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Composite-Fermion Edge States in Fractional Quantum Hall Systems
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We describe the edge states of fractional quantum Hall systems with alternating compressible
incompressible strips using a composite-fermion picture. The current carried by composite fermion
a compressible region depends on the difference between the electron filling factors in the two adj
incompressible regions, consistent with the results of the interacting-electron picture given by Beena
[Phys. Rev. Lett.64, 216 (1990)] and tested by recent experiments. This result allows the applicat
of the Landauer-Büttiker formula for the composite fermion transport. [S0031-9007(98)08210-6]

PACS numbers: 71.10.Pm, 73.40.Hm
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In the two-dimensional electron gas (2DEG) system
the concept of edge states combined with the Landau
Büttiker formula has been very useful in describing th
magnetotransport behavior of integer quantum Hall sy
tems [1]. Several theoretical attempts have been ma
to extend the edge state picture to explain the resu
of transport experiments [2,3] in the fractional quantu
Hall regime; for a slowly varying confinement potentia
the formation of alternating compressible and incompres
ible strips was suggested using an interacting-electron p
ture [4,5].

The composite-fermion (CF) theory [6] has been su
cessful in explaining the fractional quantum Hall effec
and leads to the phenomenological similarity between t
integer and fractional quantum Hall effects. The compo
ite fermions result from a singular gauge transformatio
[7,8] and consist of electrons bound to an even numb
of fictitious magnetic flux quanta. From its successful d
scription in a bulk region, it is natural to extend the C
approach to the edge states in the fractional quantum H
regime [9,10]. In previous work, the CF energy leve
near edges were calculated using the Hartree approxim
tion [9]. Including the many-body effect such as the d
vergence of the CF effective massmp

CF [8,11] near the
filling factor n ­ 1ym with even numberm, other theo-
retical work proposed that the propagating direction
the CF edge states is the same as that of electron d
motions in a slowly varying confinement potential [10
However, to our knowledge, the CF approach in descr
ing the electron transport near edges has not been well
tablished and not compared with the interacting-electr
picture. For example, for a system with incompressib
regions having the filling factorsnb ­ 2y5 andne ­ 1y3,
as shown in Fig. 1, one may expect that the CF edge sta
in compressible regions carry the same current, becaus
each compressible region one CF energy level interse
with the effective CF chemical potentialmeff, in analogy
with the edge state theory in the integer quantum H
0031-9007y99y82(3)y596(4)$15.00
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regime. However, this argument contradicts the resul
of the interacting-electron approach [4]. Thus, it is no
clear how the edge channels are defined within the C
approach and whether the Landauer-Büttiker formula [1
can be similarly used for the CF systems.

In this paper, we investigate the nature of CF edg
states in the fractional quantum Hall system whic
consists of alternating compressible and incompressib
strips. We demonstrate the importance of the effectiv
CF potential, which varies with current distribution, in
determining the change of the effective CF chemica
potential Dmeff in each incompressible region due to a
small variation of the electron chemical potentialDm,
where meff is the energy cost to add one CF into the
system. We find the change of current carried by CF
in a compressible strip to beDI ­ s2eyhdDnDm,
whereDn is the difference of the electron filling factors
between the two adjacent incompressible regions. Th
result is consistent with previous theoretical work [4
and recent experimental data [2,3]. Thus, we sugge
that the CF edge channels are well defined, so that t
Landauer-Büttiker formula can be applied for CF system
within our approach. We also discuss the scattering ra
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FIG. 1. A schematic diagram for a two-dimensional conducto
connected to the left and right reservoirs with the chemica
potentialm. Compressible (shaded) and incompressible (white
regions are labeled. The arrows indicate additional curre
flows induced byDm.
© 1999 The American Physical Society
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between the CF edge states in different compressi
regions.

