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Statistical Mechanics of Stress Transmission in Disordered Granular Arrays
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We give a statistical-mechanical theory of stress transmission in disordered arrays of rigid grains
with perfect friction. Starting from the equations of microscopic force and torque balance we derive
the fundamental equations of stress equilibrium. We illustrate the validity of our approach by solving
the stress distribution of a homogeneous and isotropic array. [S0031-9007(99)09454-5]

PACS numbers: 83.70.Fn, 45.05.+x
Transmission of stress and statistics of force fluc-
tuations in static granular arrays are fundamental, but
unresolved, problems in physics [1,2]. Despite several
theoretical attempts [3,4] and a vast engineering literature
[5,6] the connectivity of granular media is still poorly un-
derstood at a fundamental level. In this Letter we propose
a theory of stress transmission in disordered arrays of rigid
cohesionless grains with perfect friction. A real granu-
lar aggregate (e.g., sand or soil) is a very complex object
[6]. However, simple models are easier to comprehend,
and extra complexities can always be incorporated subse-
quently. In our case the rigid grain paradigm provides a
crucial starting point from which to appreciate the theo-
retical physics of the problem. We model the granular
material as an assembly of discrete rigid particles whose
interactions with their neighbors are localized at pointlike
contacts. Therefore the description of the network of in-
tergranular contacts is essential for the understanding of
force transmission in granular assemblies. Grain a exerts
a force on grain b at a point Rab � Ra 1 rab . The
contact is a point in a plane whose normal is nab . The
vector Ra is defined by

Ra �

P
b Rab

z
, (1)

so that Ra is the centroid of contacts, and henceX
b

rab � 0, Rab � rab 2 rba , (2)

where z is the number of contacts per grain and
P

b means
summation over the nearest neighbors. Hence Ra , rab ,
and nab are geometrical properties of the aggregate under
consideration and the other shape specifications do not
enter. Friction is assumed to be infinite and the geometry
is frozen after the deposition and cannot be changed by
applying or removing an external force on the boundaries.
In a static array Newton’s equations of intergranular force
and torque balance are satisfied. Balance of force around
the grain a requires X

b

f
ab
i � ga

i , (3)

f
ab
i 1 f

ba
i � 0 , (4)
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where i � 1, 2, 3 are Cartesian indices and ga is the
external force acting on grain a. Further on in this Letter
g is used also for the external forces at the boundaries.

The equation of torque balance isX
b

eiklf
ab
k r

ab
l � Ca

i . (5)

The centroid of the contact points need not coincide
with the centroid of the forces, e.g., the center of mass of
a solid grain, but we will assume it is so in order to keep
the analysis simple so that we ensure that the macroscopic
stress tensor is symmetric, at least on average. It can be
verified that, for the intergranular forces in the static array
to be determined by these equations, the coordination
number z � 3 in 2D and z � 4 in 3D is required. In
this paper we present the results for the 2D case only.
The microscopic version of stress analysis is to determine
all of the intergranular forces, given the applied force,
torque loadings on each grain, and geometric specification
of a granular array. The number of unknowns per
grain is zd�2. Required force and torque equations give
d 1

d�d21�
2 constraints. The system of equations for the

intergranular forces is complete when the coordination
number is zm � d 1 1. Theory which confirms this
observation has been proposed for periodic arrays of
grains with perfect and zero friction [7]. It is clear that
the coordination number z controls the connectivity of
granular media. We will assume that z is indeed 3 in
2D, for this is surely the simplest situation, and one which
is physically possible. The ultimate goal, however, is to
determine the macroscopic stress tensor at every point of
a granular array, given external loadings and geometric
specification. The macroscopic state of stress is a function
of the distribution of contact forces. For any aggregate
of discrete grains subjected to external loading, the
transmission of stress from one point to another can occur
only via the intergranular contacts. Therefore it is clear
that the network of contacts determines the distribution
of stresses within the granular array. The network of
contacts is determined by the deposition history of the
sample and the external loading on the boundaries. We
define the tensorial force moment

