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Motivated by numerical bifurcation detection, we present a methodology for the direct location
bifurcation points in nonlinear dynamic laboratory experiments. The procedure involves active, adap
use of the bifurcation parameter(s) as control variable(s), coupled with the on-line identification of lo
order nonlinear dynamic models from experimental time-series data. Application of the procedu
to such “hard” transitions as saddle-node and subcritical Hopf bifurcations is demonstrated thro
simulated experiments of lumped as well as spatially distributed systems. [S0031-9007(98)08206-
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The typical laboratory procedure for obtaining a bifur
cation diagram of an experimental system with respe
to an operating parameter (thebifurcation parameter) in-
volvessettingthe parameter to a fixed value and passive
observingthe dynamics as they asymptotically approac
stationary behavior (steady state, stable oscillations, et
The operating parameter is then set to a new (fixed) valu
and the system is once again allowed to settle. When
qualitative change in the long-term behavior of the syste
is observed between two consecutive parameter settin
indicating a bifurcation, thecritical intermediate parame-
ter value is approached through, e.g., interval halving.

This passive “set (parameter) and observe (dynamic
approach is ubiquitous and straightforward but has o
vious shortcomings: trying to locate points of margina
stability (zero, or zero real part eigenvalues) means lo
experimental transients and inconveniently large settlin
times. Furthermore, in the detection of “hard” bifurca
tions as the saddle-node or the subcritical Hopf bifurc
tion, overstepping the critical parameter value from th
“stable side” to the “unstable side” results in the loss (lo
cally) of all stable solutions, and the system will tend t
move far away from the neighborhood of phase spa
which formerly contained the stable steady state. Hy
teresis will then complicate the subsequent refining of th
experimental bifurcation point estimate.

These problems, which makeaccurate experimental bi-
furcation locationnontrivial, will also be encountered by
the modeler who has available only a “direct simulation
algorithm: an integrator where one againsetsparameter
values (and initial conditions) andobserves(integrates)
the dynamics until they settle to stationary behavior.

On the other hand, a modeler can construct differe
algorithms (numerical bifurcation algorithms [1]); thes
exploit a model of the system by constructing a strateg
0031-9007y99y82(3)y532(4)$15.00
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for actively and simultaneously searching phase a
parameter spaceto locate bifurcation points of the mode
The key here is to construct aninflateddynamical system
(whose state variables are the original state variables p
the operating parameters); thisinflatedsystem has stable
steady states where the original model has margina
stable (bifurcation) points.

It is, of course, impossible to implement “numerical b
furcation algorithms” directly on an experiment. To beg
with, an accurate model of the experiment is not availa
(if it were, the bifurcation points would be located com
putationally). More importantly, the computational con
vergence to bifurcation points involves, at each iterati
of, say, a Newton-Raphson algorithm, new settings of
state variables and the operating parameter, as determ
by the previous step; and while, in an experimental co
text, we can certainly change the operating parameter
will,” we cannot arbitrarily set thestateof the system at
any given moment; the state is governed by the (exp
mental) system dynamics.

We attempt to bridge the gap between the passive “
and observe” approach and the experimentally unimp
mentable “numerical bifurcation approach.” This is don
by actively using what can be arbitrarily modulated e
perimentally (the operating parameter) to address w
cannot be arbitrarily modulated experimentally (the sta
variables). Thus we can stabilize a steady state “with
extra condition”: criticality in our case ([2,3]; see [4] fo
an extremum condition).

The procedure involves local, low-order nonline
models, identified on-line using input/output (IyO) data
from the system. On-line identification of local models—
linear or nonlinear—plays an important role in detec
ing and stabilizing unstable states both in theory (e.
[5,6]) and experiments (e.g., [7,8]), in combination wit
© 1999 The American Physical Society
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continuation techniques (e.g., [9,10]). These adaptiv
local, approximate nonlinear models are used on-line
(a) estimate the critical parameter value and the critic
value(s) of the state variable(s) and to (b) design
activeparameter variation policy (a “controller”) that will
bring (quickly) the current state(s) to the critical state(
and keep it there.