For an ideal 2DEG system, which is connected to tw
electron reservoirs of an electron chemical potentialm,
electrons are confined to move in thexy plane in the
presence of an external uniform magnetic field$B ­ Bẑ
and a slowly varying electrostatic confinement potent
Us yd, as shown in Fig. 1. The electron filling factor in
the incompressible bulk region V isnb ­ pbysmbpb 1

1d, where pb is the CF filling factor andmb is the
number of flux quanta bound to each electron. Althou
there may be many incompressible strips near edg
we focus on a simple case with one incompressib
region III sandwiched between two compressible regio
II and IV. This incompressible strip has the filling facto
ne ­ peysmepe 1 1d , nb , wherepe andme are the CF
filling factor and the number of flux quanta, respectivel
Because of the excitation energy gap [4,5], the electr
densitiesne in the incompressible regions III and V ar
uniformly distributed, while in the compressible strips
they decrease as going to the region I, wheren ­ 0
or p ­ 0. The effective CF chemical potential in an
incompressible regionRi is denoted bymeff,Ri , where
Ri [ hI, III, V j; however,meff,Ri ’s will be shown to be
the same over the incompressible regions.

We first consider the case ofme ­ mb ­ m. In the
mean field theory, the effective electric and magne
fields which interact with CF’s are written as

$Eeff ­ =rUye 1 k $yl 3 mf0neẑ , (1)

$Beff ­ $B 2 mf0neẑ , (2)

where e is the absolute value of electron charge,f0 ­
hye is the magnetic flux quantum, andk $yl is the average
drift velocity. The second terms in Eqs. (1) and (2
represent the fields induced by the magnetic flux bou
to each CF [12]. From Eq. (1), we obtain the effectiv
CF potentialUeff such as

Ueffs yd ­ Us yd 1 mf0

Z y

dI , (3)

whereI denotes a current. In the incompressible region
sinceBeff is constant, the noninteracting CF energies c
be written as [8]

Ep ­ sp 1 1y2dh̄ejBeffjymp
CF 1 Ueff , (4)

where p ­ 0, 1, . . . . In the compressible strips with
nonuniform electron densities, although we need se
consistent calculations to obtain the exact CF energi
we may guess the same expression as that of Eq. (4)
a sufficiently slowly varying potentialU. Depending on
the signs ofpb andpe, there are several possible energ
configurations, as shown in Figs. 2(a)–2(c). If the sign
Beff does not change in the compressible regions, the
ergy levels in the sandwiched incompressible region w
be smoothly connected to those in the neighboring regio
[see Fig. 2(a)]. However, if there exists locally a positio
with a filling factorns y1ymd f­ nes y1ymdf0yBg ­ 1ym in
ble
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FIG. 2. Schematic diagrams for the CF energy levels (so
lines) for mb ­ me ­ 2; (a) nb ­ 2y5, ne ­ 1y3, (b) nb ­
2y3, ne ­ 1y3, and (c)nb ­ 1, ne ­ 2y3. The labeled regions
are the same as those in Fig. 1. The heavy lines indicate
effective CF potentials and the dashed lines in (a) repres
the energy levels changed byDUeff. The energy levels for
mb fi me are drawn in (d).

a compressible strip, the mean field approximation is
longer valid neary1ym becauseBeff is very small and the
gauge fluctuation cannot be ignored. This situation le
to the strongly divergingmp

CF [8,11]; then, the energy lev-
els neary1ym can be expressed asEps yd ­ Ueffs yd [see
region IV in Fig. 2(b)] [10]. We address that althoug
the exact expressions for the energy levels andUeff are
unknown, our following theory is independent of the e
act form. In analogy with the previous theory [10], fo
the energy levels in Fig. 2, the direction of CF current
the same as that of electron current, consistent with
cent edge-magnetoplasmon experiments [13]. Notice
nes y1ymd f­ Bysmf0dg is fixed for a given magnetic field
B, so thatdUeffs y1ymd is related todmeff such as

dUeffs y1ymd ­ dmeff , (5)

becausesmeff 2 Ueffd is proportional tone at y1ym [10].
Then, the so-calledsilent modesmarked asS in Fig. 2,
which start from y1ym and intersect withmeff in the
compressible region, do not contribute to the curre
change [10].

If the chemical potential of the left reservoir is dis
turbed byDm, the effective CF chemical potentialmeff
and the currentI in each region will also be changed b
Dmeff and DI, respectively. However, for a sufficientl
597
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smallDm, DI ­ 0 in the incompressible regions, becaus
of the uniform electron densities due to the energy g
h̄ejBeffjymp

CF . Then, from Eq. (3),DUeff,Ri in an incom-
pressible regionRi is simply written as