Sa
ij �

X
b

f
ab
i r

ab
j , (6)
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which is the microscopic analog of the stress tensor. With
Ca

i � 0, Sa
ij will be symmetric. Our goal is to find a

complete system of equations for the macroscopic stress
tensor sij , which is supported by the given network of
contacts in the state of mechanical equilibrium. Given an
assembly of discrete grains which is represented by a very
complex network of contacts, we associate a continuous
medium to have continuously distributed properties. Such
spatial smoothing or coarse-graining can be accomplished
formally. To obtain the macroscopic stress tensor from
the tensorial force moment to the macroscopic stress
tensor we coarse-grain, i.e., average it over an ensemble
of configurations,

sij�r� �

*
NX

a�1

Sa
ijd�r 2 Ra�

+
. (7)

In the simplest cases of isotropic and homogeneous
arrays this is not a problem. The difficulties appear
when the array under consideration is anisotropic or
inhomogeneous. Within the confines of this paper we
explore only the simplest cases. The number of equations
required equals the number of independent components
of a symmetric stress tensor sij � sji and is d�d11�

2 .
At the same time, the number of equations available is
d. These are vector equations of the stress equilibrium
≠sij

≠xj
� gi which have their origin in Newton’s second

law. Therefore we have to find d�d21�
2 equations, which

possess the information from Newton’s third law, to
complete and solve the system of equations which governs
the transmission of stress in a granular array. Thus in 2D
there is one missing equation, and we derive it in terms of
the geometry of the system.

Given the set of Eqs. (3)–(5) we can write the proba-
bility functional for the intergranular force f

ab
i as

P�fab
i � � N d

√X
b

f
ab
i 2 ga

i

!

3 d

√X
b

eiklf
ab
k r

ab
l

!

3 d� f
ab
i 1 f

ba
i � , (8)

where the normalization, N , which is a function of a
configuration, is

N 21 �
Z Y

a,b

P� f
ab
i �Dfab . (9)

The probability of finding the tensorial force moment
Sa

ij on grain a is

P�Sa
ij� �

Z Y
a,b

d

√
Sa

ij 2
X
b

f
ab
i r

ab
j

!
P� f

ab
i �Dfab ,

(10)

where
R
Dfab implies integration over all functions

fab , since all the constraints on fab have been experi-
5398
enced. We assume that the z � d 1 1 condition means
that the integral exists.

We exponentiate the delta functions and thus introduce
the set of conjugate fields z

a
ij , g

a
i , l

a
i , and h

ab
i .

P�Sa
ij� �

Z Y
eiADfabD z aDgaDlaDhab ,

(11)

where A is

A �
X
a

z a
ij

√
Sa

ij 2
X
b

f
ab
i r

ab
j

!

1 ga
i

√X
b

f
ab
i 2 ga

i

!

1 la
i

√X
b

eiklf
ab
k r

ab
l

!

1 h
ab
i � f

ab
i 1 f

ba
i � . (12)

The la field term gives the symmetry of Sa
ij . After

integrating out the fab and hab fields we find the
following linear equation for the conjugate fields:

z a
ij r

ab
j 2 ga

i � z
b
ik r

ba
k 2 g

b
i . (13)

The idea of the conjugate fields method is to use
these equations for the z field in the stress probability
functional, in order to derive the complete system of
equations for the stress tensor. The general solution of
the above equation is a sum of the z 0 field which is the
particular solution and depends on g, and z � which is the
complementary function

z a
ij � z a0

ij 1 z a�
ij . (14)

If we introduce the fabric tensor Fa
ij and its inverse Ma

ij :

Fa
ij �

X
b

R
ab
i R

ab
j , Ma

ij � �Fa�21
ij , (15)

we can rewrite Eq. (13) in the following form:

z a
ij � Ma

jl

X
b

R
ab
l �ga

i 2 g
b
i �

1 Ma
jl

X
b

R
ab
l r

ba
k �z b

ik 2 z a
ik � , (16)

which permits an expansion based on the first two terms,
i.e.,

z a
ij � Ma

jl

X
b

R
ab
l �ga

i 2 g
b
i �

1 Ma
jl

X
b

R
ab
l r

ba
k M

b
km

X
d

Rbd
m �gb

i 2 gd
i � 1 . . . .

