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Quantum Simulations on a Quantum Computer
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We present a general scheme for performing a simulation of the dynamics of one quantum system
using another. This scheme is used to experimentally simulate the dynamics of truncated quantum
harmonic and anharmonic oscillators using nuclear magnetic resonance. We believe this to be the first
explicit physical realization of such a simulation. [S0031-9007(99)09457-0]

PACS numbers: 03.67.–a, 76.60.–k
In 1982, Feynman proposed that a quantum system
would be more efficiently simulated by a computer
based on the principles of quantum mechanics rather
than by one based on classical mechanics [1]. Recently,
it has been pointed out that it should be possible to
efficiently approximate any desired Hamiltonian within
the standard model of a quantum computer by a sparsely
coupled array of two-state systems [2–4]. Many of the
concepts of quantum simulation are implicit in the average
Hamiltonian theory developed by Waugh and colleagues
to design NMR pulse sequences which implement a
specific desired effective NMR Hamiltonian [5]. Here we
show the first explicit simulation of one quantum system
by another, namely, the simulation of the kinematics
and dynamics of a truncated quantum oscillator by an
NMR quantum information processor [6,7]. Quantum
simulations are shown for both an undriven harmonic
oscillator and a driven anharmonic oscillator.

A general scheme for quantum simulation is summa-
rized by the following diagram:

Simulated �S� Physical �P�
js�

f
! jp�

U�e2iHsT� h̄ # # VT

js�T ��
f21

√ jpT � .

The object is to simulate the effect of the evolution js� U
!

js�T �� using the physical system P. To do this, S is related
to P by an invertible map f which determines a correspon-
dence between all of the operators and states of S and P. In
particular, the propagator U maps to VT � f21Uf. The
challenge is to implement VT using propagators Vi arising
from the available external interactions with intervening
periods of natural evolution e2iH 0

p t� h̄ in P so that VT �
Pie

2iH 0
p ti�T �Vi . If a sufficient class of simple operations

(logic gates) are implementable in the physical system, the
universal computation theorem [8–10] guarantees that any
operator (in particular VT ) can be composed of natural evo-
lutions in P and external interactions. For unitary maps f,
we may write VT � e2iH pT� h̄, where H p � f21Hsf

can be identified with the average Hamiltonian of Waugh.
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After jp� VT
! jpT �, the final map f21 takes jpT � ! js�T ��,

thereby effecting the simulation js� ! js�T ��. Note that
Hs�T� can be a time dependent Hamiltonian and that T is
viewed as a parameter when mapped to P. This implies
that the physical times ti�T � are parametrized by the simu-
lated time T .

Liquid state NMR quantum computers are well suited
for quantum simulations because they have long spin
relaxation times (T1 and T2) as well as the flexibility of
using a variety of molecular samples. In particular, the
coupling between the nuclear spins, usually dominated
by the “scalar” coupling �J�, may be reduced at will
by means of radio frequency pulses. Typically spin-1�2
nuclei are used. Thus, the kinematics of any 2N level
quantum system could be simulated using a given N-spin
molecule.

We chose to simulate a quantum harmonic oscil-
lator (QHO) with a 4-level, 2-spin system P being
the two proton nuclear spins in 2,3-dibromothiophene.
The Hamiltonian of a QHO is HQHO � h̄V�N̂ 1

1
2 � �P

n h̄V�n 1
1
2 � jn� �nj, where V is the oscillator fre-

quency and jn� are the orthonormal eigenstates of the
number operator N̂ . Since the nuclear spin eigenstate
space is finite dimensional (4 levels, in this case), only
a truncated version of the infinite dimensional oscillator
was simulated. However, as noted above, for N spins,
there are 2N levels. A convenient unitary mapping, f,
between the energy eigenstates of the QHO and a 2-spin
system is

jn � 0� √! j"� j"� � j""�,

jn � 1� √! j"� j#� � j"#�,

jn � 2� √! j#� j#� � j##�,
(1)

jn � 3� √! j#� j"� � j#"� .

