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Zero Temperature Phases of the Electron Gas
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The stability of different phases of the three-dimensional nonrelativistic electron gas is analyzed
using stochastic methods. With decreasing density, we observe a continuous transition from the
paramagnetic to the ferromagnetic fluid, with an intermediate stability range (20 6 5 # rs # 40 6 5)
for the partially spin-polarized liquid. The freezing transition into a ferromagnetic Wigner crystal occurs
at rs � 65 6 10. We discuss the relative stability of different magnetic structures in the solid phase.
[S0031-9007(99)09514-9]
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Ever since the pioneering work of Wigner and Seitz [1]
on the cohesive energy of metals, the calculation of the
ground state energy of the interacting electron gas became
the object of considerable theoretical interest [2]. Indeed,
the electron gas provides the simplest model in which
nontrivial magnetic structures and electron localization
can be realized by varying a single parameter, namely,
the average electron density r.

In the present paper we investigate the relative stability
of various broken symmetry phases of the nonrelativistic
three-dimensional electron gas, both fluid and solid, us-
ing stochastic methods. We find that the paramagnetic
to ferromagnetic (full spin polarization) transition is not
first order, but a continuous one, involving partial spin
polarization states (weak ferromagnetism) [3]. Moreover
we find that the transition to a Wigner crystal occurs at a
significantly larger density than the value commonly ac-
cepted [3,4] and that near the quantum freezing transition
the fcc and bcc crystal phases are nearly degenerate.

The jellium model consists of N electrons enclosed
in a box of volume V (periodically repeated in space)
in the presence of a neutralizing background of positive
charge. Two parameters characterize its zero temperature
phase diagram, namely, the particle density r � N�V

and the spin polarization z � jN" 2 N#j�N , where N"�#�
is the number of spin-up(down) electrons (N � N" 1 N#).
The system is governed by the Hamiltonian (Hartree a.u.)
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where ri and pi are the position and linear momentum of
particle i, and L is a constant representing the effect of the
background. Since we are interested in the macroscopic
properties of this model system, the thermodynamic limit
(N , V ! `, keeping r constant) is to be performed in the
end by finite size extrapolation.

Elementary scaling arguments indicate that the kinetic
energy term in (1) goes as 1�r2

s (rs is the Wigner-Seitz
radius in units of the Bohr radius and its relation to
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the density is r21 �
4p

3 r3
s ), while the potential energy

scales as 1�rs. Depending on the relative strength be-
tween Coulomb and kinetic energies, we can characterize
three different regimes: the weak (rs & 1), intermediate
(1 & rs & 10), and strong (rs * 10) Coulomb coupling
regimes. The random-phase approximation [2] provides
an accurate description of the weak-coupling regime. The
intermediate coupling region, of direct interest for den-
sity functional calculations, has been extensively studied
by numerical [4,5] and semianalytic methods [6]. Not
surprisingly, the least known regime is the strongly corre-
lated one, for which an early quantum Monte Carlo calcu-
lation [4] is still the most authoritative study.

To delve into the strong coupling regime we employ
the variational (VMC) and diffusion (DMC) quantum
Monte Carlo methods. The starting point is provided by a
variational wave function of the Jastrow type:

CT �R� � J�R, S� det "�w� ? det#�w�, CT �R� [ 4 ,

where det "�#��w� is a spin-up(down) Slater determinant of
one-electron orbitals w that are either plane waves (fluid
phases) or localized functions (crystal phases). In the
equation above, R � �r1, . . . , rN � and S � �s1, . . . , sN �
represent the full set of positions and spins of the elec-
trons in the system. Considering only 2-body correla-
tions, the Jastrow factor can be written as J�R, S� �QN

i,j exp�yij�jri 2 rjj��. For an infinite system the opti-
mal yij�r� should decay as 1�r at large distances to account
for the correct plasmon dispersion relation. For large but
finite systems, however, that is not the case and to repro-
duce the long distance behavior without resorting to ex-
pensive evaluations of y’s by Ewald sums, we consider a
finite range yij , vanishing outside a sphere of radius Rt

tangential to the unit cell: yij�r� � 0 if r . Rt . We have
verified that this truncation involves an insignificant loss
of correlation energy at the variational level [7]. Inside
the sphere yij , which is different for like and unlike spin
electrons, is given by

yij�r� � ȳij�r� 1 Aij exp�2aijr
2� , (2)
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ȳij �
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(3)

