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Quasi-Two-Dimensional MHD Turbulence in Three-Dimensional Flows
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We simulate how nearly two-dimensional magnetohydrodynamic turbulence can be initiated
how it evolves with distance in the third dimension. Expanding flows lead to a suppression of
nonlinear cascades, mainly due to the changing transverse length scales. Velocity fluctuation leve
determined more from the 2D dynamics than from the expansion except when the velocity fluctua
are initially dominant. With expansion, magnetic fluctuations always dominate velocity fluctuations
late times. [S0031-9007(98)08244-1]
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Two-dimensional studies of the nonlinear dynamics o
magnetized plasmas, in which both the dependence
all quantities and the fluctuation vectors are confine
to a plane, were initially carried out in part becaus
they were numerically possible on then-current compu
ers. The approach provided a rich set of insights [1
including the suppression of cascades along a mean m
netic field which leads naturally to a two-dimensiona
turbulence state [2]. Two-dimensional fluctuations hav
recently been intensively studied as part of various mo
els for the evolution of the expanding solar wind. In
the latter case, the spherical expansion leads to additio
complications that have so far mainly been dealt with u
ing multiple-scale expansions of the basic equations f
small-scale fluctuations in a slowly varying backgroun
followed by further approximations to make the equation
tractable [3]. Faster computers now make it possible
solve numerically the full set of compressible magneto
hydrodynamic (MHD) equations in three dimensions (3D
in either Cartesian or spherical coordinates, and this is t
subject of this Letter. We present the first simulation
of the initiation and nonlinear spatial evolution of nearl
two-dimensional (quasi-2D) fluctuations as the plane
the fluctuations propagates in a third direction. W
consider nonexpanding and expanding geometries, a
magnetically dominated, Alfvénic (equipartitioned an
correlated magnetic and velocity fluctuations), and kine
ically dominated cases. We show that while the none
panding cases are very like their purely 2D counterpar
the expanding cases are fundamentally different in impo
tant respects from the Cartesian expectations. The sim
lations provide insights on the nonlinear behavior of th
system that will complement and enhance the accuracy
multiscale models.

Most previous simulations of 2D turbulence have to b
performed using Fourier-method codes that yield hig
0031-9007y99y82(3)y548(4)$15.00
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order accuracy but impose periodic boundary conditio
in all directions [4]. To relax the boundary conditions
we have developed a flux-corrected-transport (FCT) co
to solve the MHD equations in spherical geometry. Th
code is a natural extension of those used previously [
We have tested the code for conservation of flux inva
ants, the proper results for known solutions such as Alfv
waves, and the preservation of a zero divergence of
magnetic field (to round off accuracy), and have pe
formed the usual tests of varying the resolution and pre
sion of the calculation, all with good results. We solve th
ideal continuity, momentum, energy, and induction equ
tions for the velocityu, magnetic fieldB, densityr, and
total energye. The pressure is found from the ideal ga
relationshipp  sg 2 1deint with g  5y3 and eint the
internal energy. Artificial dissipation occurs isotropicall
at scales smaller than the input wave spectrum due to
FCT algorithm but is otherwise negligible.

We impose a flow and fluctuations on one end of th
3D simulation domain (inx or r) and let the flow evolve
supersonically and superAlfvénically with distance dow
the box. We have implemented a variety of bounda
conditions with essentially the same results; for this stu
we used periodic conditions transverse to the flow, a
simple outflow (linear gradient preservation) for the fa
end of the domain.

Sufficient inflow conditions to initiate the evolution
consisted of a uniform (radial) flow and mean magnet
field that initially filled the box uniformly in x or
~1yr2, and static fluctuations defined by the four lowe
Fourier modes (of equal amplitude) for the transver
B fluctuations such thatB'  Byszdey 1 Bzsydez, and
analogously in angle variables for the expanding ca
The fluctuations inu are proportional to the magnetic
fluctuations but with a multiplying factor that varied
the cases from magnetically dominated to “Alfvénic” t
© 1999 The American Physical Society
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FIG. 1. Initial conditions for Cartesian and spherical runs fo
B at the inflow end of the box (inset) and for the log of th
trace of the power spectrum of the inflow magnetic fluctuation
The dimensions are degrees for angles, arbitrary code un
for distances, and mode number for spectra. The greysc
proceeds black (minimum) to white (maximum).