While any number of mappings would suffice, this map-
ping is convenient since Dn � 61 corresponds to al-
lowed transitions in P. This mapping generalizes to a
Gray code. Also note that the spin basis, permuted under
f, is now not in order of increasing energy in P.
© 1999 The American Physical Society 5381
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When truncated, e2iHQHOT� h̄ is mapped onto the 2-spin system as follows:

U � e2iHsT� h̄ � exp�2i� 1
2 j0� �0j 1

3
2 j1� �1j 1

5
2 j2� �2j 1

7
2 j3� �3j�VT� ,

f
! VT � e2iH pT� h̄ � exp�2i� 1

2 j""� �""j 1
3
2 j"#� �"#j 1

5
2 j##� �##j 1

7
2 j#"� �#"j�VT � .
Using the Pauli matrices 	sx , sy , sz
 as a basis for the 2-
spin density matrices [11], we may write

VT � e2iH pT� h̄ � exp�i	s2
z ���1 1

1
2 s1

z ��� 2 2
VT � . (2)

Implementing the operator (2) on the 2-spin sys-
tem thus constitutes a simulation of the truncated
QHO. This is easily done by making various refo-
cusing adjustments to the physical 2-spin propagator
e2iH 0

p ti� h̄, obtained from the natural Hamiltonian H 0
p �

h̄
2 ��v1 2 v0�s1

z 1 �v2 2 v0�s2
z 1 pJs1

z s2
z �, where

v1,2�2p are the resonance frequencies of spins 1 and 2,
�v2 2 v1��2p � 226 Hz, v0�2p is the spectrometer
382
frequency ��400 MHz�, and J is a scalar coupling strength
(5.7 Hz). The following on-resonance �v0 � v1� pulse
sequence implements VT for the simulated period VT :

VT � �p�112
y 2 �t1�2� 2 �p�112

y 2 �t1�2 1 t2� . (3)

The symbol �p�112
y represents a p angle radio frequency

pulse, oriented along the y direction, on spins 1 and 2
(corresponding to the Vi), and �t� represents a delay during
which the 2-spin propagator e2iH 0

p t� h̄ acts. The time
intervals are given by t1 � VT �1��pJ� 2 2��v2 2 v1��
and t2 � 2VT��v2 2 v1�.

The experimental procedure is illustrated using js� �
j0� 1 ij2� as follows:
js� � j0� 1 ij2� , jp� �pj �

0
B@

1 0 0 2i
0
0

0 0
0 0

0
0

i 0 0 1

1
CA VT

) jpT � �pT j �

0
B@

1 0 0 2iei2VT

0
0

0 0
0 0

0
0

iei2VT 0 0 1

1
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Read � p
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)

0
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2ie2i2VT

1 iei2VT

2ie2i2VT 1
2iei2VT

21

iei2VT ie2i2VT 21 1

1
CCCA
The initial state jp� � j""� 1 ij##� $ js�, is easily pre-
pared from the (pseudopure [6]) state j ""�. This in turn
is produced from the thermal equilibrium state of 2,3-
dibromothiophene by the sequence �p�4�112

x 2 �1�4J� 2

�p�112
y 2 �1�4J� 2 �25p�6�112

y 2 �G�, where the mag-
netic field gradient [G] destroys off-diagonal terms in the
density matrix. The sequence (3) for VT then leads to
jpT � �pT j. Since the simulated system should evolve co-
herently according to the difference in energy levels of the
various superpositions, jpT � �pT j above expresses a 2VT
dependence. Nuclear magnetic resonance experiments are
sensitive only to transverse dipolar magnetization, corre-
sponding to the boxed components in the density matrices
above. Thus a final read pulse is needed to rotate the
e6i2VT elements into view. The result manifests itself as
a 2VT oscillation of the spectral peak heights as a func-
tion of the indirect dimension T .

The dynamics of the truncated QHO states j0�, �j0� 1

ij2��, and �j0� 1 j1� 1 j2� 1 j3�� were simulated. Eigen-
states such as j0� do not evolve, as the simulation in
Fig. 1(a) shows. Figure 1(b) shows the 2VT oscilla-
tions discussed above for j0� 1 ij2�. In both Figs. 1(a)
and 1(b), �p�2�y read pulses were used. For js� � j0� 1

j1� 1 j2� 1 j3�, mixtures of VT and 3VT oscillations
can be observed in the spectra. For example, the oper-
ator j0� �1j corresponds to j""� �"#j which is a transition of
spin 2. Thus the amplitude of the spin-2 peak will oscil-
late at VT . In Fig. 1(c), VT peak oscillations (on spin 2)
are recorded while Fig. 1(d) shows a superposition of VT
and 3VT (on spin 1). Since the 2-spin system �P� has
no natural triple quantum coherences, the latter coherence
is entirely simulated. For Figs. 1(c) and 1(d), read pulses
were not required.