(17)

The stress-force equation.—The next step is to in-
tegrate out the g field which gives us the stress-force
equation X

b

Ma
jlR

ab
l Sa

ij 2
X
b

M
b
jl R

ba
l S

b
ij � ga

i . (18)
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So by expanding b quantities about a quantities we reach

=jsij 1 =j=k=mKijklslm 1 . . . � gi , (19)

where Kijkl � �Rab
i R

ab
j R

ab
k R

ab
l � and gives a correction

to the standard equation of stress equilibrium =jsij �
gi at the length scale which is small compared to the
size of the system. These corrections correspond to the
presence of the second, third, etc., nearest neighbors and
topological correlations and must vanish in the k ! 0
limit.

The stress-geometry equation.—So far the well-known
equations have been derived by using the information
from Newton’s second law. But we still have unused
information from Newton’s third law. By integrating
out the z � field we obtain the missing equations we are
looking for. Let us consider that part of the Eq. (11)
which contains the z � field,Z

ei
PN

a�1
z

a�
ij Sa

ij d�za�
ij r

ab
j 2 z

b�
ij r

ba
j �

NY
a�1

D z a�
ij , (20)

and

z a�
ij r

ab
j 2 z

b�
ij r

ba
j � 0 . (21)

Counting the degrees of freedom in this equation we note
that it can give only two (scalar) equations in 2D and three
in 3D. Using Rab and Qab � rab 1 rba , we can get
these equations by projecting the vector equation into

z a�
ij

X
b

R
ab
i R

ab
j 1

X
b

�z a�
ij 2 z

b�
ij �rba

j R
ab
i � 0 ,

(22)

z a�
ij

X
b

Q
ab
i R

ab
j 1

X
b

�z a�
ij 2 z

b�
ij �rba

j Q
ab
i � 0 .

(23)

It should be emphasized that the system under consider-
ation is disordered and therefore Qab fi 0 (whereas for
a honeycomb periodic array Qab � 0). Assuming as
before that z

a�
ij 2 z

b�
ij gives rise to gradient terms we can

exponentiate (22) and (23) by parametric variables fa

and ca ,Z
ei

PN

a�1
z

a�
ij �Sa

ij2faFa
ij 2caGa

ij �
NY
a

D z a�
ij DfaDca ,

(24)

where Fa
ij is given by (15) and

Ga
ij �

1
2

√X
b

Q
ab
i R

ab
j 1 Q

ab
j R

ab
i

!
. (25)

After integrating out the z a�, fa, and ca fields, we find
the following equation for Sa

ij :ØØØØØØ
Sa

11 Fa
11 Ga

11
Sa

22 Fa
22 Ga

22
Sa

12 Fa
12 Ga

12

ØØØØØØ � 0 . (26)
Note that although there are explicit forms generalizing
(26) in 3D, these are more complex algebraically as
a consequence of the higher coordination number. Fa

ij
and Ga

ij will depend on configuration and averaging
(26) is quite complex. The simplest array will have
Qab orthogonal to Ra , i.e., if Rab � �Xab , Yab�, then
Qab � �Yab , 2Xab�. It follows that Fa

ij and Ga
ij can be

written as

Fa
ij �

µ
1 0
0 1

∂
, Ga

ij �

µ
sinua cosua

cosua 2sinua

∂
. (27)

Then Eq. (26) can be rewritten as

Sa
22 2 Sa

11 � 2Sa
12 tanua . (28)

Thus if we are given Sa
12, the probability of finding

Sa
11 2 Sa

22 is

P�Sa
11 2 Sa

22jS
a
12� �

2
p

jSa
12j

�Sa
11 2 Sa

22�2 1 �Sa
12�2 . (29)

Mathematically it is more convenient to introduce
�ja�2 � �Sa

11 2 Sa
22�2 1 �Sa

12�2 and determine the proba-
bility of finding Sa

11 2 Sa
22 given ja .