velocity dominated. (Alignment of the fields is only
significant in the Alfvénic case.) The transverse rm
magnetic fluctuation amplitude at the inflow,dB, is about
0.7 of the mean field except in the velocity dominated ca
in which the initial fluctuation energy (comparable to tha
in the magnetically dominated runs) is kinetic and ver
little is magnetic. The inflow sonic and Alfvénic Mach
numbers were usually 3 and 5, respectively, yielding
plasmab of about 3. (Based on a few runs of othe
cases, the main results do not seem sensitively depend
on b.) The grids were200 3 70 3 70 for most runs,
with the 200 in the flow direction. Since the boundarie
were time independent, once the transients had mov
through the box the flow became steady with each par
of plasma undergoing identical temporal evolution. Thu
successive cuts transverse to the flow direction in the fin
state provide a record of the time evolution of the initia
2D fluctuations.

The conditions at the inflow are shown in Fourier spac
(logarithmically spaced filled contours of the trace of th
transverse magnetic spectral matrix) and in real space (
magnitude of the transverse magnetic field in the inset)
Fig. 1. The Cartesian run at the end of the box (Fig.
shows evolution like that seen in pure 2D codes at simil
times (here, about two eddy-turn-over times) [4] in whic
the original fluctuations are distorted and become confin
to thinner structures. The evolution continues to ne
isotropization if the box is longer. The dynamics alway
remain quasi-2D with little structure parallel to the flow a
shown by cuts along the flow (Fig. 3), and this explain
why compressive effects, such as shock generation,
very weak. The initially low kinetic energy in fluctuations
(5% of the total in fluctuations) is driven upward by the
magnetic forces, such that it becomes about 1y3 of the
total near the end of the box and remains at that lev
if the box is extended. The value ofdByBx decreases
slowly as the energy is transferred, such that it is about 0
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FIG. 2. Same as Fig. 1 for the outflow end of the box in
Cartesian run.

at the time of Fig. 2. The above results are consistent w
previous 2D simulations and theoretical consideration
and confirm that spatial evolution is nearly equivalent t
time evolution in the purely 2D case, as often had bee
assumed.

The expanding case with120± opening angles and the
same conditions at the inflow as in Fig. 1 evolves ver
differently, as shown in Fig. 4, which corresponds in
distance down the box to Fig. 2. Very little evolution
has occurred, despite the increase ofdByBr to over 3.
This is evident in both the morphology of the spatia
fluctuations, which is both smooth and uncontorted, an
the relative permanence of the initial mode spectrum. Th
initial spatial scales were arranged to be the same as
the Cartesian case, but the box expands by a factor of 5
the flow proceeds. Extending the box leads to very littl
further evolution, but the evolution in the first part of the
box, when the transverse scales are similar, is compara
to the Cartesian case. The evolution that does occur
mainly in the 2D plane, as before.

The magnetic fluctuations decrease somewhat mo
rapidly than1yr, consistent with simple flux conservation
(as well as more involved arguments) modified by th

FIG. 3. A cut in thex-z plane for the case in Fig. 2. Very
low power horizontal streaks in the spectrum are due
nonperiodicity in the radial direction.
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FIG. 4. Same as Fig. 2 for a rapidly expanding case with t
same input.

2D dynamics that transfer energy to the velocity fiel
Theoretical predictions for the “ideal” evolution (ignoring
nonlinear interactions) of the rms velocity fluctuation,du,
in an expanding box [3] are that it should also be~1yr.
However, the quasi-2D dynamics increases the kine
energy of the fluctuations to 12% of the magnetic (s
Fig. 5), and the subsequent evolution nearly maintai
this level. Since the kinetic energy is proportional t
density, which decreases as roughly1yr2, this implies
a nearly constantSu, as shown in the figure; the idea
velocity fluctuation evolution is also shown. Evolution
that is intermediate between that shown in Figs. 1 a
3 can be generated by increasing the transverse sc
in the Cartesian case or by decreasing the initial sca
or the opening angles for the expanding case. T
expansion always eventually increases the scales to
point where little evolution occurs. This is reminiscen
of the conclusions of Grappinet al., who found that
expansion inhibited nonlinear cascades, but their ca
involved a parallel propagating mode; we will treat th
latter case in another publication. On the other han
the effect we see is not primarily due to the transver
velocities resulting from the projection of the radial flow
on a Cartesian plane transverse to a radial vector, a
in general we find a similar evolution for expandin
and nonexpanding cases when the transverse scalesL)
and thus the nonlinear timesLydb are similar. [Note
that db  dBys4prd1y2 is the relevant speed determine
from the magnetic fluctuations.]

