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Dissipation Effects on the Superconductor-Insulator Transition in 2D Superconductors
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Results on the superconductor to insulator transition in two-dimensional films are analyzed in terms
of a coupling of the system to a dissipative bath. Upon lowering the temperature the parameter
that controls this coupling becomes relevant and a wide range of metallic phase is recovered.
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Quantum phase transitions (QPT) continue to attract in-
tense theoretical and experimental interest. These tran-
sitions—where changing an external parameter in the
Hamiltonian of the system induces a transition from one
quantum ground state to another, fundamentally differ-
ent one—have been invoked to explain data from various
experiments, including quantum-Hall liquid to insulator,
metal to insulator, and superconductor to insulator (SI)
measurements. Many experiments have focused on the
SI transition, which can be tuned by both disorder and
magnetic field [1–3]. Usually, theoretical understand-
ing of this transition is obtained by mapping the prob-
lem onto the so-called “dirty-boson” model, where it is
described in terms of interacting bosons (Cooper pairs or
vortices) moving in the presence of disorder [4]. At zero
temperature, quantum fluctuations and disorder activate
vortex-antivortex pairs, thereby tuning the SI transition.
The transition is also tuned by a magnetic field, which
induces vortices of one vorticity; with no disorder an
Abrikosov lattice of these vortices realizes the supercon-
ducting phase. However, an arbitrary amount of disor-
der disrupts the lattice and a true superconducting phase
is assumed to be recovered only at T � 0. In the super-
conducting phase, vortices are localized into a so-called
vortex-glass phase [5] and the Cooper pairs are delocal-
ized. Above a critical field Hc, vortices delocalize and
Cooper pairs localize into a Bose-glass phase. Further
increase of the magnetic field gradually dissociates the
Cooper pairs, and fermion degrees of freedom then deter-
mine the properties of the system. A finite conductivity
is expected at the SI transition, where both vortices and
Cooper pairs are delocalized in a “Bose-metal” phase. The
above scenario was the basis for a scaling theory proposed
by Fisher [5] in which a field-tuned transition was consid-
ered as a continuous transition with an associated diverg-
ing length j � �Hc 2 H�2n , as well as a finite, universal
conductivity at the transition [6].

In previous field-tuned experiments on amorphous
MoGe [3], we showed good scaling for a range of disorder
in agreement with the aforementioned scaling theory of
the SI transition [5]. However, we did not find a universal
critical resistance. Subsequently, a more detailed study
0031-9007�99�82(26)�5341(4)$15.00
of the superconducting phase (i.e., the vortex-glass phase)
revealed that at low fields and lower temperatures the re-
sistance changes from being activated to being temperature
independent [7]. This unexpected behavior in the vortex
glass phase has been seen in other systems [8,9] and was
interpreted as quantum tunneling of vortices or disloca-
tions [7]. With the assumption of continuity as a function
of increasing magnetic field, we concluded that there was
no true superconducting phase all the way to the critical
field. Since the above results are incompatible with the
presently acceptable theory that describes the SI transition
[5], a better understanding of the experimental evidence
for the QPT is in order.

The present paper is therefore aimed at resolving the
above puzzle by a detailed investigation of scaling close
to the critical point. This is done by measuring at lower
temperatures and with higher resolution than before, such
that we are able to distinguish statistical from systematic
scatter in the data. Our present results suggest that while
the quantum critical point is indeed apparent at low tem-
peratures and the agreement with scaling is excellent, low-
ering the temperature further results in a rapid disruption
of scaling. We interpret these results as evidence of a
coupling of our system to a dissipative environment, pre-
sumably a background of delocalized fermions whose exis-
tence was first conjectured by Yazdani and Kapitulnik [3].
Such coupling to dissipation could lead to a new phase dia-
gram for the system, shown pictorially in Fig. 1 where to
the standard H-T disorder phase diagram [5], we add a
new axis, a, representing the strength of the coupling to a
dissipative bath (so the figure is a slice at fixed disorder).
Upon cooling the system the coupling to the bath becomes
more relevant and the system flows away from the unstable
critical point (the pure dirty bosons point) into a wide range
of “metallic” behavior. In fact, depending on the system,
the opening of the metallic region could leave a dimin-
ishingly small region where true superconductivity can be
found. In the case of MoGe with R� of order 1.5 kV we
showed [7] that already at 20% of Hc, superconductivity
is lost. The proposed phase diagram for the QPT in the SI
case should be viewed as very general. The implications
of our analysis go much beyond the SI problem, and in fact
© 1999 The American Physical Society 5341
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FIG. 1. Phase diagram for the field-tuned SI transition: H-T
dissipation strength diagram at finite disorder. ac marks the
point at which a finite range of metallic phase opens up.

bear on all QPT in two dimensions, as will be explained
below.

