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Calculation of the Electron Self-Energy for Low Nuclear Charge
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We present a nonperturbative numerical evaluation of the one-photon electron self-energy for
hydrogenlike ions with low nuclear charge numbefs= 1 to 5. Our calculation for the S state
has a numerical uncertainty of 0.8 Hz for hydrogen and 13 Hz for singly ionized helium. Resummation
and convergence acceleration techniques that reduce the computer time by about 3 orders of magnitude
were employed in the calculation. The numerical results are compared to results based on known terms
in the expansion of the self-energy in powerszaf. [S0031-9007(98)08043-0]
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Recently, there has been a dramatic increase in the amass of the electron. In subsequent work [7—-25], higher-
curacy of experiments that measure the transition frequererder coefficients were evaluated.
cies in hydrogen and deuterium [1,2]. This progress is The analytic results are relevant to |I&v-systems.
due in part to the use of frequency chains that bridge th&or high Z, the complete one-photon self-energy has
range between optical frequencies and the microwave céeen calculated without expansion #w by numerical
sium time standard. The most accurately measured tramrethods [26—37]. However, such numerical evaluations
sition is the 1S-2S frequency in hydrogen; it has been at low nuclear charge suffer from severe loss of numerical
measured with a relative uncertainty % X 10713 or  significance at intermediate stages of the calculation
840 Hz. With trapped hydrogen atoms, it should be feaand slow convergence in the summation over angular
sible to observe théS-2S frequency with an experimental momenta. As a consequence, the numerical calculations
linewidth that approaches the 1.3 Hz natural width of thehave been confined to high&t
28 level [3,4]. Indeed, it is likely that transitions in hy-  Despite these difficulties, the numerical calculations at
drogen will eventually be measured with an uncertaintyhigher Z could be used together with the power-series
below 1 Hz [5,6]. results to extrapolate to lo® with an assumed functional

In order for the anticipated improvement in experimen-form in order to improve the accuracy of the self-energy
tal accuracy to provide better values of the fundamentaat low Z [30]; until now, this approach has provided the
constants or better tests of QED, there must be a correnost accurate theoretical prediction for the one-photon
sponding improvement in the accuracy of the theory ofself-energy of thd S state in hydrogen [38].
the energy levels in hydrogen and deuterium, particularly However, this method is not completely satisfactory.
in the radiative corrections that constitute the Lamb shiftThe extrapolation procedure gives a result with an uncer-
As a step toward a substantial improvement of the theorytainty of 1.7 kHz, but employs a necessarily incomplete
we have carried out a numerical calculation of the oneanalytic approximation to the higher-order terms. It there-
photon self-energy of théS state in a Coulomb field for fore contains a component of uncertainty that is difficult
values of the nuclear charge= 1, 2, 3, 4, and 5. This to reliably assess. Termination of the power series at the
is the first complete calculation of the self-energy at loworder of « (Za)® leads to an error of 27 kHz. After the
Z and provides a result that contributes an uncertainty oinclusion of a result recently obtained in [25] for the log-
about 0.8 Hz in hydrogen and deuterium. This is a dearithmic term of ordew (Za)” In(Za)~2 the error is still
crease in uncertainty of more than 3 orders of magnitudé3 kHz.
over previous results. A detailed comparison between the analytic and

Among all radiative corrections, the largest by severahumerical approaches has been inhibited by the lack of
orders of magnitude are the one-photon self-energy andccurate numerical data for low nuclear charge. The
vacuum polarization corrections. Of these, the larger andne-photon problem is especially well suited for such a
historically most problematic is the self-energy. Analytic comparison because five terms in the expansion have
calculations of the electron self-energy at low nucleatbeen checked in independent calculations. The known
chargeZ have extended over 50 years. The expansioterms correspond to the coefficierts;, A4, Aso, Agas
parameter in the analytic calculations is the strength of thandAg, listed below in Eq. (3).
external binding fieldZ«. This expansion is semianalytic ~ The energy shifA Esg due to the electron self-energy