P�Sa
11 2 Sa

22jj
a� �

1
2p

1p
�ja�2 2 �Sa

11 2 Sa
22�2

. (30)

The mean values of Sa
11 2 Sa

22 and Sa
12 are zero; hence we

predict, rather obviously, hydrostatic pressure. However,
notice that we are able to predict the fluctuations away
from hydrostatic pressure, and would do more on correla-
tions if one could find a pathway to measure them.

Another approach to deal with the system of discrete
equations [(18) and (26)] is to solve it for Sa

ij , and then
average the solution. This way seems to be feasible at
least for the simplest granular systems (e.g., isotropic or
periodic arrays) and may provide deep insight into the
origins of the non-Gaussian statistics of stress fluctuations
[8]. In complex cases this can be accomplished in some
approximation, or by using computer simulations. By
applying Fourier transformation to (18) and (26) one can
obtain Sij�k�. The macroscopic stress tensor is obtained
by averaging over the distribution of angles ua

is11�k� � �S11�k��u

�
g1�k3

1 1 3k2
2k1� 1 g2�k3

2 2 k2
1k2�

jkj4
,

(31)

is22�k� � �S22�k��u

�
g2�k3

2 1 3k2
1k2� 1 g1�k1k2

2 2 k3
1�

jkj4
,

(32)
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is12�k� � �S12�k��u

�
�g1k2 2 g2k1� �k2

2 2 k2
1�

jkj4
, (33)

where jkj2 � k2
1 1 k2

2 and sij�r� �
R

sij�k�eikrd3k.
By doing the inverse Fourier transformation one can see
that the macroscopic stress tensor is diagonal. There must
also be constraints on the permitted configurations (due
to the absence of tensile forces) which are not so easily
expressed, for they affect each grain in the form

Sa
ikMa

klR
ab
l n

ab
i . 0 , (34)

which has not yet been put into continuum equations other
than Dets . 0 and Trs . 0.

Discussion.—In this Letter we have derived the funda-
mental equations of stress equilibrium,

=jsij 1 =j=k=mKijklslm 1 . . . � gi , (35)

Pijksjk 1 =jTijklskl 1 =j=lUijklmskm 1 . . . � 0 .

(36)

In order to solve these equations one needs to know
the geometric quantities Kijkl , Pijk , Tikl , and Uijklm. In
practice details of the distribution of intergranular contacts
are not known in advance, but should be obtained from
the deposition history of the system or experimental
measurements of two-body correlation functions.

If the system is strongly anisotropic (i.e., there exists
a preferred direction characterized by some angle f) and
tanua has an average value tanf, then Eq. (26) becomes
in the mean-field approximation

s11 2 s22 � 2s12 tanf , (37)

where f is the angle of repose. It is known as the fixed
principal axes equation [3], and has been used with no-
table effect to solve the problem of the stress distribu-
tion in sandpiles. Explicit mathematical expressions for
the 3D case are more complex, and will be reported
elsewhere. The issue of whether the derived system of
Eqs. (35) and (36) is robust against the inclusion of real
5400
friction, softness of grains, etc., illuminates the existence
of a whole array of fascinating theoretical and experimen-
tal problems. Other important issues which are not ad-
dressed in this Letter are that of stress fluctuations and the
response of a granular aggregate to external perturbations.
In general, cohesionless granular materials are quasistatic
or “fragile” [9], which means that they cannot support cer-
tain types of infinitesimal changes in stress without con-
figurational rearrangements.

In conclusion, our theory in its present form gives
a simplified, but physical, picture of stress behavior in
cohesionless granular media. Further development is
needed to make it a predictive tool which could be able
to match experimental findings.
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