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Anderson Localization due to a Random Magnetic Field in Two Dimensions
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Results of large-scale numerical simulations are reported on the Anderson localization in a
dimensional square lattice tight-binding model with random flux. Localization lengths, fluctuat
of the conductance, and the density of states are computed for quasi-one-dimensional geo
Numerical results indicate that the model exhibits the same critical behavior as the one studied by
[Nucl. Phys.B398, 499 (1993)]. It is argued that all the states except a zero-energy state are loca
and the density of states has a singularity in the center of the band. The energy scale below whi
density of states increases is found to be extremely small (&1022). [S0031-9007(98)08263-5]

PACS numbers: 71.30.+h, 71.55.Jv, 72.10.Bg
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It is general wisdom that noninteracting electrons a
localized in two-dimensional (2D) disordered systems [1
There are, however, some well-known exceptions to th
rule. These include electrons having strong spin-orb
coupling [2] and integer quantum Hall systems [3]. Rece
studies have shown that 2D Dirac fermions with rando
gauge field offer another exception to the rule [4,5]. For
model of 2D nonrelativistic fermions subjected to random
magnetic field with zero mean, the existence of delocaliz
states has been a subject of debate.

The random flux model, in which static magnetic fiel
is randomly distributed with zero mean, got much atte
tion recently in connection with the gauge field theory o
high-Tc superconductivity [6] and the composite-fermion
theory of the half-filled Landau level [7]. It has been con
troversial, however, whether this model has a delocaliz
state [8]. On the one hand, several numerical and analy
cal studies concluded that all the states are localized a
belong to the unitary class of the scaling theory [9–14
On the other hand, a different conclusion that there are d
localized states near the center of the band was reached
other people [15–22]. One source of the discrepancy
numerical works is the extremely large localization lengt
near the band center, making it difficult to decide wheth
or not states are localized from numerical data of finite
size systems.

In this paper I present various numerical results obtain
through the largest numerical simulations performed
far for the square lattice tight-binding model subjected
random flux with zero mean. The results indicate that
state at the band center (E ­ 0) is not localized. This is
reminiscent of the integer quantum Hall system. There
however, a crucial difference: the density of states (DO
is found to be divergent atE ­ 0 in the random flux case.
This behavior is similar to the 1D and 2D random hoppin
models [23,24], and a crucial role is played by a speci
particle-hole symmetry relating a state of energyE with a
state of energy2E. The random flux model is argued to be
in the same universality class as a model studied by Ga
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[25]. Although this was already anticipated in [4,20], this
Letter reports for the first time that the random flux mode
shares a hallmark of the Gade model, i.e., the divergen
of the DOS atE ­ 0.

The Hamiltonian of the tight-binding model is

H ­ 2
X

j

MX
k­1

scy
j11,kcj,k 1 eiuj,k c

y
j,k11cj,k 1 H.c.d ,

(1)

wherecj,k is the annihilation operator of a fermion on site
s j, kd. The random magnetic flux is introduced throug
the random Peierls phaseuj,k in the hopping matrix ele-
ment. The magnetic fluxfj,k ­ uj,k 2 uj21,k takes a
random number in2pp # fj,k # pp with a uniform
distribution. The parameterp is set to be 1, except in
Fig. 4 (shown below). Numerical calculations are done fo
samples that have quasi-1D geometry of widthM in they
direction and of lengthL in the x direction (M ø L). A
periodic boundary condition is imposed in they direction
(cj,M11 ­ cj,1), whereas open boundary conditions ar
assumed in thex direction for most of the calculation. For
evenM the lattice can be divided intoA andB sublattices.
For each eigenfunctioncE with energyE, changing the
sign of cE on every site of, say, theA sublattice yields
a new eigenfunctionc2E with energy2E [20,26]. This
symmetry relating the6E states holds for each disorder
configuration. For oddM, however, the particle-hole
symmetry is absent under the periodic boundary conditio

The localization length is calculated from the ex
ponential decay of the retarded Green’s function ob
tained by using the standard recursive algorithm [27
kln kGr