The �aij� are determined by the electron-electron cusp
condition [8], while �bij , cij , dij , sij , Aij , aij� and Rb are
variational parameters. The � fk� are chosen in such a
way that CT and its two first derivatives are continuous
everywhere. The one-electron orbitals used for the crystal
phases are exponentials of a Padé function:

wj�r� � exp

"
2k1jr 2 Rjj

2

1 1 k2jr 2 Rjj

#
, (4)

where the (positive) constants k1, k2 are also variational
parameters, and the fixed vectors �Rj, j � 1, N� are dis-
tributed on a regular (bcc or fcc) lattice. The fluid states
are eigenstates of zero total momentum, while the solid
ones are eigenstates of finite lattice translations with van-
ishing total crystal momentum. Both are eigenstates of
the z component of the total spin Ŝz with eigenvalue
h̄M � h̄�N" 2 N#��2. Although the determinantal part of
the wave function is also an eigenstate of Ŝ2, the Jastrow
part may introduce some spin contamination. By analogy
to what is found for other systems [9], we expect this effect
to be small for carefully optimized wave functions. All
the free coefficients are optimized by the variance mini-
mization technique introduced in Ref. [10]. These wave
functions are used to drive the DMC simulation [11].

Several features of the phase diagram discussed below
depend upon the accurate evaluation of tiny energy dif-
ferences. To provide a basis to estimate the reliability
of our results, we report here the relevant aspects of our
computation, including an estimate for the statistical and
systematic errors. First of all, because of the high qual-
ity of the wave functions, and the relatively long runs,
statistical errors are the least important source of uncer-
tainties: for all rs, the statistical error is less than 1%
of the correlation energy. Moreover, the energy gain in
going from VMC to DMC is relatively small. As expected,
the difference dE � EVMC

tot 2 EDMC
tot is largest at low rs

[12], because the n-body contributions not included in our
Jastrow function become more important at high density
[13]. Moreover, for each rs we find that dE�z � is larger
for z � 0 than for z � 1, and, in between, the z depen-
dence of dE is well represented by the simple interpola-
tion: dE�z � � dE�0� 1 �dE�1� 2 dE�0��z2.

For the fluid phase the most important source of uncer-
tainty in our calculations is the finite-size extrapolation to
the thermodynamic limit. We applied the extrapolation
scheme proposed in Ref. [4]:

E`�z � � EN �z � 2 DtN �z � 1 �N�b�z � 2 1�DyN �z ��21,
(5)

where z � �rs, z �, EN �z � is the total energy of the finite
periodic system, b and E` are fitting parameters, and DtN

and DyN describe the size dependence of Hartree-Fock ki-
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netic and exchange energies (DtN � tHF
N 2 tHF

` , DyN �
y

HF
N 2 yHF

` ). The parameter E` is the extrapolated value
of the total energy per electron. Following Ref. [5] we
assume b�z � � b0�rs� 1 b1�rs�z 4. The parameters b0�rs�
and b1�rs� are obtained from the VMC total energies
of an extended set of systems (N � 1062, 1450, and
1930 for z � 0; N � 531, 725, and 965 for z � 1).
This form is used to extrapolate all the energies com-
puted by VMC and DMC for unpolarized and partially
and fully polarized fluid systems. For lower densities
the extrapolation is less critical but still important. We
verified that for the crystal phases the finite-size extrapola-
tion error is comparable to the statistical one if N . 500.
Therefore, the results for N � 686 (bcc) and N � 864
(fcc) are assumed to be equal to the N ! ` limit.

