proportional to the

area S enclosed by the trajectoryC . As a result for
CV0r2

0 yy ø ET ,

ksdQzd2l ­ se sin dd2

µ
CV0r2

0

yET

∂4

f1

µ
T

ET

∂
. (21)

Here the functionf1shd has the following asymptotics:

f1shd ~

Ω
1, h ø 1 ,
h21, h ¿ 1 . (22)

In the limit CV0r2
0 yy ¿ ET , p

z
absgd is a random quantity

in 2D spaceM of hgj with the “correlation length”
jdgcj , ET yyCV0r2

0 (which is much less than unity).p
ksdQzd2l is determined by the amount of “flux” of

randomp
z
absgd field that threads the loopC and should

increase slower than the enclosed areaS itself. This limit
will be considered elsewhere.

It follows from Eqs. (19) and (21) that the standar
deviation ofQz far exceeds its average, providedN ¿ G2

z
(Gz is the dimensionless conductance in thez direction),
and the amplitude of the external perturbation is not to
large. In this case the value ofQz is entirely determined
by quantum interference effects. In the opposite limit,Qz

can be characterized by its average given by Eq. (19).
According to Eq. (19),kQzl is proportional to sind, i.e.,

this quantity changes sign together withd and vanishes at
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d ­ 0. In fact, that is correct for the charge transferQz in
a specific sample of given realization of disorder. One c
see this from Eq. (5), taking into account thatp

i
absgd is a

random quantity independent ofg wheng is small. More
generally, the charge transferQ changes sign whend !
2d for arbitrary amplitude of the external perturbatio
although the simpled dependence in Eqs. (19) and (21)
valid only in the weak external field. Indeed,T invariance
requires that changing the direction of the trajectoryC in
the spaceM (which corresponds to changing sign ofd for
the case of two gates) should result in the change of s
of the charge:Q√↩ ­ 2Q↪! where√↩ s↪!d corresponds
to clockwise (counterclockwise) motion along the sam
closed trajectoryC . In the presence of magnetic field, th
identity acquires a form

Q√↩sHd ­ 2Q↪!s2Hd . (23)

HereQ√↩sHd andQ↪!sHd are charges which correspon
to clockwise and counterclockwise motion along the sa
closed trajectoryC in the spaceM andH is the external
magnetic field. When the external potential is weak, o
can neglect theg dependence ofp i

ab. In this limit, Q
is proportional to the areaS enclosed by trajectoryC
and p

i
absg ø 0d. Thus, Eq. (23) indicates that in th

vicinity of g ­ 0 p
i
bsgd is an even function ofH. At

small amplitudes of the external potential, this leads
Q√↩s↪!dsHd ­ Q√↩s↪!d s2Hd, provided without magnetic
fields the system isT invariant.

As is usual in mesoscopic physics, the magnetic field
pendence ofQzsHd exhibits random sample specific fluctu
ations with a characteristic periodDH , f0yLzLx. Here
F0 is the flux quanta (the magnetic field is applied alo
the y direction). At high temperatures, when the depha
ing length is shorter than the sample size, mesoscopic
fects become exponentially small andQz is determined by
Eq. (19).

A different mesoscopic mechanism of the adiaba
charge transport has been discussed in [13]. Inela
electron-phonon processes shift centers of mass of w
functions and thus contribute toQi. However, for open
samples, this contribution is small compared with Eq. (2
as ste-phET d21 ø 1, wherete-ph is the electron-phonon
inelastic scattering time.

In conclusion, we demonstrated that it is possible
speak about adiabaticquantumpumping in statistical sys-
tems. Note that the dc current discussed above is pro
tional to the frequency of the oscillations of the extern
potentialV. This distinguishes the considered above
fect from the usual photovoltaic effect. The latter effect
the low frequency limit is dominated by the relaxations
nonequilibrium distribution of electrons in the presence
external field via electron-phonon inelastic processes [1
Such a mechanism leads to a randomly directed dc c
rent proportional to the absorption rate of the external fi
even in the presence of asinglepumping gate voltage. It
means that the photovoltaic dc current is proportional
an

n,
is
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V2, as the frequency dependence of the absorption rat
the external field is. In an open sample in the low fr
quency limit, the photovoltaic current is smaller than th
adiabatic current by a factorVyET ø 1.

We want to emphasize that the value ofQ in a finite
open mesoscopic system isnot quantized.An approximate
quantization ofQ can be achieved in a Coulomb blockad
regime, for a pumping of the charge through a quantum d
which is weakly connected with the source and drain [1
16]. Q turns out to be rather well quantized provided th
dimensionless conductance of the device is small. Ho
ever, under these conditions, pumping is an entirely cla
cal effect and has nothing to do with quantum interferen
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Note added.—While preparing the manuscript we hav
learned about the paper of P. Brower where similar resu
were obtained.
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