Es1, k; L, k0dkl , 2LylM , wherekGk and k l de-
note the norm ofG and the ensemble average, respectivel
Figure 1 shows the quasi-1D localization lengthlM nor-
malized byM as functions ofM andE. The typical length
of quasi-1D samples used in the calculation is3 3 105,
4 3 105, and8 3 105 for M ­ 32, 64, and 128, respec-
tively. Furthermore, ensemble average is taken, typical
over 70 (20) samples forM # 64 (M ­ 128) to reduce
© 1999 The American Physical Society
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FIG. 1. Localization length for quasi-1D geometry calculate
for M ­ 4, 8, 16, 32, 64, 128, and 256. Additional data o
M ­ 15 and 31 are shown forE ­ 20.1 and 20.4. In (b)
the statistical error for the data atM ­ 128 is about the same
size as the symbols, whereas for smallerM the error bar is
much smaller than the symbols. The kink at smallM in the
E ­ 20.1 data should be a finite-size effect.

the statistical error. The quality of the numerical dat
is therefore greatly improved from the earlier numerica
results [9,13,16,18,20]. Clearly the states near the ba
edges (jEj . 3.0) are localized [Fig. 1(a)]. Figure 1(b)
showslMyM decreases asM increases, suggesting tha
the states withjEj $ 0.1 are all localized in the 2D limit.

The localization lengths of the quasi-1D wires ar
expected to satisfy the one-parameter scalinglMyM ­
fsjyMd, wherej is the localization length in 2D. The
scaling indeed holds as shown in Fig. 2 [28]. The scalin
curve quantitatively agrees with the earlier results o
Refs. [9] and [10]. The agreement with the latter wor
is somewhat surprising in that a network model is use
in [10] which is an effective model in the semiclassica
limit. The 2D localization lengthj grows exponentially
and reaches106 lattice spacings atE ­ 22.55; see inset.

Figure 3 showslMyM versusM at E ­ 0 [29]. There
is a striking even-odd effect in theE ­ 0 data, as noticed
earlier in Refs. [20,30]. A new finding here is thatlMy
MjE­0 stays almost constant for oddM while it gradu-
ally increases for evenM, suggesting thatlMyM !
consts.0d as M ! `. This may imply thatcE­0 is a
critical or multifractal wave function, as suggested b
Miller and Wang [20]. By contrast, atjEj ­ 0.1, there
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FIG. 2. Scaling curve obtained from the data for23.4 #
E # 22.55. For23.0 , E # 22.55 only the data ofM $ 32
are used. Inset: Localization length versus energy.

is little even-odd oscillation [Fig. 1(b)], andlMyM is a
decreasing function ofM. The importance of the particle-
hole symmetry can also be seen by examining the
fects of on-site disorder, which breaks the symmetr
The on-site disorder is introduced by adding a terP

j,k ej,kc
y
j,kcj,k to H, whereej,k are taken to be randomly

distributed in the intervalf2wy2, wy2g. Figure 3 clearly
shows that, in the presence of the on-site disorder,lM ’s
of even and oddM’s merge together atM ø Mc and
decrease forM . Mc. The crossover width isMc ø 64
for w ­ 0.4 and increases for smallerw. These results
demonstrate the crucial role of the symmetry on theE ­ 0
wave function.
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FIG. 3. Localization length atE ­ 0 as functions ofM and
the on-site disorderw. The filled symbols represent data fo
M ­ 7, 15, 31, 63, and 127. The open symbols are data
M ­ 8, 16, 32, 64, and 128.
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The states away from the band center belong to the u
tary class. This can be verified by calculating fluctuatio
of two-terminal conductance as a function ofL. For this
purpose, perfect leads are attached to both ends of quas
wires, and the transmission matrixt is calculated from the
Green’s functionGr

E . The dimensionless conductanceg
is then obtained from the Landauer formula,g ­ Trsttyd.
Figure 4 shows varg ­ kg2l 2 kgl2 for M ­ 32, aver-
aged over2 3 104 samples. ForjEj ­ 0.1, varg is cal-
culated forp ­ 1 and 0.2 without the on-site disorder.
Almost identical varg versusLylM curves are obtained
for jEj ­ 1.0 and 0.02 as well. A thin line in Fig. 4
shows varg of the unitary ensemble calculated in the lim
M ø L by Mirlin et al. [31] using the supersymmetric
s model approach. Notice that, except for the peaks
L , 0.5lM , the numerical results ofjEj ­ 0.1 are indis-
tinguishable from the thin line (unitary ensemble). Th
discrepancy occurs only forL & M, where the samples
are no longer quasi-one dimensional. The numerical cu
of p ­ 0.2 is closer to the analytic result becauseMy
lM jp­0.2 ø MylM jp­1. These results clearly show tha
for jEj $ 0.1 andp $ 0.2 the wave functions belong to
the unitary class.