In general, scaling the above to include more levels
will depend on the various couplings between the added
spins. For larger spin systems certain couplings are
small and therefore severely limit the time scale of
the experiment. For the truncated QHO, however, an
effective Hamiltonian that is free of all couplings results
from mapping the energy eigenstate jk� to the spin
eigenstate corresponding to the binary representation of
k, in contrast to the Gray coding:

H p � 1
2 h̄V�2n 2 �s1

z 1 2s2
z 1 22s3

z 1 · · ·

1 2n21sn
z �� .

This may be implemented by removing all scalar cou-
plings and scaling all chemical shifts, for instance by
methods analogous to “chemical shift concertina” se-
quences introduced by Waugh [12].

The Hamiltonian for an anharmonic oscillator,
HAHO � h̄V��N̂ 1

1
2 � 1 m�N̂ 1

1
2 �2�, where m is the

anharmonicity parameter. The energy difference
DEm between the mth and �m 1 1�st energy level
is DEm � h̄V�2m�m 1 1� 1 1�. Radiation at the
frequency DEm�h will drive a selective transition
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FIG. 1. NMR peak signals from 2,3-dibromothiophene
demonstrating a quantum simulation of a truncated harmonic
oscillator as implemented by VT in (3). The various initial
states express oscillations according to the energy differences
between the eigenstates involved. The solid lines are fits to
theoretical expectations. a: Evolution of the initial (pseudo-
pure) state j0�, showing no oscillation. b: Evolution of the
initial state j0� 1 ij2�, showing 2V oscillations. c: Evolution
of the initial state j0� 1 j1� 1 j2� 1 j3� showing the V,
and d: 3V oscillations. (Each trace in c and d is actually a
combination of V and 3V oscillations.)

between these levels. The Hamiltonian for this se-
lectively driven anharmonic oscillator is HAHO 1
1
2 h̄VR�jm� �m 1 1j 1 jm 1 1� �mj�, where VR is the
Rabi frequency. Using the map (1), the j0� $ j1� driven
truncated Hamiltonian in particular maps to

H p � 1
4 h̄V�ms1

z 2 4�4m 1 1�s2
z �1 1

1
2 s1

z ��

1
1
4 h̄VRs1

x�1 1 s2
z � .

This is implemented on 2,3-dibromothiophene by the fol-
lowing pulse sequence:

VT � �t1�2� 2 �p�1
y 2 �t1�2� 2 �3p�4�1

y 2 �t2�

2 �p�4�1
y . (4)

For m � 22�9, and VR � 22�9V, the time intervals
are determined by VT�2p � 9Jt2��2

p
2 � � �9�2� �m 2

t1v2�2p�, where m is an integer. The receiver was set at
v0�2p � v1�2p 2 J�2. Note that the map (1) does not
map the physical eigenstates to the simulated eigenstates
(dressed states) of the driven oscillator, emphasizing that
knowledge of the eigenvalues/states of the simulated sys-
tem is not assumed. Experimental results are shown in
Fig. 2.

In these studies, we have considered only unitary evo-
lution and have explored the quantum dynamics for sys-
tems without dissipation. The decoherence [13] intrinsic
in our physical system (characterized by the longitudinal
and transverse magnetization relaxation times T1 and T2)
limits the time of the experiment. This then limits the
number of periods that can be simulated. Since the ex-
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FIG. 2. NMR peak signals from 2,3-dibromothiophene
demonstrating a quantum simulation of a driven, truncated
anharmonic oscillator as implemented by VT in (4). When
the (0,1) transition is selectively driven, the initial state j0� �±�
undergoes Rabi �VR� oscillations to the j1� state, whereas the
j2� state ��� does not evolve under the simulated Hamiltonian.
The exponential decay due to natural decoherence in P is clear.

perimental �t� and simulated �T � time scales need not be
identified with each other, this can be interpreted as a re-
striction either on V or on T . In Fig. 2 the visible decay
due to T2 relaxation clearly shows this limitation. While
decoherence can be controlled, in principle, by error cor-
rection [14–16], it would be difficult to utilize this in the
weakly polarized physical system used here. Moreover,
thermal equilibrium will not necessarily map to another
configuration that is thermal. Decoherence itself may be
simulated through specific nonunitary evolution; in NMR,
for example, by magnetic field gradients [17].

The aspects available in the simulation: controlled kine-
matics and dynamics, a driving field, and decoherence,
suggest a very general tool with which to study other
systems.
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