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Motivated by numerical bifurcation detection, we present a methodology for the direct location of
bifurcation points in nonlinear dynamic laboratory experiments. The procedure involves active, adaptive
use of the bifurcation parameter(s) as control variable(s), coupled with the on-line identification of low-
order nonlinear dynamic models from experimental time-series data. Application of the procedure
to such “hard” transitions as saddle-node and subcritical Hopf bifurcations is demonstrated through
simulated experiments of lumped as well as spatially distributed systems. [S0031-9007(98)08206-4]

PACS numbers: 05.45.Tp, 82.40.Bj

The typical laboratory procedure for obtaining a bifur- for actively and simultaneously searching phase and
cation diagram of an experimental system with respecparameter space locate bifurcation points of the model.
to an operating parameter (thiurcation parametérin-  The key here is to construct amflateddynamical system
volvessettingthe parameter to a fixed value and passively(whose state variables are the original state variables plus
observingthe dynamics as they asymptotically approachthe operating parameters); thitflated system has stable
stationary behavior (steady state, stable oscillations, etc.3teady states where the original model has marginally
The operating parameter is then set to a new (fixed) valuestable (bifurcation) points.
and the system is once again allowed to settle. When a It is, of course, impossible to implement “numerical bi-
gualitative change in the long-term behavior of the systenfurcation algorithms” directly on an experiment. To begin
is observed between two consecutive parameter settingajth, an accurate model of the experiment is not available
indicating a bifurcation, theritical intermediate parame- (if it were, the bifurcation points would be located com-
ter value is approached through, e.g., interval halving. putationally). More importantly, the computational con-

This passive “set (parameter) and observe (dynamicsyergence to bifurcation points involves, at each iteration
approach is ubiquitous and straightforward but has obef, say, a Newton-Raphson algorithm, new settings of the
vious shortcomings: trying to locate points of marginalstate variables and the operating parameter, as determined
stability (zero, or zero real part eigenvalues) means longy the previous step; and while, in an experimental con-
experimental transients and inconveniently large settlingext, we can certainly change the operating parameter “at
times. Furthermore, in the detection of “hard” bifurca- will,” we cannot arbitrarily set thestate of the system at
tions as the saddle-node or the subcritical Hopf bifurcaany given moment; the state is governed by the (experi-
tion, overstepping the critical parameter value from themental) system dynamics.

“stable side” to the “unstable side” results in the loss (lo- We attempt to bridge the gap between the passive “set
cally) of all stable solutions, and the system will tend toand observe” approach and the experimentally unimple-
move far away from the neighborhood of phase spacenentable “numerical bifurcation approach.” This is done
which formerly contained the stable steady state. Hysby actively using what can be arbitrarily modulated ex-
teresis will then complicate the subsequent refining of th@erimentally (the operating parameter) to address what
experimental bifurcation point estimate. cannot be arbitrarily modulated experimentally (the state

These problems, which maleecurate experimental bi- variables). Thus we can stabilize a steady state “with an
furcation locationnontrivial, will also be encountered by extra condition”: criticality in our case ([2,3]; see [4] for
the modeler who has available only a “direct simulation”an extremum condition).
algorithm: an integrator where one agaietsparameter The procedure involves local, low-order nonlinear
values (and initial conditions) andbserves(integrates) models, identified on-line using input/outpu/@) data
the dynamics until they settle to stationary behavior. from the system. On-line identification of local models—

