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Anderson Localization due to a Random Magnetic Field in Two Dimensions
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Results of large-scale numerical simulations are reported on the Anderson localization in a two-
dimensional square lattice tight-binding model with random flux. Localization lengths, fluctuations
of the conductance, and the density of states are computed for guasi-one-dimensional geometry.
Numerical results indicate that the model exhibits the same critical behavior as the one studied by Gade
[Nucl. Phys.B398 499 (1993)]. Itis argued that all the states except a zero-energy state are localized
and the density of states has a singularity in the center of the band. The energy scale below which the
density of states increases is found to be extremely snl0(?). [S0031-9007(98)08263-5]

PACS numbers: 71.30.+h, 71.55.Jv, 72.10.Bg

It is general wisdom that noninteracting electrons arg25]. Although this was already anticipated in [4,20], this
localized in two-dimensional (2D) disordered systems [1].Letter reports for the first time that the random flux model
There are, however, some well-known exceptions to thishares a hallmark of the Gade model, i.e., the divergence
rule. These include electrons having strong spin-orbibf the DOS atE = 0.
coupling [2] and integer quantum Hall systems [3]. Recent The Hamiltonian of the tight-binding model is

studies have shown that 2D Dirac fermions with random M .

gauge field offer another exception to the rule [4,5]. Fora H = —Z (c;-rﬂ,kcj,k + e"’f*c;r,kﬂcj,k + H.c),
model of 2D nonrelativistic fermions subjected to random Jok=1

magnetic field with zero mean, the existence of delocalized (1)
states has been a subject of debate. wherec; ; is the annihilation operator of a fermion on site

The random flux model, in which static magnetic field (j, k). The random magnetic flux is introduced through
is randomly distributed with zero mean, got much attenthe random Peierls phagg in the hopping matrix ele-
tion recently in connection with the gauge field theory ofment. The magnetic fluxp;, = 6 — ;-1 takes a
high-T. superconductivity [6] and the composite-fermion random number in-7p = ¢, = 7p with a uniform
theory of the half-filled Landau level [7]. It has been con-distribution. The parametep is set to be 1, except in
troversial, however, whether this model has a delocalize&ig. 4 (shown below). Numerical calculations are done for
state [8]. On the one hand, several numerical and analytsamples that have quasi-1D geometry of wiglthin the y
cal studies concluded that all the states are localized andirection and of lengttL in the x direction M < L). A
belong to the unitary class of the scaling theory [9—14]periodic boundary condition is imposed in thalirection
On the other hand, a different conclusion that there are dd¢; »+1 = ¢;1), whereas open boundary conditions are
localized states near the center of the band was reached bgsumed in the direction for most of the calculation. For
other people [15—-22]. One source of the discrepancy irvenM the lattice can be divided inté andB sublattices.
numerical works is the extremely large localization lengthFor each eigenfunctiogiy with energyE, changing the
near the band center, making it difficult to decide whethesign of ¢z on every site of, say, tha sublattice yields
or not states are localized from numerical data of finite-a new eigenfunctions_ with energy—FE [20,26]. This
size systems. symmetry relating thet E states holds for each disorder

In this paper | present various numerical results obtainedonfiguration. For oddM, however, the particle-hole
through the largest numerical simulations performed s@ymmetry is absent under the periodic boundary condition.
far for the square lattice tight-binding model subjected to The localization length is calculated from the ex-
random flux with zero mean. The results indicate that goonential decay of the retarded Green’s function ob-
state at the band centeff = 0) is not localized. Thisis tained by using the standard recursive algorithm [27]:
reminiscent of the integer quantum Hall system. There is{In [|G¢(1, k; L, k")|[) ~ —L/Ay, where||G|| and () de-
however, a crucial difference: the density of states (DOShote the norm o&; and the ensemble average, respectively.
is found to be divergent & = 0 in the random flux case. Figure 1 shows the quasi-1D localization lengtf nor-
This behavior is similar to the 1D and 2D random hoppingmalized byM as functions o andE. The typical length
models [23,24], and a crucial role is played by a speciabf quasi-1D samples used in the calculatior8ix 10°,
particle-hole symmetry relating a state of enefywitha 4 X 103, and8 X 10° for M = 32, 64, and 128, respec-
state of energy- E. The random flux modelis argued to be tively. Furthermore, ensemble average is taken, typically,
in the same universality class as a model studied by Gadaver 70 @0) samples forM = 64 (M = 128) to reduce
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x—x E=-29 is little even-odd oscillation [Fig. 1(b)], and, /M is a
(b) #—* E=-2.95 . . . .
*—*E=-30 decreasing function a¥/. The importance of the particle-
1.0 o 0 0 hole symmetry can also be seen by examining the ef-
M fects of on-site disorder, which breaks the symmetry.

o : The on-site disorder is introduced by adding a term
FIG. 1. Localization length for quasi-1D geometry calculated +
for M = 4, 8, 16, 32, 64, 128, and 256. Additional data of 2.k €j.CjkCjk 10 H, Wheree; . are taken to be randomly
M = 15 and 31 are shown foE = —0.1 and —0.4. In (b)  distributed in the intervdl—w/2,w/2]. Figure 3 clearly
the statistical error for the data 8 = 128 is about the same shows that, in the presence of the on-site disordg’'s
size as the symbols, whereas for smaliérthe error bar is  of eyven and oddV’s merge together aM/ ~ M, and
;5”fh_%ﬂagg{atgﬁguﬁgebgy;nﬁr?iltz_sgzee#g‘;at smillin the  yocrease fon > M,. The crossover width 8/, ~ 64
for w = 0.4 and increases for smaller. These results
demonstrate the crucial role of the symmetry onfhe: 0
the statistical error. The quality of the numerical datawave function.
is therefore greatly improved from the earlier numerical
results [9,13,16,18,20]. Clearly the states near the band
edges [E| > 3.0) are localized [Fig. 1(a)]. Figure 1(b)
shows Ay /M decreases a8l increases, suggesting that