A schematic of the proposed strategy appears in Fig.
in this paper the procedure is implemented in discre
time. At the end of each measurement interval, measu
ments from the experiment (the “unknown system”) a
(adaptively) used to identify a local nonlinear dynam
model; this incorporates the dependence of the dyna
ics on the bifurcation parameter (which will be used a
the control variable in the closed loop). On-line est
mates of the critical parameter value and the value(s)
the state variable(s) at criticality are made based on
adaptive model, using the steady state equations as w
as a test function[1] quantifying the state’s “proximity
to bifurcation” (criticality). The critical state and param
eter value are (adaptively) estimated by solving (at ea
time step) this aggregate set of nonlinear algebraic eq
tions using, for example, a Newton-Raphson contracti
mapping. The estimated critical state(s) becomes the
point for our controller; at each step we use the (adaptiv
model as a reference to determine an appropriate con
policy (adjustments in the control variable, which use
to be our open-loop bifurcation parameter) that will brin
the systemstateto the critical value(s). Subsequent input
output data from the system are used to refine the mo
and improve estimates of the critical conditions.

For a well-understood experiment the identificatio
may be based on first principles models; we desire
general purpose structure, applicable to systems that
not well understood. For the types of bifurcations w
intend to seek, center manifold and normal form theo
(e.g., [11]) suggest that in the neighborhood of th
bifurcation (in phase3 parameter space) the local long
term dynamics of a system are completely described
low-order polynomials. The appropriateness of such
representation, based on exploiting the separation of ti
scales due to the existence of a near-critical eigenval
motivates our dynamic model structure. We assume th
we can instantaneously measure all state variablesxi

of the experimental systemxist 1 Dtd ­ Fisssxstd; pstdddd
viewed in discrete time steps; we identify a mode

Type of
Bifurcation

Test
Function

Criticality
Solver Controller

Unknown
System

System
ID

p x

Model
Parameters

FIG. 1. Schematic of the proposed strategy. IyO data are used
to identify a local nonlinear model, which serves as a contr
reference for driving the system to marginal stability.
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of the type x̂ist 1 Dtd ; F̂isssxstd; pstdddd ­ ai 1

S
n
j­1 bi,jxjstd1cipstd1S

n
j­1 S

n
k­jdi,j,kxjstdxkstd1S

n
j­1

ei,jxjstdpstd 1 fip2std, where p is the bifurcation
parameter,n is the dimension of the state space, a
a, b, c, d, e, and f are all model parameters (in th
detection of Hopf bifurcations we also add cubic term
The model parameters are obtained by least-squa
regression [12] on data sampled at regular intervalssDtd
and are updated after every step. The assumption
measuringall state variables can be relaxed.

The steady state equations of this discrete-time mo
may be expressed aŝFsx; pd 2 x ­ 0. The criticality
constraint used to augment the steady state equations
pends on the type of bifurcation being investigated (a
the dimensionality of the model); the constraint corr
sponding to a saddle-node bifurcation point can be po
as Detf=xF̂sx; pd 2 Ig ­ 0, whereI is ann-dimensional
identity matrix and=xF̂ is the Jacobian of the identified
model map. For a (nondegenerate, two-dimensional) H
bifurcation we use Detf=xFsx; pdg 2 1 ­ 0. Note that
these constraints are for maps, corresponding to the na
of our discrete time model. EstimatesScr ; sx̂cr ; p̂cr d of
the experimental critical conditions are obtained by solvi
(via Newton-Raphson) the model steady state and critic
ity constraint equations on-line.

We have chosen a couple of simple control laws
determine our control (parameter variation) policy. Th
first involves the determination, at every step, of t
n-element control schedule [pstd, pst 1 Dtd, . . . , pssst 1

sn 2 1dDtddd], which will bring the mpdel from the current
statexstd to the estimated critical statêxcr in the smallest
number of steps possible. For a one-dimensional sys
(model) we solveF̂sssxstd; pstdddd 2 x̂cr ­ 0, but for the
two-dimensional case, we need a two-step policy, a
we must solvêFfF̂sssxstd; pstdddd; pst 1 Dtdg 2 x̂cr ­ 0 for
pstd and pst 1 Dtd. Only the first actionpstd of each
solution is implemented experimentally; the parameter
set and held constant over the sampling interval, a
the model identification, criticality estimation, and contr
policy computation steps are repeated until the syst
converges to its open-loop critical state.

