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Melting of the Classical Bilayer Wigner Crystal: Influence of Lattice Symmetry
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The melting transition of the five different lattices of a bilayer crystal is studied using the Monte
Carlo technique. The square lattice has a substantially larger melting temperature than that of t
other lattice structures, which is a consequence of the specific topology of temperature-induced defe
A new melting criterion, universal for bilayers as well as for single layer crystals, is formulated.
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Wigner crystallization of electrons on the surface of liq
uid helium was first observed experimentally by Grime
and Adams [1]. In the same year, Nelson and Halpe
[2] and Young [3] developed a theory for a two stage co
tinuous melting of a two-dimensional (2D) crystal whic
was based on the ideas of Berenzinskii [4] and Kosterl
and Thouless [5]. Whether melting of a 2D crystal is
first order transition and proceeds discontinuously as d
scribed by the theories of Kleinert [6] and Chui [7], or i
a second order transition in which the crystal first tra
sits into a hexatic phase retaining quasi-long-range orie
tational order and then melts into an isotropic fluid, is st
an open question and a controversial issue. These stu
of the melting transition of 2D systems were directed
single layer crystals, which have the hexagonal symmet
This is the most energetically favored structure for pote
tials of the form1�rn [8]. Disorder will influence Wigner
crystallization as was demonstrated recently as shown
Refs. [9].

In recent experiments on dusty plasmas [10] and on i
plasmas [11] few layer and bilayer crystals were observe
Bilayer systems exhibit a much richer crystal structu
(five different lattice types) as a function of the interlaye
distance. This allows us to study the influence of th
lattice symmetry on melting. Previously, the differen
types of lattices and structural transitions in a multilay
crystal atT � 0 with parabolic confinement was analyze
in [12,13]. Different classes of lattices of the double lay
crystal were specified in [14], and in [15] the stability o
the classical bilayer crystal was analyzed in the harmo
approximation.

In this Letter we study the melting of a classical b
layer crystal, using the Monte Carlo (MC) simulatio
technique. In the crystal phase the particles are
ranged into two parallel layers in the�x, y� plane which
are a distanced apart in thez direction. The layers
contain equal density of particlesn�2 and have close
packed symmetry. A single layer crystal is a limitin
case of a bilayer crystal withd � 0 and particle den-
sity n.

We assume that the particles interact through
isotropic Coulomb (k � 0) or screened repulsive
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potential

V ��ri , �rj� �
q2

ej�ri 2 �rjj
exp�2kj�ri 2 �rjj� , (1)

whereq is the particle charge,e the dielectric constant,
�r � ���x, y, �z � 0, d���� the position of the particle, and1�k

the screening length. The type of lattice symmetry
T � 0 depends on the dimensionless parametern � d�a0,
whered is the interlayer distance anda0 � 1�

p
pn�2 is

the mean interparticle distance. For the classical Coulo
system (k � 0) there are two dimensionless paramete
n and G � q2�a0kBT which determine the state of the
system. The classical Yukawa system (k fi 0) at T fi

0 is characterized by three independent dimensionl
parameters:n, G, andl � ka0. Below we measure the
temperature in units ofT0 � q2�a0kB and the energy in
E0 � kBT0.

The initial symmetry of the structure is set by th
primitive vectors, the values of which are derived from
calculation of the minimal energy configuration for fixe
n. In [15] it was found that the bilayer Coulomb crysta
exhibits five different types of lattices as a function o
the interlayer distance atT � 0: n , 0.006, hexagonal;
0.006 , n , 0.262, rectangular; 0.262 , n , 0.621,
square; 0.621 , n , 0.732, rhombic; and n . 0.732,
hexagonal. Using the standard Metropolis algorithm [1
we allow the system to approach its equilibrium sta
at some temperatureT , after executing104 5 3 105

“MC steps.” Each MC step is formed by a random
displacement of one particle. If the new configuratio
has a smaller energy it is accepted and if the new ene
is larger the configuration is accepted with probabili
d , exp�2DE�T �, whered is a random number between
0 and 1 and DE is the increment in the energy. In ou
numerical calculations the number of particlesN may
change for different types of bilayer crystals, but th
particle density remains the same. We took fragme
of 288 to 780 particles, where the shape of the specim
was determined by theT � 0 crystal structure, and used
periodic boundary conditions. When applying the Ewa
technique, the potential energy is found by summati
over all particles and their periodical images.
© 1999 The American Physical Society 5293
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The potential energy of the system as a function of
temperature is shown in Fig. 1. In the crystalline state
the potential energy of the system rises linearly with
temperature and then at some critical temperature it
increases very steeply. This denotes the beginning of
melting and is related to the unbinding of dislocation
pairs, which we will discuss below. The square bilayer
crystal (n � 0.4) exhibits a jump in the potential energy
at melting of size de � 0.71 3 1022kBT0, and which
is about a factor of 2 larger than for a hexagonal
lattice, i.e., at n � 0, de � 0.39 3 1022kBT0, and at
n � 0.8, de � 0.31 3 1022kBT0. Moreover, the square
lattice has a substantially higher melting temperature, and
consequently is stabler against thermal fluctuations than
the hexagonal lattice.