On the other hand, a modeler can construct differentinear or nonlinear—plays an important role in detect-
algorithms (numerical bifurcation algorithms [1]); theseing and stabilizing unstable states both in theory (e.g.,
exploit a model of the system by constructing a strategy5,6]) and experiments (e.g., [7,8]), in combination with
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continuation techniques (e.g., [9,10]). These adaptivepf the type #:(t + A1) = Fi(x(r);p(t)) = a; +
local, approximate nonlinear models are used on-line t&/_ b; jx;(1) + c;p(r) + 2=y 2f—;dijax;(O)xe() + 2=
(a) estimate the critical parameter value and the criticak; ;x;(t)p(t) + f;p*(t), where p is the bifurcation
value(s) of the state variable(s) and to (b) design amparameter,n is the dimension of the state space, and
active parameter variation policy (a “controller”) that will a, b, ¢, d, e, and f are all model parameters (in the
bring (quickly) the current state(s) to the critical state(s)detection of Hopf bifurcations we also add cubic terms).
and keep it there. The model parameters are obtained by least-squares
A schematic of the proposed strategy appears in Fig. Iregression [12] on data sampled at regular inter¢Als
in this paper the procedure is implemented in discretand are updated after every step. The assumption of
time. At the end of each measurement interval, measureneasuringall state variables can be relaxed.
ments from the experiment (the “unknown system”) are The steady state equations of this discrete-time model
(adaptively) used to identify a local nonlinear dynamicmay be expressed a&(x; p) — x = 0. The criticality
model; this incorporates the dependence of the dynanconstraint used to augment the steady state equations de-
ics on the bifurcation parameter (which will be used aspends on the type of bifurcation being investigated (and
the control variable in the closed loop). On-line esti-the dimensionality of the model); the constraint corre-
mates of the critical parameter value and the value(s) o$ponding to a saddle-node bifurcation point can be posed
the state variable(s) at criticality are made based on thas DefV.F(x; p) — I] = 0, where! is ann-dimensional
adaptive model, using the steady state equations as weflentity matrix andV, F is the Jacobian of the identified
as atest function[1] guantifying the state’s “proximity model map. For a (nondegenerate, two-dimensional) Hopf
to bifurcation” (criticality). The critical state and param- bifurcation we use DgV,.F(x;p)] — 1 = 0. Note that
eter value are (adaptively) estimated by solving (at eackhese constraints are for maps, corresponding to the nature
time step) this aggregate set of nonlinear algebraic equaf our discrete time model. Estimat§s = (&c;; Per) Of
tions using, for example, a Newton-Raphson contractiorthe experimental critical conditions are obtained by solving
mapping. The estimated critical state(s) becomes the sétia Newton-Raphson) the model steady state and critical-
point for our controller; at each step we use the (adaptiveity constraint equations on-line.
model as a reference to determine an appropriate control We have chosen a couple of simple control laws to
policy (adjustments in the control variable, which useddetermine our control (parameter variation) policy. The
to be our open-loop bifurcation parameter) that will bringfirst involves the determination, at every step, of the
the systenstateto the critical value(s). Subsequent input/ n-element control schedulep[?), p(r + Af),...,p(t +
output data from the system are used to refine the modéh — 1)Ar)], which will bring the mpdel from the current
and improve estimates of the critical conditions. statex(¢) to the estimated critical stafg, in the smallest
For a well-understood experiment the identificationnumber of steps possible. For a one-dimensional system
may be based on first principles models; we desire 4model) we solveF (x(1); p(t)) — % = 0, but for the
general purpose structure, applicable to systems that at@o-dimensional case, we need a two-step policy, and
not well understood. For the types of bifurcations wewe must solve[F(x(t); p(1)); p(t + At)] — &, = 0 for
intend to seek, center manifold and normal form theoryp(z) and p(r + Atr). Only the first actionp(r) of each
(e.g., [11]) suggest that in the neighborhood of thesolution is implemented experimentally; the parameter is
bifurcation (in phasex parameter space) the local long- set and held constant over the sampling interval, and
term dynamics of a system are completely described bthe model identification, criticality estimation, and control
low-order polynomials. The appropriateness of such golicy computation steps are repeated until the system
representation, based on exploiting the separation of timeonverges to its open-loop critical state.
scales due to the existence of a near-critical eigenvalue, A second, less drastic, control policy, involves control
motivates our dynamic model structure. We assume thaictions that will reduce, in the next time interval, the
we can instantaneously measure all state variables current distance from criticality by a prescribed amount.
of the experimental system;(r + Ar) = Fi(x(r); p(t))  In this case we solve fop(r) such thatl|F (x(¢); p(1)) —
viewed in discrete time steps; we identify a modelfc || = Ciracllx(r) — 2(ll, Where Cge is the targeted
fraction of the current distance from (estimated) criticality
(say 0.1 or 0.05) anf] - || denotes the Euclidean norm.

Test Critcalty D [ omromn L %o We demonstrate, through a number of simulated ex-
Function 7| solver | Controller System periments, the ability of the method to drive “unknown”
T systems to open-loop marginal stability, given a suit-

_Tweot o System able ||_1|t|al c_ondmon. The first system we consider is a

Parameters one-dimensional dynamical model of an electrochemical

FIG. 1. Schematic of the proposed strategyO Hata are used reaction system [13]. The ordinary differential equation
to identify a local nonlinear model, which serves as a controlmodels the time dependence of the voltage drppcross
reference for driving the system to marginal stability. an electrical double layer formed at the surface of an
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FIG. 2. Convergence to a saddle node in the electrochemicgls 3 Convergence to a subcritical Hopf bifurcation point
system model. Closed loop transients are overlayed on thg, - qtirred tank reactor, analogous to Figs. 2a and 2b. The

open-loop bifurcation diagram in (a); solid (broken) lines qn:. A PE ;
indicate ‘stable (unstable) open loop solutions. In (b) thedot dashed line in (a) indicates the maximuivalues on the

! . A n-l n | ritical) limi le.
Euclidean distances of the current state) (solid line) and open-loop unstable (subcritical) fimit cycle
the estimated critical stat&..(r) (dashed line) from the actual
critical stateS., are plotted as a function of time.