Extensive DMC calculations are performed for systems
with N � 1062 (paramagnetic fluid), N � 725 (ferro-
magnetic fluid), N � 686 (ferromagnetic and antiferro-
magnetic bcc crystal), and N � 864 (ferromagnetic fcc
phase). With the exception of rs � 10, z � 0, the re-
sults of the present computation agree well with those of
Ref. [5]. Representative values for the correlation energy
extrapolated to the thermodynamic limit are reported in
Table I, and Fig. 1 shows a phase diagram displaying the
stability range of the paramagnetic fluid, ferromagnetic
fluid, and bcc (ferromagnetic) Wigner phases. It is ap-
parent that a transition from the paramagnetic to a ferro-
magnetic fluid phase takes place around rs � 25, while
from the fluid to the crystal it is at rs � 65. We found
that the fcc is slightly less stable than the bcc structure
and more stable than the fluid phase at rs � 70. The
total energy difference between the two Wigner phases
is 5 times smaller than the one between fluid and bcc
crystal, and is, therefore, at the limit of our resolution
[Etot� fcc� 2 Etot�bcc� � 3.2 3 1024 eV�electron, to be
compared with an error bar of 2.3 3 1024 eV�electron
for the total energy of either the bcc and fcc phases]. The
close competition of the fluid and different crystal forms
for rs � 70 suggests that a metastable amorphous phase
could be formed in this region of the phase diagram, be-
cause the large number of available configurations and the
tiny energy differences could make the crystallization ki-
netics exceedingly slow.

TABLE I. Minus the DMC correlation energies (in eV) ex-
trapolated to the thermodynamic limit. For each z , the first
row refers to the present results, while the second and third
rows correspond to Ref. [5] and Ref. [4], respectively. The
statistical error affects the last decimal digit.

rs 1 10 20 50 100

z � 0 1.531 0.497 0.313 0.1531
1.53 0.512
1.62 0.505 0.313 0.155 0.0868

z � 1 0.814 0.282 0.1837 0.0968 0.0549
0.794 0.281

0.286 0.1844 0.0965 0.0564
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We now turn to the analysis of the spin dependence
of the total energy near the ferromagnetic and freezing
transitions. To ease the analysis, we perform a detailed
investigation at the VMC level and then test the validity
of the resulting picture by a few DMC calculations.

Regarding the magnetic phase transition, we compute
the total energy for several sizes and partial spin polariza-
tions [14] in the range 0.8 # rs # 30. The extrapolated
results for rs � 25 are reported in Fig. 2. It is clear that,
at this density, the ground state has partial spin polariza-
tion (weak ferromagnet). The full set of data is used to fit
an interpolation for the total energy:

Etot�z � � EHF
tot �z � 1 e0�rs�

1 �e1�rs� 2 e0�rs�� ? �G1�rs�z 2 1 G2�rs�z 4� ,
(6)

where EHF
tot �z � is the Hartree-Fock energy. In this expres-

sion e0�1��rs� is the correlation energy of the paramag-
netic(ferromagnetic) fluid and together with G1�rs� and
G2�rs� are fitted to the functional form
G�rs� � 22A�1 1 a1rs� ln
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, (7)
whose motivation and connection to the exact high-
density limit for e0�1� are discussed in Ref. [15]. This
expression for the energy is minimized with respect to z

at fixed rs to identify the ground state spin polarization.
The stable z as a function of rs is shown in the inset
in Fig. 2. It is manifest that the magnetic transition is
a continuous one, in contrast to what is predicted on the
basis of simpler interpolations, such as the (widely used)
form proposed by Perdew and Zunger [16].

