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Unusual Doppler Effect in theB Phase of Superfluid3He
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We calculate the unusual Doppler effect in theB phase of superfluid3He in the Ginzburg-Landau
regime and at low temperatures. We analyze the nontrivial dependence of the sound velocities a
the internal Doppler-shift coefficients on the superfluid velocity in the Ginzburg-Landau regime.
value of the fourth-sound Doppler-shift coefficient is most remarkable: it exceeds 2.2 (the intuitive o
of magnitude is 1). [S0031-9007(98)07981-2]
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The unusual Doppler shift in superfluid He was pre
dicted by Khalatnikov [1]. Further investigation of the
phenomenon in4He and in the4He-3He mixture was made
in Refs. [2–5]. Experimental measurements were ma
by Rudnicket al. [6] and Kojimaet al. [7,8].

In this work we investigate the Doppler phenomeno
in the B phase of superfluid3He both in the Ginzburg-
Landau (G-L) regime and at low temperatures. The G
L temperature range is more interesting because in t
regimers (superfluid density) is a nontrivial function of
relative velocityw ( $w ; $yn 2 $ys, whereys and yn are
superfluid and normal fluid velocities, respectively) [9,10

rT
s ; rT

s sT , ysd ­ rssT d s1 2 bw2d ,

b ;
b2

1 2
T
Tc

,
1
b

ø 13.2 cmysec.
(1)

The dependence of the superfluid density on the relati
velocity w is also present in4He, but it can be, as a
rule, neglected there. Critical velocities (yc) cannot be
approached in4He because of the vorticity phenomeno
[11]. In 3He, especially in the G-L regime,yc is rather
small (,1 cmysec), and superfluid velocity should be
taken into account.

The quantitative description of the Doppler effect for th
ith sound is made by means of Doppler coefficientsgi and
parametersGi [4,5]. Thegi are defined by (henceforth all
velocities are in one direction)

Dui 2 y ­ giw, $y ­
1
r

srs $ys 1 rn $ynd , (2)

whereyn andui are, respectively, the normal componen
and the sound velocity in the laboratory frame, andDui

is the velocity of the center of spreadingith sound sphere
[2–5]. The definition ofGi depends on which componen
(normal or superfluid) is dominant in the structure o
the particular sound for this particular temperature. Th
normal component is dominant for the first sound atT close
to Tc and the second sound atT ø Tc. The superfluid
component is dominant in the structure of the second a
fourth sounds forT close toTc and the first and fourth
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sounds atT ø Tc. Thus fory ­ 0 one can write

Dui ­ Giyn, Gi ­ gi

.
rs

r

si ­ 1 at T ø Tc or i ­ 2 at T ø Tcd ,

Dui ­ Giys, Gi ­ 2gi

.
rn

r

(3)

si ­ 2, 4 at T ø Tc or i ­ 1, 4 at T ø Tcd .

Gi describes deviation of the center of spreading soun
velocity Du from its zero value in the rest frame of the
liquid. For the classical liquidGi ; 0. The Doppler
effect is termed “normal” ifGi is in the range0 # Gi #

1. The caseGi , 0 when the direction ofDu is opposite
to the direction of the dominant component is called
backentrainment effect (BEF). The caseGi . 1 in which
Du is Gi times larger than the velocity of the dominant
component is called the outstripping effect (OEF) [4].