Continuing to use amorphous-MoGe films as our model
system, we have conducted further measurements to better
examine the low temperature temperature-independent be-
havior and dissipative coupling. These experiments were
performed on thin films grown by multitarget magnetron
sputtering on a SiN substrate with a Ge buffer layer. The
films were grown in the same sputtering runs as those
used in [3] and [7]; details of growth and characterization
are described elsewhere [10]. Most of the data reported
in this paper were taken on films with x � 0.43, thickness
of 30 Å, and Tc � 0.5 K. Previous studies have deter-
mined the films to be highly amorphous and homogeneous
over all relevant length scales. The films were patterned
into 4-probe structures, and measured in a dilution refrig-
erator using standard low-frequency lock-in techniques.
Care was taken to eliminate spurious noise and heating
effects. Measurement conditions were similar to those in
[3,7]; however, for the current experiments, an improved
dilution refrigerator allowed us access to lower tempera-
tures and greater stability. A typical set of resistance vs
temperature for increasing magnetic field data is given in
Fig. 2. Similar results were obtained for all films includ-
ing those reported in [3,7]. A main feature of these results
is that upon lowering the temperature the activated behav-
ior of the resistance changes to a temperature independent
resistance as the temperature approaches zero, as can be
seen in the log R� vs 1�T inset of Fig. 2. In [7] the low
temperature saturation value of the resistance obeys the
empirical form

R�H� � R0ec� h̄�e2R��H�Hc2 , (1)

with R� being the resistance per square of the sample
and c � 2 is a constant. This unusual behavior was ex-
plained by Shimshoni et al. [11] using dissipative quan-
tum tunneling of vortices from one “insulating” puddle
to its neighbor. The source of dissipation was assumed
5342
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FIG. 2. Set of resistance vs temperature curves for B � 2,
1.3, 1.23, 1.18, 1.1, 1.0, 0.75, 0.70, and 0 T. Inset: logR� vs
1�T for B � 0, 0.6, 0.7, 0.75, 1, 1.18, and 1.21 T.

to be the electrons in the core of the vortex, suggesting
the use of Bardeen-Stephen [12] expression for the vis-
cosity in the Euclidian action governing the tunneling. If
the vortex tunneling is mediated by coupling to a dissi-
pative bath, then finite diffusion appears which explains
the flattening of the resistance as T approaches zero. This
model produces an excellent fit to the experimental data
(e.g., the theoretical model, using Bardeen-Stephen dissi-
pation gives c � 1.6 for the prefactor). Since the super-
conducting phase is obtained in this model by percolation
of couplings of superconducting puddles, this model also
explains the exponent n � 1.35 found in all field-tuned
transitions by many groups, since the correlation-length
exponent in 2D classical percolation is 4�3.

To check the scaling and flattening of the resistance in
the MoGe films, we extended the temperature range by
measuring down to 20 mK from low field through the pre-
sumed SI transition. A blowup of the transition region
is shown in Fig. 3. Here we observe that as we go to
low temperatures, all curves, whether initially decreasing
or increasing, flatten. This affects scaling in a dramatic
way. Following [5] we fit isotherms for T $ 100 mK to
R � RcF ��H 2 Hc��T1�zn�. The scaling function F �x�
displays two branches, for positive (“insulating”) and nega-
tive (“superconducting”) arguments. A best fit to the scal-
ing function for high temperature isotherms gives zn �
1.33 6 0.05, as shown in the upper part of Fig. 4. The
dotted and dashed lines in the figure show the deviation
of the 20 and 50 mK lines from the other scaled curves.
This deviation, which evinces the breakdown of scaling
with respect to the critical point, is amplified in the lower
part of Fig. 4. We believe that this low temperature de-
viation from scaling and flattening of resistance manifests
that the isolated metallic point at Hc “opens up” to a re-
gion of metallic behavior as a function of some parameter
that becomes relevant at low temperatures. Adding the hy-
pothesis of vortex tunneling in a dissipative medium, we
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FIG. 3. Set of resistance vs temperature curves for B � 1.3,
1.26, 1.23, 1.21, 1.2, and 1.18 T. Flattening of the resistance at
low temperatures coincides with breakdown of scaling. Inset:
logR� vs 1�T for the same data set.

conclude that the natural parameter that “pulls” the system
away from the SI transition critical point is the strength of
the coupling to the dissipative bath. Starting with a sys-
tem with fixed disorder we naturally arrive at the phase
diagram presented in Fig. 1. Note that the phase diagram
allows for a finite range of a in which the SI transition is
preserved, a feature that we discuss next.