[i.e., it is an expansion in powers &« and I(Za) 2]. s given by
The leading term was calculated in [7]. It is of the order a (Za)* 5
of a (Za)* IN(Za)~2 in units of m. ¢2, wherem, is the AEse = P F(Za), 1)
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wheren is the principal quantum number. For a particular[46]. Inthe second step, the convergence of the alternating
atomic state, the dimensionless functiBndepends only series is accelerated by théransformation (see Eq. (3.14)
on one argument, the couplinge. The semianalytic in [44]). Theé transformation acts on the alternating se-
expansion of F(Za) about Za = 0 gives rise to the ries much more effectively than on the original input se-

following terms: ries. The highest angular momentum, characterized by the
F(Za) = Ay IN(Za) ™2 + Ay + (Za)Asy + (Za)? Dirac quantum numbe, included in the present calcula-

tion is about 3500000. However, even in these extreme

X [Ae2 IN*(Za) ™2 + Agi IN(Za) 2 cases, evaluation of less than 1000 terms of the original

series is required. As a result, the computer time for the

+ Gse(Za)l, (2) evaluation of the slowly convergent angular momentum
where Gsg(Za) represents the nonperturbative self-expansion is reduced by roughly 3 orders of magnitude.
energy remainder function. The first index of te  The convergence acceleration techniques remove the prin-
coefficients gives the power &« [including the(Za)*  cipal numerical difficulties associated with the singularity
prefactor from Eq. (1)]; the second corresponds to thef the relativistic propagators for nearly equal radial argu-
power of the logarithm. For théS ground state, which ments. These singularities are present in all QED effects
we investigate in this Letter, the terms; and A4 were  in bound systems, irrespective of the number of photons
obtained in [7-13]. The correction terrs, was found involved. It is expected that these techniques could lead
in [14-16]. The higher-order correctionts; and As;  to a similar decrease in computer time in the calculation of
were evaluated and confirmed in [17-21]. The resultQED corrections involving more than one photon.

are In the present calculation, numerical results are obtained
4 10 4 for the scaled self-energy functiai(Z«) for the nuclear
An = 3. Aw =g ~3 Inko. chargesZ = 1, 2, 3, 4, and 5 (see Table I). The valueof
139 used in the calculation iay = 1/137.036. This is close
Asy = Zw(a —In 2), Aepp = —1, (3)  tothe current value from the anomalous magnetic moment
of the electron [47]:
28 21
Agl = 3 In2 — 20" 1/a = 137.035999 58(52).
The Bethe logarithm Ik, has been evaluated, e.g., in The humerical data poi_nts are plqtted in Fig. 1, together
[39,40] as Ik, = 2.984 128 555 8(3). with a graph of the function determined by the analytically

For our high-accuracy, numerical calculationfZ« ), known lower-order coefficients listed in Eq. (3).

we divide the calculation into a high- and a low-energy In order to allow for a variation of t_he fine-structure

part (see Ref. [28]). Except for a further separation of thesonstant, we repeated the calculation with two more values

low-energy part into an infrared part and a middle-energ)})]c o, which are

part, which is described in [41] and not discussed further1/@> = 137.0359995 and 1/a< = 137.0360005.

here, we use the same integration contour for the virtuabn the assumption that the main dependencg oh Z«

photon energy and basic formulation as in [28]. is represented by the lower-order terms in (3), the change
The numerical evaluation of the radial Green functionin F(Z«) due to the variation inv is

of the bound electron (see Eq. (A.16) in [28]) requires the

calculation of the Whittaker functiofV, , (x) (see [42], M S

p. 296) over a very wide range of parametersu, and dar

argumentsc. Because of numerical cancellations in sub-for & given nuclear charg&. Based on this analytic

sequent steps of the calculation, the functirhas to be €stimate, we expect a variation

1)
a = —2A4 o0 4 [ZAsy + O(aIn* a)]d
a

evaluated to one part ib0**. In a problematic interme- F(Za=) — F(Zag) = F(Zay) — F(Za-)
diate region, which is given approximately by the range o
15 < x < 250, we found that resummation techniques ap- ~-9X10

plied to the divergent asymptotic series of the function

W provide a numerically stable and efficient evaluationABLE I. Scaled self-energy function and nonperturbative
scheme. These techniques follow ideas outlined in [43.§elf-energy remainder function for le#® hydrogenlike systems.

and are described in detail in [41]. F(Zap) and Gsg(Z ap)