DUeff,Ri ­ f0

VX
R0­Ri

mDIR0 , (6)

i.e., DUeff,I ­ f0msDIII 1 DIIV d and DUeff,III ­
f0mDIIV , and the energy levelsEp in this region are
shifted by a constant valueDUeff,Ri , as shown in Fig. 2(a).
Because the energy shiftDUeff,Ri also changes the effec
tive chemical potential,Dmeff,Ri satisfies the relation,

Dmeff,Ri ­
ep

Ri

2e
Dm 1 DUeff,Ri (7)

for Ri [ hI, IIIj, whereep
Ri

is the local CF charge, i.e.,
ep

I ­ 2e and ep
III ­ 2eysmepe 1 1d. In this case, the

first term results from the fact thatjmp 1 1j CF’s with a
local chargeep are excited in the incompressible regio
with n ­ pysmp 1 1d, when one electron is added to
that region [8,12]. From the continuity of the chemica
potential on the boundaries between the compressible
incompressible regions, we find that forpb . 0 andpe .

0, pe energy levels intersect withmeff,I on the edge of
region II, whilespb 2 ped levels intersect withmeff,III in
the case of region IV [see Fig. 2(a)]. These levels gi
rise to the current changesDIII and DIIV , respectively.
The remainingpe levels below the effective chemica
potential in region IV contribute to bothDIII and DIIV ,
because of the energy shiftDUeff,III. As a consequence
the total current changes in regions II and IV, which a
derived fromIp ­ 2seyhd

R
dEp, whereIp is the current

associated with the energy levelp [1], are self-consistently
related toDmeff andDUeff,

DIII ­ 2
e
h

speDmeff,I 2 peDUeff,IIId , (8)

DIIV ­ 2
e
h

fspb 2 pedDmeff,III 1 peDUeff,IIIg .

(9)

Here we point out that the charge carried by each CF in
compressible regions is2e, because there is no excitatio
gap in these regions [4]. From Eqs. (6)–(9), we find th
all the incompressible regions have the same change
meff,

Dmeff ­
Dm

mbpb 1 1
, (10)

and the current changeDIRc in a compressible region
Rc is

DIRc ­ 2
e
h

DnRc Dm , (11)

whereDnRc is the difference of the filling factors betwee
the two neighboring incompressible regions;DnII ­ ne

andDnIV ­ nb 2 ne. The relations in Eqs. (10) and (11
598
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are satisfied for all possible combinations ofpb andpe as
well as for systems with many alternating incompressib
and compressible strips near the edge [14]. For exam
if pb , 0 and pe . 0 [see Fig. 2(b)], the first term in
Eq. (9) will be changed toseyhd sjpbj 1 pedDmeff,III,
because the silent modes do not contribute to the curr
change and the (jpbj 1 pe) occupied levels are shifted by
DUeffs y1ymd in Eq. (5), resulting in the same expressio
as in Eq. (9). From Eq. (10), we note thatDmeff depends
only on mb and pb in the bulk region and is the same
in all the incompressible regions, although the CF ener
levels are shifted by different values. This feature leads
the result thatmeff ’s are the same over the incompressib
regions under an equilibrium condition.

For mb fi me, we consider a simple case ofnb ­ 2y5
and ne ­ 1y5, introducing an additional stable incom
pressible strip ofnV ­ 1y3 between the two incompress
ible regions, as shown in Fig. 2(d). Then, region V ca
be described either in terms of noninteracting CF’s wi
m ­ 2 or CF’s with m ­ 4. If we choose noninteract-
ing CF’s with m ­ 2 (­ mb), we can easily calculate
Dmeff,V andDIVI for regions withn $ 1y3 [see the right
part of Fig. 2(d)], which turn out to be the same as tho
in Eqs. (10) and (11). However, it is not easy to ca
culateDIII and DIIV , because region III withn ­ 1y5
cannot be described by noninteracting CF’s withmb. If
noninteracting CF’s withm ­ 4 (­ me) are chosen over
the whole region, the regions withn # 1y3, i.e., the left
part of Fig. 2(d), can be described by these CF’s.
this case, sinceDIVI is carried out by CF’s withm ­
me, we can obtain the relation from Eq. (7),Dmeff,Ri ­
Dmysmep0

b 1 1d, wherenb ­ p0
bysmep0

b 1 1d andRi [
hI, III, V j [14]. This relation verifies the dependenc
of Dmeff on m in Eq. (10), and the fractional numbe
p0