We emphasize that the interpolation used to determine
the ground state polarization is based on VMC calcula-
tions. Nevertheless, as mentioned above, the total en-
ergy difference between the VMC and DMC results is
small and has a smooth and predictable dependence on
z . Adding dE�z � to the fitted total energies does not
change the transition from continuous to discontinuous,
although it moves it slightly towards higher values of rs

(e.g., z � 0.5 polarization is stable at rs � 26 in VMC,
while it is at rs � 30 in DMC). We also remind the reader
that our calculations rely on the fixed-node (FN) approxi-

FIG. 1. Total energy difference (hartree) times rs of (≤) the
paramagnetic and the ferromagnetic fluids; (�) the ferromag-
netic bcc crystal and the ferromagnetic fluid. The statistical
error bar is comparable to the size of the symbols. The ferro-
magnetic fluid is stable when both symbols are above zero.
mation, and, at present, we cannot exclude that releasing
the nodal constraints could change the nature of the mag-
netic transition. However, recent computations reported
in Ref. [13] show that the FN error decreases rapidly with
decreasing density and is small already at rs � 20.

Additional evidence supporting the picture of a mag-
netic instability and a continuous phase transition is
provided by the analysis of the radial distribution func-
tion and structure factor, displaying for rs � 30 long
range spin-spin correlations even for nominally unpo-
larized systems (N" � N#). This is illustrated in Fig. 3,

FIG. 2. Total energy (VMC) as a function of z for a weak
ferromagnetic state. The statistical error bar is reported for
the lowest energy point. The inset shows the equilibrium spin
polarization z as a function of rs. For z 	 0 and z 	 1 the
results depend significantly on the interpolation (see text), and
therefore they have not been reported in the figure.
5319
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FIG. 3. Spin-spin correlation function (VMC) near the mag-
netic instability. A typical error bar is reported.

where the spin-spin radial distribution function ��� gSS�r� �
2� g""�r� 2 g"#�r����� is plotted for two densities close to the
instability [17]. At rs � 20, gSS displays the expected
depletion hole for parallel spins, reflecting the preference
of the system for spin alternation at short distances. At
rs � 25, instead, the spin correlation is small and posi-
tive at short range, and oscillating at long range, pointing
to the formation of magnetic domains with partial spin
polarization. This interpretation in terms of domains is
confirmed by careful analysis of snapshot configurations.

Indirect support to our findings comes also from
recent experiments performed in doped hexaborides
(Ca12xLaxB6) [18]. These authors report a weak ferro-
magnetic phase at low carrier concentration (rs � 28)
with an ordered moment corresponding to a partial spin
polarization of about 10%. Moreover, the observed Curie
temperature, which is as high as 600 K, is of the same
order of magnitude as the Fermi energy indicating that
this represents the natural energy scale of the spin system.

The magnetic phase diagram near the Wigner phase
transition is somewhat simpler. For 70 # rs # 100 the
exchange energy, although small in absolute terms, is still
1 order of magnitude larger than the correlation energy,
and therefore it is not surprising that the ferromagnetic
bcc structure is more stable than the antiferromagnetic
spin ordering. However, at both the VMC and DMC
levels, the energy difference between these two states is
very small (	1% of the correlation energy), and only
the systematic trend Eferro

tot , Eantiferro
tot for 70 # rs # 100

gives us some confidence in this result.
In conclusion, using stochastic methods we have stud-

ied the magnetic and freezing quantum transitions of the
fermionic one component plasma. We find that, con-
trary to the commonly accepted picture, the paramag-
netic to the ferromagnetic fluid transition is a continuous
one, occurring over the 20 6 5 # rs # 40 6 5 density
range, which has apparently been approached in experi-
ments by doping highly correlated solids [18]. The tran-
sition to the bcc Wigner crystal is first order, it occurs at
rs � 65 6 10, and joins two fully polarized spin states.
5320
Where available, our results for the transition densities
disagree substantially from those of a previous study [4].
We think that the disagreement is due to the extrapola-
tion of the finite size results to the thermodynamics limit.
In our case, the importance of this extrapolation has been
limited by performing computations for systems with up
to 2000 electrons, in this way reducing the corresponding
uncertainties. Finally, we recall that our analysis is based
on a selected set of broken symmetry states. There exists
the possibility of other instabilities such as the inhomo-
geneous spin-density-wave state or superconducting states
which we have not considered in the present calculation.
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