Dissipation in connection with the SI transition was first
studied by Chakravarty et al. [13,14] with a quantum sta-
tistical mechanics model of an array of resistively shunted
Josephson junctions. This model predicted a supercon-
ducting to normal-state transition as a function of dissipa-
tion. More recently, Wagenblast et al. [15] attempted to
explain nonuniversal results observed in experiments on
homogeneous [3] and inhomogeneous thin films [1] by in-

FIG. 4. Upper: Scaling for T $ 100 mK, yielding zn �
1.33 6 0.05. 20 mK (dashed line) and 50 mK (dotted line)
curves strongly deviate from others. Lower: Deviation of
scaled curves from “standard” (100 mK) curve. Note that only
the low temperature curves show significant deviation.
troducing a model with local dissipation in which the dis-
sipative term couples only to the phase of a single island.
Their model led to a new universality class at the SI
transition. In particular, they found that the conductiv-
ity at criticality is nonuniversal and is characterized by
a damping-dependent dynamical critical exponent. Both
models [14,15] preserve the SI transition but do not allow
for a range of a metallic phase. Along with the fact that
neither model includes disorder (in [13] randomness was
discussed and argued not to change the nature of the phase
diagram), we believe that the absence of dual excitations
(i.e., vortices) in the treatment of the transition excludes a
finite range of metallic phase. In the absence of vortices, a
metallic phase is excluded automatically, according to our
proposed scenario as outlined below [16]. However, in
the absence of dissipation and for strong enough disorder
a pure SI transition is expected according to [5], and thus
we allow for a range, a , ac, for which a metallic phase
exists only at the transition point itself. For weak disorder
this range may be very small, as is presumably the case for
the MoGe films discussed here.

Leveling of the resistance—and therefore a probable
coupling to dissipation—in field tuned transitions has been
observed in other experiments on thin superconducting
films [8] and in Josephson Junctions arrays [9]. Even
more intriguing is the fact that the analogous problem
of the quantum Hall effect to insulator transition (QHIT)
exhibits similar effects. In this problem a sharp change
in the behavior of the resistivity at low temperature as
a function of the magnetic field has been interpreted as
a quantum phase transition between localized bosons and
localized vortices [17]. While scaling has been observed
with high accuracy for this problem [4], recent experiments
reveal that occasionally samples fail to exhibit scaling, and
the resistance on the quantum Hall liquid side levels to a
constant, suggesting quantum tunneling [18].

Quantum tunneling of vortices in the SI transition prob-
lem, or of edge states in the QHIT problem, are a natu-
ral consequence of the Shimshoni et al. model [11]. This
model predicts continuous transitions for the SI transition
or QHIT cases which are percolationlike. Its importance is
that it allows for a destruction of the superfluid phase due
to incoherent tunneling of vortices (in the SI transition)
or of edge states (in the QHIT). The missing ingredient of
the model is the existence of a dissipative bath to which the
system may couple with some strength a. This deficiency,
which is corrected in the present paper, leads to the gener-
alized phase diagram presented in Fig. 1. Combining the
percolation model of [11], the argument of [13] that in the
random array model the transition is governed by the prop-
erties of the typical junction, and the argument of Schmid
[19] that depending on the parameters of the junction its
behavior will change from coherent to diffusive, it seems
that a metallic phase must exist in the SI problem. A simi-
lar argument should hold for the QHIT problem. However,
for samples in which the dissipation is weak the QHIT may
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still be preserved, as has been observed by many authors
[20]. In these cases it is no surprise that the resistance at
the critical field is the quantum resistance, h�e2, and that
the exponent is n � 7�3, a value consistent with quan-
tum percolation. The failure to observe scaling in samples
that show flattening of the resistance [18] is interpreted
as an indication that a stronger a exists in these samples.
We therefore suggest that for these samples scaling should
be attempted with the high temperatures data only. This
should lead to a result similar to the one presented here
for the SI transition with n � 4�3. In fact, following our
prediction we examined Fig. 3(a) of [18], which presented
the asymptotical behavior of the activation energy in the
QH state. This activation energy is proportional to T1�zn

and gives 1�zn � 3�4, very different from other QHIT
results of 3�7 or 3�14. While scaling is observed in this
high temperature limit, the critical resistance is different
from the universal resistance, similar, again, to the SI re-
sults. Dephasing in the QHIT problem on the insulating
side was discussed by Pryadko and Auerbach [21] resulting
in a finite Hall resistivity at T � 0. However, the source
of dissipation is still unknown in this problem.

Finally, we comment that our discussion above is very
general and should apply to any two-dimensional quantum
critical point where dissipation can be relevant. A pos-
sible candidate is the newly discovered metal-insulator
transition in Si MOSFETs. Here the insulator is believed
to be a Wigner crystal. In the presence of disorder this
problem resembles that of a vortex glass in the SI transition
problem [22].

In conclusion, in this paper we presented a new phase
diagram for the superconductor-insulator transition prob-
lem in the presence of coupling to a dissipative bath. We
argued that as the critical point is approached by, e.g., low-
ering the temperature, this coupling may become a relevant
variable in the problem and thus pull the system to a new
phase which is metallic in nature. We further proposed that
this scenario is very general and may explain the recent re-
sults on flattening of the resistance observed in quantum
Hall to insulator transitions.

We thank Assa Auerbach, Steve Kivelson, Sudip Chak-
ravarty, Seb Doniach, and Debopriya Das for many useful
discussions. Work supported by NSF Grant No. DMR-
9800663. Samples prepared at Stanford’s Center for
Materials Research.
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