For the acceleration of the slowly convergent angulary F(Zay) Gse(Zay)
momentum sum in the high-energy part (see Eq. (4.3) in
[29]), we use the combined nonlinear-condensation trans- 10.316793 650(1) —30.29024(2)
formation [44]. This transformation consists of two steps: g'ggi gég 2;;8 :;g;gg ?%8
First, we apply the van Wijngaarden condensation transfor- 6.792 824 081(1) 53859 22(1)
mation [45] to the original series to transform the slowly 5 6:251 627078(1) _28'.443 472 3(8)

convergent monotone input series into an alternating series
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for the different values ofx. This variation is in fact In order to address the question of the consistencyef
observed in our calculation. For example, for the casevith our numerical results, we perform an extrapolation of
Z = 2 we find our data to the poinfa = 0. The extrapolation proce-
FRa~) = 8.528325061(1), dure is adapteq to the proble_m at hand. Wéfit to an
assumed functional form which correspondsAtg, A7,
F(2a) = 8.528325052(1) and and Ay, terms, with the coefficients to be determined by
F2a~) = 8.528325043(1). the fit. We find that our numerical data is consistent with

_ _ _ B the calculated valudgy = —30.924 15(1) [24,48]. ltis
This constitutes an important stability check on the numergifficult to assess the seventh-order logarithmic tetsm
ics, and it confirms that the main dependence’aln its  pecause the extrapolated value fgj is very sensitive to
argument is indeed given by the lowest-order analytic copossible eighth-order triple and double logarithmic terms,
efficientsA4; andAso. _ which are unknown. We obtain as an approximate result
In addition to the results foF(Zao), numerical re- 4, = 55(1.0), and we therefore cannot conclusively con-
sults for the nonperturbative self-energy remainder funcfirm the result [25]
tion Gsg(Zap) are also given in Table |. The results for
the remainder function are obtained from the numerical Ay = 7| — —In2) = 4.65.
data for F(Zay) by direct subtraction of the analytically 64

known terms corresponding to the coefficierts, A,  Since our all-order numerical evaluation eliminates the

Aso, As2, andAg; [see Egs. (2) and (3)]. Note that be- yncertainty due to higher-order terms, we do not pursue
cause the dependence Bfon Za is dominated by the i question any further.

subtracted lower-order terms, we have at the current level The numerical data points of the functiGh:(Za) are
of accuracyGse(Za<) = Gse(Zao) = Gse(Za=). The  pioted in Fig. 2 together with the valu@sgs (0) = Agy =
numerical uncertainty of our calculation@8 X Z* Hz 30924 15(1). For a determination of the Lamb shift, the
in frequency units. _ _ dependence ofisg on the reduced mass, of the sys-

A sensitive comparison of numerical and analytic aptem has to be restored. In general, the coefficients in the
_proaches to the self-_energy can be made_ by extrap_olagmawc expansion (2) acquire a facter, /m.)?, because
ing the nonperturbative self-energy remainder functionyt the scaling of the wave function. Terms associated
Gse(Za)tothe pointZa = 0. Itis expected thatthe func-  yjith the anomalous magnetic moment are proportional
tion Gsg(Za) approaches a constantin the lidie — 0. o (s, /m.)? [49]. The nonperturbative remainder func-
This constant is referred to &g (0) = Aco. Inthe an-  ion G is assumed to be approximately proportional to
alytlc_ e_tpproach, much attention has _been devoted to th@nr/me)z., but this has not been proved rigorously. Work
coefficient Ay [21-24]. The correction has proven 10 js cyrrently in progress to address this question [50].
be difficult to evaluate, and analytic work @iy has ex- e conclude with a brief summary of the results of this
tended over three decades. A step-by-step comparison pgiter. (i) We have obtained accurate numerical results
the analytic calculations has not been feasible, becausg, the self-energy at low nuclear charge. Previously,
the approaches to the problem have differed widely. Arnseyere numerical cancellations have been a problem
additional difficulty is the isolation of terms which con- o these evaluations. (i) For a particular example, we
tribute in a given order irZa, i.e., the isolation of only  have addressed the question of how well semianalytic
those terms which contribute 9 (and not to any higher- - expansions represent all-order results at low nuclear
order coefficients). charge. Our numerical data is consistent with the value

Ago = —30.924 15(1) [24,48]. (iii) Numerical techniques
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FIG. 1. The self-energy functio”R(Z«). The points are the Atomic Number Z

numerical results of this work; the curve is given by the
analytically known terms that correspond to the coefficientsFIG. 2. Results for the scaled self-energy remainder function
listed in Eq. (3). Gsg(Za) at low Z.
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