The basic two-fluid hydrodynamics equations are

Ùr 1 =$j ­ 0, $j ­ rn $yn 1 rs $ys ,

≠srsd
≠t

1 =srs $ynd ­ 0 ,

Ùji 1 =ksryniynk 1 rsysiysk 1 Pdikd ­ 0 , (4)

Ù$ys 1 =

µ
m 2

1
2

y2
s

∂
­ 0,

dm ­
1
r

dP 2 sdT 2
rn

r
syn 2 ysddsyn 2 ysd

(wheres is the specific entropy,P the pressure, andm
the chemical potential). The condition for the existence o
solutions in the linear approximation (see [3,4,12]) give
the velocities of the first and the second sounds in th
following form ( $U ; $u 2 $y):

U1,2 ­ U0
1,2 1 DU ­ U0

1,2 1 g1,2w , (5)
where

sU0
1 d2 ­

≠P
≠r

,

sU0
2 d2 ­

rss2

rn
≠s

≠T

s1 2 3bw2d

s1 1 3
rs

rn
bw2d

,

(6)
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For the first and second sounds calculations are made in the rest frame of the liquid. Under fourth sound cond
(yn ; 0) it is more convenient to perform calculations in the laboratory frame. For that reason the symbolu4 is used
instead ofU4,
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Using the expression for the free energy [9]
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mp is the effective mass, andV is the volume, one finds
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It is well known that

≠P
≠r

ø c2
1, (12)

wherec1 is the first-sound velocity.
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The expressions forrssT d and its derivatives in the Ginzburg-Landau regime are [9]
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From the experimental data [13]≠Tcy≠P is found to be

≠Tc
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ø 0.11Tc

1
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­ 1.1 3 1026Tc
1
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. (14)

Substituting Eqs. (11)–(14) into Eqs. (6)–(8) in the limitT ! Tc one finds the expressions for the velocities
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and for the Doppler coefficients
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As can be seen from Eq. (17) there is a weak BE
for the first sound; the corresponding coefficientg1 is
very small (of the order of21027). The normal fluid
component is the dominant one in the structure of t
first sound near the critical temperature. The first sou
propagates by means of density oscillations; hence
most important factor contributing to the correspon
ing Doppler coefficient has to do with the normal den
sity oscillations. These oscillations are described by t
quantity ≠srnyrdy≠P which appears in Eq. (17) in the
form ≠srsyrdy≠P ­ 2≠srnyrdy≠P. Thus the main rea-
son for the backentrainment effect is the negative “re
tive” compressibility of the dominant (normal) componen
[≠srnyrdy≠P , 0].

The first (classical) sound velocity in our approximatio
does not change with temperature and relative veloc
The complete picture seems to be almost normal except
an anomaly, caused by the phase transition.g1 like all the
other Doppler coefficients is proportional to the derivativ
of the superfluid density which are the second derivativ
of the free energy. Consequently there should be a jump
all Doppler coefficients at the critical temperature. For th
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reason, asT ! Tc, g1 remains finite and does not go ove
smoothly into the nonsuperfluid “classical” value:g1 ­ 0.
G1 ­ g1ryrs diverges atTc, but the effect itself is still
very weak.

The Doppler effect for the second sound is norma
G2 ø 2g2 ø 0.30 [Eq. (3)] at T ! Tc. The velocity
of the second soundU2 depends very strongly onw
[Eq. (15)]. U2 vanishes asw approaches the pair-breaking
critical velocityys,c ­ s1y33y2bd f1 2 sTyTcdg1y2 [9] as it
should, because at this velocity the superfluid phase can
considered as destroyed.U2 also vanishes linearly with the
temperature asT ! Tc.

There is a strong outstripping effect in the case of th
fourth sound:2g4 ø G4 , 2.2. It means that the velocity
of the center of the spreading sound exceeds by more th
2 times the velocity of the superfluid component, whe
the normal component is locked.g4 is in a sense the
biggest Doppler coefficient for all the cases that have be
examined till now. In some systems considered earli
[4,5] a big deviation from the normal effect was found, i.e
a large Doppler parameterG (up to 43.7 forG1) in [5], but
thereg1 ; G1rsyr ø 1 because of the small superfluid
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density, and the smallness ofg1 means the smallness of
the Doppler shiftDu1 in comparison with the relative
velocity w [see Eq. (2)]. In our case2g4 , 2.2; hence
this effect should be much easier to measure. In analo
to the case of BEF for the first sound the main cause
this OEF lies in the value of the relative compressibilit
of the dominant component,≠srsyrdy≠P, which is large
in comparison withs1yrd s≠ry≠Pd. Their ratio is the
main contribution tog4 (the contribution of all the other
terms is much weaker) and its numerical value is larg
than two.

u4 depends very strongly on the temperature and s
perfluid velocity (ys ­ 2w, becauseyn ­ 0). Equa-
tions (15) and (16) confirm thatU2 andu4 vanish asys !
ys,c for any temperature and atTc for any velocityys.