A second, less drastic, control policy, involves contr
actions that will reduce, in the next time interval, th
current distance from criticality by a prescribed amou
In this case we solve forpstd such thatjjF̂sssxstd; pstdddd 2

x̂cr jj ­ Cfracjjxstd 2 x̂cr jj, where Cfrac is the targeted
fraction of the current distance from (estimated) criticali
(say 0.1 or 0.05) andjj ? jj denotes the Euclidean norm.

We demonstrate, through a number of simulated e
periments, the ability of the method to drive “unknown
systems to open-loop marginal stability, given a su
able initial condition. The first system we consider is
one-dimensional dynamical model of an electrochemi
reaction system [13]. The ordinary differential equatio
models the time dependence of the voltage dropx1 across
an electrical double layer formed at the surface of
533
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FIG. 2. Convergence to a saddle node in the electrochem
system model. Closed loop transients are overlayed on
open-loop bifurcation diagram in (a); solid (broken) line
indicate stable (unstable) open loop solutions. In (b) th
Euclidean distances of the current stateSstd (solid line) and
the estimated critical statêScr std (dashed line) from the actual
critical stateScr are plotted as a function of time.

electrode under an applied voltagep:

Ùx1 ­ k1 1 k2p 1 k3x1 1 k4x3
1 ,

where k1 ­ 1372.55, k2 ­ 2000.00, k3 ­ 614.379, and
k4 ­ 21405.23 are system constants. The system e
hibits a saddle-node bifurcation atScr ø s0.381 754;
20.764 455d.

Observingx1 at discrete time intervals ofDt ­ 0.0005,
we identified a first local polynomial model after a
brief initialization period: for a number of steps, th
bifurcation (control) parameter was randomly perturbe
around an initial value as the system evolved. On
the initial model was identified, the control algorithm
was activated and the steps were conducted as previou
described. In order to maintain persistent excitation (th
avoiding numerical difficulties with the identification) a
small random perturbation was added to each cont
action (parameter adjustment); this excitation signal h
a maximum amplitude of5 3 1024.

Figure 2a shows the trajectory (sampled atDt intervals)
through the augmented phase space (vertical axis: s
variable; horizontal axis: control variable, which used
be the open-loop bifurcation parameter) superposed
the open-loop bifurcation diagram of the system; Fig. 2
shows the time variation of the Euclidean distances
the stateSstd ; sssxstd; pstdddd and estimated critical state
Ŝcr std from the actual critical stateScr , respectively. The
trajectory is plotted from the time at which the control i
activated. The controller rapidly brings the system clo
to the bifurcation point, and as the model becomes bet
tuned, the estimate of the critical state gradually improve
Because of the presence of the excitation signal, t
system reaches a physical convergence limit at which
statex1 remains a distance on the order of1024 away
from the critical state. The excitation signal is necessa
to avoid undesirable “bursting” due to the deterioration
the identification scheme (a notorious feature of adapti
control schemes [12,14]).
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FIG. 3. Convergence to a subcritical Hopf bifurcation poi
in a stirred tank reactor, analogous to Figs. 2a and 2b. T
dot-dashed line in (a) indicates the maximumx1 values on the
open-loop unstable (subcritical) limit cycle.