The variance ofg has a differentLylM dependence at
E ­ 0 for evenM; see the inset of Fig. 4. Without the
on-site disorder, for eachLylM , varg of E ­ 0 is larger
than varg of E fi 0 [32]. This clearly shows that, when
w ­ 0, the zero-energy state does not belong to the unita
class. The on-site disorder, however, drivescE­0 back to
the unitary class, as shown by the long-dashed line (p ­ 1
andw ­ 0.2) in the inset of Fig. 4. These observations a
consistent with Fig. 3.
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FIG. 4. Variance ofg as a function of the length of the
disordered region atE ­ 20.1. varg approaches 0 forL
shorter than mean free path, although invisible in this sca
Inset: Variance ofg at E ­ 0. The thin curves are the analytic
result for the unitary ensemble [31], where varg ! 1y15 as
L ! 0 (with M ø L). For both figuresM ­ 32.
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It seems quite natural to assume that the states belon
to the unitary class in the quasi-1D geometry remain to
in the same class asM ! `. This would mean that all the
states away from the band center are localized. A sta
E ­ 0, if it exists, should not be localized in 2D. It follow
both from the recent result [29] that the state atE ­ 0 is
delocalized for oddM under open boundary conditions
they direction and from the numerical data in Fig. 3. T
delocalization of the zero-energy state, which also imp
the divergence ofj towards the band center, is inferred b
requiring that the 2D limit (M ! `) should be independen
of the boundary conditions [33] and of the parity ofM.
The delocalization at the band center is a conseque
of the particle-hole symmetry as in the random hopp
model [23] and will be ruined by the on-site disorder.

As pointed out in [4,20], the random-flux model h
the same symmetry property as the Gade model, an
is natural to expect that the two models share the sa
critical behavior. In the Gade model the localizatio
length diverges towards the band center, where the D
rsEd is also divergent asrsEd , exps2c

p
ln j1yEj dyjEj

(c: constant) [25]. The characteristic energy scale be
which the singularity of the DOS manifests itself is th
Ec ­ exps2c2d, which can be extremely small dependin
on c. This may explain why no singularity was found
rsEd before [9,20,26,34]. To find the presumably we
singularity, I computed the DOS with high accuracy usi
the recursive method [35]. In this calculation a sm
imaginary number was added to the energy (E ! E 1

ig), instead of attaching perfect wires. This amou
to averagingrsEd over the energy interval of orderg.
Figure 5 shows the DOS of a system ofL ­ 128 000
and M ­ 64 with g ­ 1022. The overall shape of the
DOS is similar to the one obtained by the retraced-p

FIG. 5. Density of states of a system ofM ­ 64 and L ­
128 000 calculated withg ­ 1022. Inset: rsEd of a system
of M ­ 128 and L ­ 64 000, 64 000, 204 800, and 256 00
for g ­ 1022, 1023, 1024, and 5 3 1025, respectively. The
nonvanishing DOS atjEj * 3.5 may be an artifact of the
smearing.
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approximation [36]. Notice, however, the tiny pea
centered atE ­ 0. Its height grows with smallerg
and largerM (inset), which is a clear signature of the
divergent DOS. To determine the precise form of th
singularity requires further investigation. It is importan
to note here thatg is kept large enough to smear ou
the microscopic structure inrsEd nearE ­ 0. Because
of the level repulsion and of the particle-hole symmetr
rsEd vanishes atE ­ 0 for evenM [37]. It is expected
that, in the limit M ! `, the dip in the DOS atE ­ 0
disappears andrsEd diverges atE ­ 01, in analogy with
the 1D random-hopping model with an even number
sites [23]. The moderate smearing due tog helps reveal
the diverging behavior.

The discovery of the divergent DOS atE ­ 0 estab-
lishes the connection between the lattice random fl
model and the Gade model. The critical behavior
the latter model is closely related to the model of Dira
fermions with random gauge field [4,5], which has th
same particle-hole symmetry. This supports the conc
sion based on the symmetry argument that a state
the band center is the only delocalized state for anyp
(0 , p # 1) in the absence of the on-site disorder. I
models without the particle-hole symmetry, all the stat
should be localized, in agreement with [10–12,14].
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