the states withE| = 0.1 are all localized in the 2D limit. 30 ¢ oddM ]
The localization lengths of the quasi-1D wires are o—ow=0
expected to satisfy the one-parameter scalipg/M = ‘-:-‘ﬁg:gs
f(&/M), where € is the localization length in 2D. The A—aw=04
scaling indeed holds as shown in Fig. 2 [28]. The scalings 25 - :
curve quantitatively agrees with the earlier results of\2 Oﬂ%”\mo
Refs. [9] and [10]. The agreement with the latter work < 00 w=0.05
is somewhat surprising in that a network model is used o—ow=0.1

in [10] which is an effective model in the semiclassical 20 | s—aw=0.4 |

limit. The 2D localization lengthé grows exponentially

and reaches$0° lattice spacings af = —2.55; see inset.
Figure 3 shows\,;/M versusM atE = 0[29]. There
is a striking even-odd effect in the = 0 data, as noticed 15 W

earlier in Refs. [20,30]. A new finding here is thaj, /
M |-y stays almost constant for odd while it gradu-
ally increases for everM, suggesting that\,,/M —
const>0) as M — . This may imply thatyz— is a

Miller and Wang [20]. By contrast, dt£| = 0.1, there

FIG. 3.

. . ) the on-site disordew. The filled symbols represent data for
critical or multifractal wave function, as suggested byys = 7, 15, 31, 63, and 127. The open symbols are data for
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Localization length aE = 0 as functions ofM and

M =8, 16, 32, 64, and 128.
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The states away from the band center belong to the uni- It seems quite natural to assume that the states belonging
tary class. This can be verified by calculating fluctuationdo the unitary class in the quasi-1D geometry remain to be
of two-terminal conductance as a functionlof For this inthe same class @8 — «. This would mean that all the
purpose, perfect leads are attached to both ends of quasi-Hiates away from the band center are localized. A state at
wires, and the transmission matrixs calculated from the E = 0, if it exists, should not be localized in 2D. It follows
Green’s functionG;. The dimensionless conductange both from the recent result [29] that the stateFat 0 is
is then obtained from the Landauer formuta= Tr(szt).  delocalized for odd/ under open boundary conditions in
Figure 4 shows vay = (g?) — (g)* for M = 32, aver- they direction and from the numerical data in Fig. 3. The
aged over X 10* samples. FotE| = 0.1, varg is cal-  delocalization of the zero-energy state, which also implies
culated forp = 1 and 0.2 without the on-site disorder. the divergence of towards the band center, is inferred by
Almost identical vag versusL/Ay curves are obtained requiring that the 2D limitff — ) should be independent
for |[E|] = 1.0 and 0.02 as well. A thin line in Fig. 4 of the boundary conditions [33] and of the parity Mf.
shows vag of the unitary ensemble calculated in the limit The delocalization at the band center is a consequence
M < L by Mirlin et al.[31] using the supersymmetric of the particle-hole symmetry as in the random hopping
o model approach. Notice that, except for the peaks amodel [23] and will be ruined by the on-site disorder.

L < 0.5\, the numerical results df£| = 0.1 are indis- As pointed out in [4,20], the random-flux model has
tinguishable from the thin line (unitary ensemble). Thethe same symmetry property as the Gade model, and it
discrepancy occurs only fat < M, where the samples is natural to expect that the two models share the same
are no longer quasi-one dimensional. The numerical curveritical behavior. In the Gade model the localization
of p = 0.2 is closer to the analytic result because/  length diverges towards the band center, where the DOS
Mmlp=02 < M/Aml,=1. These results clearly show that p(E) is also divergent ag(E) ~ exp(—c+/In|1/E|)/|E]|

for |E] = 0.1 and p = 0.2 the wave functions belong to (c: constant) [25]. The characteristic energy scale below
the unitary class. which the singularity of the DOS manifests itself is then

The variance of has a different /A, dependence at E. = exp(—c?), which can be extremely small depending
E = 0 for evenM; see the inset of Fig. 4. Without the onc. This may explain why no singularity was found in
on-site disorder, for each/Ay, varg of E = 0 is larger  p(E) before [9,20,26,34]. To find the presumably weak
than varg of E # 0 [32]. This clearly shows that, when singularity, | computed the DOS with high accuracy using
w = 0, the zero-energy state does not belong to the unitarthe recursive method [35]. In this calculation a small
class. The on-site disorder, however, drives, back to  imaginary number was added to the energy—$ E +
the unitary class, as shown by the long-dashed Iine=( 1 i), instead of attaching perfect wires. This amounts
andw = 0.2) inthe inset of Fig. 4. These observations areto averagingp(E) over the energy interval of ordey.

consistent with Fig. 3.
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Figure 5 shows the DOS of a system bf= 128000

and M = 64 with y = 1072,

The overall shape of the

DOS is similar to the one obtained by the retraced-path
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FIG. 4. Variance ofg as a function of the length of the FIG.5. Density of states of a system &f = 64 and L =
disordered region a¥ = —0.1. varg approaches 0 foiL 128000 calculated withy = 1072, Inset: p(E) of a system
shorter than mean free path, although invisible in this scaleof M = 128 and L = 64000, 64 000, 204 800, and 256 000
Inset: Variance of atE = 0. The thin curves are the analytic for y = 1072, 1073, 1074, and5 X 1073, respectively. The
result for the unitary ensemble [31], where yar 1/15 as  nonvanishing DOS a{E| = 3.5 may be an artifact of the
L — 0 (with M < L). For both figuresy = 32. smearing.
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