For hydrodynamic theory to be valid two conditions
should be fulfilled. The first condition is that the relaxatio
time (t) has to be much smaller than the period of th
oscillations (2pyv) which can be written astv ø 1.
The second condition is that the mean free path has to
much shorter than the characteristic length of the syste
(the wavelength of sound or the size of the system). T
calculations performed for the low temperature (small
than 0.3Tc) regime are valid only for a very large (more
than a few meters wide) experimental cell. Such a set
can hardly be regarded as a realistic one. Consequen
the low temperature calculations can serve only as
estimate of the effect as it would be under the realist
conditions.

At low temperatures (T ø Tc), for small enough ve-
locities (w ø kBTypF), the w dependence ofrn can be
neglected [14]; hence the expressions for the Doppler c
efficients and parameters can be found from (6)–(8) b
dropping the terms which includeb.

The formulas fors and the derivatives≠sy≠T and
≠ry≠T can be derived from the expression for the he
capacity [9].

It should be stressed that all thermodynamic function
in this regime are exponentially small. But, after th
substitution into the expressions for the sound velociti
and Doppler parameters, all the exponents cancel.

The second sound velocity vanishes linearly forT !
0. However this result does not take into account th
phonon contribution to the excitations. These begin
play an important role at temperatures lower thanT ø
5.6 ? 1025 K whenU2 ø 3 mm

sec but can be neglected until
this regime is reached.

The first sound Doppler coefficientG1 is small and van-
ishes linearly asT ! 0 sG1 ø 0.09TyTcd. The Doppler
effect is normal.

There is a small outstripping effect in the secon
sound which becomes normal linearly asT ! 0 sG2 ø
1 1 kBTy2Dd.

There is a strong outstripping effect for the fourth
sound:G4 ; 2g4ysrnyrd ø 3.21DyskBT d. Althoughg4
is exponentially small,G4 diverges linearly atT ! 0.
Unfortunately the effect may be very difficult to measure
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becauseDu4 is still exponentially small [in the rest frame
of the liquidys , rn , exps2 D

kBT d (3)].
To sum up, the Doppler coefficients, various parameter

and sound velocities in theB phase of the superfluid3He
both in the G-L regime and at low temperatures wer
calculated. There is a weak BEF for the first sound nea
Tc; the corresponding coefficientg1 is of the order of1027.
The Doppler effect for the first sound at low temperatures i
found to be normal (i.e., its values are roughly the expecte
ones). For the second sound, the effect is almost norm
(weak outstripping effect atT ! 0). However, for the
fourth sound we get an outstanding OEF:G4 ø 2g4 ,
2.2 in the G-L regime; i.e., the Doppler shift is2.2 greater
than the expected value.G4 ! ` asT ! 0, but g4 ! 0
at the same time. Without taking into account phonon
corrections to the excitation spectrum, the second-soun
velocity was found to vanish withT ! 0.

The results of the calculations in the G-L are amenable t
experimental verification. Taking into account the realistic
size of the experimental cell, the hydrodynamic approac
can be used down to about0.4Tc. Below that temperature,
in the low temperature regime, the relaxation time and th
mean free path of the excitations become too large an
the performed calculation can serve only as an estima
of the real values. Near0.06Tc the phonon contribution to
the excitations begins to play an important role. Below
0.05Tc one can neglect the fermion origin of the system
and perform the calculations as for4He.
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