The second example features the detection of a subc
cal Hopf bifurcation in a stirred tank reactor (STR) mod
[15]:

Ùx1 ­ 2x1 1 ps1 2 x1dex2 ,

Ùx2 ­ 2x2 1 pk1s1 2 x1dex2 2 k2sx2 2 k3d ,

wherex1 andx2 correspond to concentration and tempe
ature, andk1 ­ 14.0, k2 ­ 3.0, and k3 ­ 0.0 are fixed
parameters. The Hopf bifurcation with respect to t
Damkoehler numberp is located atScr ø s0.405 955,
1.420 84; 0.165 042d. Using a time step ofDt ­ 0.5 and
an excitation signal amplitude of1 3 1024, we obtained
the results shown in Fig. 3. For this example, we ha
made use of the second control law described, acting
bring the system, at the next step, to 5% of its curre
distance from estimated criticality. The trajectory of th
“experiment” and the bifurcation diagram are both pr
jected into thex1-p plane in Fig. 3a, clearly showing con
vergence to the bifurcation point.

Our experimental bifurcation detection strategy can a
be applied to dissipative spatially distributed systems
which a separation of time scales results in low-ord
long-term dynamical behavior. In such cases, most
the eigenvalues in the spectrum lie well away from t
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FIG. 4. Convergence to a saddle node in the reactio
diffusion system, analogous to Figs.2a and 2b; the0th spatial
Fourier mode ofu is used as the low-dimensional mode
statex1.
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FIG. 5. Effect of noise on the STR Hopf bifurcation detection
closed loop trajectories with (a)1 3 1024, (b) 1 3 1023, and
(c) 1 3 1022 maximum amplitude random noise in the contro
parameter value are shown. The location of the critical state
marked by the arrow in (a).

imaginary axis and only a few have small real part
Low-dimensional polynomial models are therefore aga
appropriate for describing the dynamics on a cen
manifold (or an approximate inertial manifold).

We demonstrate this through a “simulated experimen
of a one-space-dimension, two-variable reaction-diffusi
system [16]:

ut ­ uxx 1 u 2 u3 2 y ,

yt ­ k1yxx 1 psu 2 k2y 2 k3d ,
where u and y are, respectively, activator and inhibito
concentrations, uxs0d ­ uxsLd ­ yxs0d ­ yxsLd ­
0, L ­ 20 and the fixed parameters arek1 ­ 4.0,
k2 ­ 2.0, and k3 ­ 20.03. At pcr ø 0.944 654 a
saddle-node bifurcation results in the formation of stab
and unstable stationary frontlike solutions ofu and y,
in addition to the three homogeneous solutions alrea
present. Since the bifurcation to be located is a sad
node, we identified a one-variable dynamic model choo
ing the spatial average, the0th Fourier mode (x1 ; kul)
of the activator concentration, as our state variable; oth
system “measurements” would have also been success
We converge on this bifurcation point using a tim
step Dt ­ 50 and a maximum excitation amplitude o
1 3 1023 (see Fig. 4).

The final set of simulations demonstrates the effe
of measurement noise on the strategy. Various lev
of noise were added during the detection of the Ho
bifurcation in the STR model (for parametersk1 ­
7.06, k2 ­ 0.74, and k3 ­ 0, and a time stepDt ­ 1).
The results are provided in Fig. 5; phase-plane plots
the trajectories in Figs. 5a– 5c correspond to maximu
noise amplitudes of1 3 1024, 1 3 1023, and1 3 1022,
respectively. As expected, for low noise levels th
system is able to closely approach the critical stateScr ø
s0.440 493, 1.787 29; 0.131 802d, indicated by the arrow in
Fig. 5a; with greater noise, the system has more difficu
but manages to remain in the vicinity.

We have demonstrated the successful use of adap
control techniques for the quick and accurate experimen
;
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detection of hard bifurcations, which are problemat
for traditional experimental procedures. The gener
bifurcation detection strategy we have outlined is flexib
enough to accommodate numerous types of mode
model identification, and control algorithms (e.g., time
delay/embedding based models, projection algorithm
receding horizon control procedures). The extension
the strategy to detect higher codimension bifurcations
also straightforward; it requires modeling the dependen
of the system dynamics with respect to a second operat
parameter and the consideration of a second critical
constraint. We believe that the algorithms outlined he
can greatly facilitate software-assisted experimentation
instability detection. The same algorithms can be used
build a shell around a complex simulation code (a “tim
stepper”) to turn it into a numerical bifurcation code.
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