A particularly interesting initial condition is one in
which u'  6b' ; 6B'ys4prd1y2, implying parallel
and energetically equipartioned magnetic and veloc
fluctuations. This condition, which is termed Alfvénic al
though here no waves are propagating because all w
vectors are transverse, leads to no incompressive non
ear couplings, and a Cartesian run with this initial sta
shows almost no evolution. However, in the expandin
geometry the tendency for the kinetic energy to decrea
more rapidly than the magnetic leads to a rapid viol
tion of the Alfvénic condition, and the evolution proceed
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FIG. 5. (Top to bottom) Amplitude of the magnetic fluctu
ations [dBys4prd1y2] s— —d, amplitude of the velocity fluc-
tuations s– –d, “ideal” velocity fluctuation amplitude for the
expanding casesOd, and the ratio of kinetic to magnetic en
ergy s—d in the fluctuations as a function ofr for the case of
Fig. 4.

nearly the same as before. The relative energy in the
locity fluctuations (see Fig. 6), while remaining below th
magnetic, is maintained at levels much above that for
“ideal” 1yr decrease indu due to a continuous pumping
from the magnetic field. The latter thus decreases sligh
faster than1yr, as shown by the slow decrease indb in
the figure and as occurred in the previous expansion ru

In the Cartesian geometry there is a general similar
between magnetically and kinetically dominated initi
fluctuations. Although the specific pattern changes, t
state corresponding to Fig. 2 when the same mod
have their magnetic and velocity amplitudes reversed
generally similar, with very similar spectral evolution
The expanding case is entirely different, however, beca
now there is no magnetic field energy to preserve t
fluctuation energy. The velocity fluctuations now dro
nearly as 1yr, unlike the cases above (see Fig. 7
Heuristically, the reason for this is that the angul
momentum of any “elementary swirl” is preserved i

FIG. 6. Quantities as a function ofr for the “Alfvénic” case.
Symbols are as in Fig. 5.
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FIG. 7. Same as Fig. 6 for the initially velocity dominated
case. The ratio of kinetic to magnetic energy starts near 100

the near absence of magnetic forces, making the veloc
times a local transverse distance from the swirl’s center
constant. As the expansion occurs, the transverse dista
is proportional tor, implying du ~ 1yr. The plasma
performs some extra work on its surroundings, leadin
to a rapid loss of fluctuation energy withrdu2 ~ r24,
neglecting small corrections due to the acceleration
the plasma by pressure gradients. The same scalings
found in multiscale arguments. The velocity fluctuation
induce magnetic fluctuations, as Fig. 7 shows, leading
an extra decrease indu until the magnetic energy becomes
dominant at a low level nearr  1.5 and the evolution
becomes more like that of the magnetically dominate
case in Fig. 5.

This first simulation study of quasi-2D fluctuations in
an expanding medium thus shows that a (quasi)sta
condition, such as might exist on the Sun at some scal
leads to evolution similar to simple 2D cases. Substant
differences in the evolution exist between expanding an
nonexpanding cases, mainly associated with the chang
transverse scales and the tendency for rapid decre
of the velocity (but not magnetic) fluctuations in the
expanding medium. Quasistatic inflow conditions are i
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sharp contrast to the energetic, active processes near
Sun that would tend to produce fluctuations propagatin
along the mean magnetic field. The relative roles o
quasi-2D and propagating, mostly Alfvénic fluctuations i
a subject of much recent debate [6] and will be studie
as a natural extension of the present work along wi
the related question of the extent to which quasi-2
fluctuations can be generated by dynamical processes
an expanding medium.
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