b indicates that the bulk region VII requires interac
ing CF’s with me. The current changes obtained for th
compressible regions II and IV also satisfy the relatio
in Eq. (11). For all the cases, we find that the curre
changeDIRc in a compressible regionRc satisfies the re-
lation in Eq. (11), consistent with the interacting ele
tron picture by Beenakker [4];DIRc does not depend on
the CF filling factor and the number of flux quanta ca
ried by each CF, but the filling factor differenceDnRc .
Thus, the CF edge channels can be defined as the
edge states in the compressible regions, and the res
ing total current change caused byDm is expressed as
s2eyhdnbDm. Furthermore, generalizing the Landaue
Büttiker formula [1], we can write from Eq. (11) the to
tal current change such asDI ­

P
Rc

DIRc TRc , assuming
that a fractionTRc of the current changeDIRc induced by
one reservoir is transmitted to the other. Then, the co
ductance satisfies the relationG ­ se2yhd

P
Rc

DnRc TRc .
Our Landauer-Büttiker formula for CF’s is more gener
than that in previous work [9,10], because it provides
simpler and clearer description for complex systems w
alternating compressible and incompressible strips. F
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example, we find thatTRc ­ 0 in then . ne regions in the
adiabatic transport regime, whileTRc ­ 1 in the n , ne

regions, if there exists ane region across a segment o
a narrownb 2DEG due to a gate voltage. In this cas
the conductance has the simple relationG ­ se2yhdne, in
good agreement with experiments [2]. We suggest th
recent experimental results for the selective population
edge states [3] can be understood by introducing chan
mixings betweenIRc ’s. This description is different from
the previous CF edge theory [10], in which the chann
mixings occur between the silent and nonsilent modes.
the noninteracting-electron description, the current chan
is contributed from the energy levels intersecting withm;
then, DIRc in a compressible regionRc considered here
could be written asDIRc ­ s2eyhdnDmeff, wheren is the
number of CF energy levels intersecting withmeff. How-
ever, we address thatDIRc is contributed from all the en-
ergy levels belowmeff, as shown in Eqs. (8) and (9). Thus
the properties of CF edge channels are different from tho
for noninteracting-electron edge channels. We emphas
that Ueff plays an important role in determiningmeff and
the current change within the CF edge theory, becauseUeff
and the CF energy levels depend on the distribution of ed
currents which flow along compressible strips.

Finally, we suggest that our approach can be used
explain recent experimental results [15] for the scatteri
rates between resolved fractional edge states. To ob
the scattering rate between the edge states in two ne
boring compressible regionsR1 and R2, we assume that
the observed edge states correspond to our CF edge s
in compressible regions. If a simple double-well stru
ture is considered forR1 and R2, the CF edge states up
to meff will be filled in each well. The incompressible
regionRi with a filling factorn, which is sandwiched be-
tweenR1 and R2, behaves as an energy barrier of widt
dn and heightVRi f­ sp 1 1y2dh̄ejBeffjymp

CF 1 Ueffg,
where VRi . meff and p is the CF filling factor in this
region. The scatterings between the CF edge states inR1
and R2 occur only for those nearmeff. Using the WKB
approximation, the transmission rateWn through the bar-
rier Ri is calculated to beWn , expf2dnfsVRn

, meffdg.
Although we need the CF energy levels near the edge
obtain dn and Vi, we expect thatWn­1y3 is much lower
thanWn­1y5 andWn­2y5 for a sufficiently slowly varying
U, becausedn­1y3 is greater than bothdn­1y5 anddn­2y5
from the hierarchy behavior in the CF approach [6]. Th
result is consistent with the experimental results for sc
tering rates [15].

In conclusion we have investigated the edge-state str
ture in the fractional quantum Hall system using the C
theory. We have derived the relation between the chan
of the effective CF chemical potential and the electro
chemical potential for all the incompressible regions.
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In

contrast to the noninteracting-electron edge states, we fi
that the current in a compressible region is not directl
proportional to the difference of CF filling factors be-
tween the neighboring incompressible regions, which is a
tributed to the fact that the effective CF potential depend
on the distribution of currents near the edge. Our resul
for the transport properties of the CF edge states and t
generalized Landauer-Büttiker formula are consistent wit
those of the interacting-electron picture by Beenakker [4
We suggest that the present approach is also applicab
for the edge states formed by nonuniform external mag
netic fields [16]. Details of the results will be published
elsewhere [14].
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