The second example features the detection of a subcriti-
cal Hopf bifurcation in a stirred tank reactor (STR) model

electrode under an applied voltage [15]:

x1 =k + kop + kax; + k4xf, X1 = —x; + p(l — xy)e*,
where k; = 1372.55, k, = 2000.00, k3 = 614.379, and X2 = —x3 + pki(1 — x1)e® — ka(xy — k3),
ks = —1405.23 are system constants. The system ex

T i . _ " “"wherex; andx, correspond to concentration and temper-
hibits a saddle-node bifurcation af., = (0.381754; ature, andk; — 14.0, k» = 3.0, and ks = 0.0 are fixed

—0.764 455).

Observingx, at discrete time intervals dfr = 0.0005,
we identified a first local polynomial model after a
brief initialization period: for a number of steps, the

bifurcation (control) parameter was randomly perturbe he results shown in Fig. 3. For this example, we have

'z[ahrou_nqt_ a}n |n|é|all value_ das t':"hed s%ﬁtem etvollveld. g‘nc ade use of the second control law described, acting to
€ |n|t|_a tmg edV\tlr?S It entied, the dcont rg aigorithm EYring the system, at the next step, to 5% of its current
was activated and the steps were conducted as previoUsiysiance from estimated criticality. The trajectory of the

described. In order to maintain persistent excitation (thug ; " . ; :
- . e . . o experiment” and the bifurcation diagram are both pro-
avoiding numerical difficulties with the identification) a . P g P

s into thex;-p plane in Fig. 3a, clearly showin n-
small random perturbation was added to each contr%{ cted into thex;-p plane 9. 3a, clearly showing co

i tor adiust 0 thi itati ianal hag€rgence to the bifurcation point.
ac |on_(parame er agjustmen )’_4 IS excitation signal had g, experimental bifurcation detection strategy can also
a maximum amplitude of X 107°.

Figure 2a shows the trajectory (sampledhaintervals) be applied to dissipative spatially distributed systems in

h h th ted oh tical axis. st hich a separation of time scales results in low-order
roug e augmented phase space (vertical axis: s ng-term dynamical behavior. In such cases, most of

variable; horizontal axis: c_ontrol variable, which used tothe eigenvalues in the spectrum lie well away from the
be the open-loop bifurcation parameter) superposed on
the open-loop bifurcation diagram of the system; Fig. 2b

parameters. The Hopf bifurcation with respect to the
Damkoehler numbep is located atS.. = (0.405 955,
1.42084;0.165042). Using a time step oA¢ = 0.5 and

n excitation signal amplitude df X 10~4, we obtained

shows the time variation of the Euclidean distances of @ , )

the stateS(r) = (x(¢); p(¢)) and estimated critical state -0.53 ‘ ‘ A
S.:(r) from the actual critical staté,,, respectively. The a5 810, | ]
trajectory is plotted from the time at which the control is "0.54 a g 18-3 I

activated. The controller rapidly brings the system close . _55 | / S0 !

to the bifurcation point, and as the model becomes better 3% § 10° L

tuned, the estimate of the critical state gradually improves.  -056 | .- 15 10"

Because of the presence of the excitation signal, the - u 10_;

system reaches a physical convergence limit at which the %5 > 091 096 098 ° 0 10 100 200 300 400

statex; remains a distance on the order ti—* away p Iteration (At=50)
from the critical state. The excitation signal is necessary.
to avoid undesirable “bursting” due to the deterioration of it sion system, analogous to Figs.2a and 2b; Qtte spatial
the identification scheme (a notorious feature of adaptivegyrier mode ofu is used as the low-dimensional model

control schemes [12,14]). statex;.

IG. 4. Convergence to a saddle node in the reaction-
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(b) © detection of hard bifurcations, which are problematic
3 Ay 2 for traditional experimental procedures. The general

- bifurcation detection strategy we have outlined is flexible
enough to accommodate numerous types of models,

model identification, and control algorithms (e.g., time-
|2 12 delay/embedding based models, projection algorithms,
1043 044 045 046043 044 045 046043 044 045 046 receding horizon control procedures). The extension of

X X, X, the strategy to detect higher codimension bifurcations is
FIG. 5. Effect of noise on the STR Hon bifurcation detection; also straightforward, .'t requires modeling the dependen.ce
closed loop trajectories with () X 10—+, (b) 1 x 1073, and  Of the system dynamics with respect to a second operating
(c) 1 X 1072 maximum amplitude random noise in the control parameter and the consideration of a second criticality
parameter value are shown. The location of the critical state isonstraint. We believe that the algorithms outlined here
marked by the arrow in (a). can greatly facilitate software-assisted experimentation for
instability detection. The same algorithms can be used to

imaginary axis and only a few have small real parts.bU”d a shell arognd a complex simglation'code (a “time
Low-dimensional polynomial models are therefore agairStéPPer’) to turn it into a numerical bifurcation code.
appropriate for describing the dynamics on a center We gratefully acknowledge the part_lal support of NSF,
manifold (or an approximate inertial manifold). NATO, UTRC, the Humboldt Foundation (R.R., I. G.K.)
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