To characterize the order in the system we calculate the
bond-angular order factor in each layer [17]

Gi
u �

*
2
N

N�2X
j�1

1
Nnb

NnbX
n�1

exp�iNnbuj,n�

+
, (2)

and the translational order factor

Gi
tr �

*
2
N

N�2X
j�1

exp�i �G ? ��ri 2 �rj��

+
, (3)

where index i � 1, 2 refers to the top and the bottom
layers, respectively, and the total bond-angular order
factor of the bilayer crystal is defined as Gu � �G1

u 1

G2
u��2 and similar for Gtr . Nnb is the number of nearest

neighbor particles (Nnb � 6, 4 for the hexagonal and
square lattices, respectively), uj,n is the angle between
some fixed axis and the vector which connects the
jth particle and its nearest nth neighbor, and �G is a
reciprocal-lattice vector.

From the behavior of the order factors we can de-
rive the temperature at which order is lost in the system.
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FIG. 1. The potential energy as a function of temperature for
the interlayer distances n � 0 (solid circle) and n � 0.4 (open
squares).
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As seen from Fig. 2(a) the translational and orientational
order is lost at the same temperature. Our numerical
results show that for all five types of lattices the bond-
angular order factor (1) decreases linearly with increasing
temperature (except very close to the melting tempera-
ture), and (2) drops to zero just after it reaches the value
0.45. We found that Gu exhibits a universal behavior
as shown in Fig. 2(b). We checked this for the bilayer
crystal with screened and unscreened Coulomb interac-
tion and for a single layer crystal with a Lennard-Jones
V � 1�r12 2 1�r6 and a repulsive V � 1�r12 interac-
tion potential. From the present numerical results for Gu

we formulate a new criterion for melting which we believe
is universal: melting occurs when the bond-angle correla-
tion factor becomes Gu � 0.45.

Our results for the melting temperature are summarized
in the phase diagram of Fig. 3 where we show the melt-
ing temperature as a function of n for two different values
of the screening parameter: l � 0 for a Coulomb inter-
particle interaction and l � 1 for a screened Coulomb
interaction. For n � 0 and l � 0 we obtained the
well-known value for the critical G � 132, resulting in
Tmel � 0.0076T0. This critical value was first measured
in Ref. [1] and found to be 137 6 15.

As seen in Fig. 3, the hexagonal (I and V), rectangular
(II), and rhombic (IV) lattices melt at almost the same
temperatures. Further increasing the interlayer distance
we found that for n � 3 we obtained Tmel � Tmel�n �
0��

p
2. For the square bilayer crystal (phase III) the

melting temperature increases up to Tmel � 0.010 78T0
with rising n, and only for n . 0.4 we found that Tmel
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FIG. 2. (a) The bond-angular (Gu) and the translational (Gtr)
order factors as a function of temperature for the interlayer dis-
tances n � 0 (circles) and n � 0.4 (squares); Gu : open sym-
bols; and Gtr : solid symbols. (b) The bond-angular order factor
for different interaction potentials: (i) Screened Coulomb: n �
0 (solid squares, l � 1; open squares, l � 3), and n � 0.4
(solid circles, l � 1; open circles, l � 3). (ii) The Lennard-
Jones potential (solid rhombics). (iii) The potential 1�r12 (open
rhombics).
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FIG. 3. The phase diagram of the bilayer Coulomb crystal
without screening l � 0 (open squares) and with screening
l � 1 (circles). The vertical dotted lines delimit the different
crystal structure which are depicted in the insets (open symbols
for the top layer and solid symbols for the bottom layer). The
error bars denote the uncertainty in the temperature nearby the
structural phase boundaries.

starts to decrease with increasing n. It is surprising
that the square lattice has a substantially larger melting
temperature than the other lattices. This is true for
Coulomb (l � 0) interparticle interaction as well as for
screened Coulomb.

The detailed analysis of the melting of the crystal in
the vicinity of the structural phase boundary is much
more complicated due to the softening of a phonon mode
as shown in Ref. [15] and is left for future work.

To understand why the square lattice bilayer crystal
has a considerable larger melting temperature, we inves-
tigated various temperature-induced isomers of a single
layer crystal and compared them with those of the square
lattice bilayer crystal with n � 0.4 which has the largest
melting temperature. For bilayer crystals the topology of
the defects is viewed as being composed by the top and
the bottom staggered layers. Note that the energy of the
defects which occurs in the square lattice depends on the
interlayer distance. At given temperature we found that
during the MC simulation the system transits from one
metastable state to another. They differ by the appear-
ance of isomers in the crystal structure which appear with
different probabilities. We found these isomers by freez-
ing instant particle configurations during our MC steps.
The topology of the defects, their energy, and the bond-
angular and the translational order factors of these con-
figurations are determined. Each point in Figs. 4(a) and
4(b) represents one configuration containing an isomer in
a single layer and the square lattice bilayer crystals, re-
spectively. The qualitative behavior of both crystals dur-
ing melting is similar, although the energy of the defects
in both lattice structures is substantially different. For
the single layer [n � 0, Fig. 4(a)], all isomers at T1 �
0.2
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FIG. 4. The bond-angular (solid squares) and the translational
order factors (circles) of the different defects in (a) a single
layer crystal (n � 0), and (b) in the square lattice bilayer
system for n � 0.4.

0.007 56T0, just before melting, and at T2 � 0.0076T0,
just after melting, were obtained. Note that for the square
lattice [n � 0.4, Fig. 4(b)], we took T1 � 0.010 76T0
and T2 � 0.010 78T0. Typical calculated defect struc-
tures obtained from instant particle configurations frozen
to T � 0 are shown in Figs. 5(a) and 5(b) for the hex-
agonal layer and in Figs. 5(c)–5(f) for the square bilayer
crystal. First, at T � T1 the quartet of bound disclina-
tions [Fig. 5(a)], point defects [Figs. 5(c) and 5(d)], and
correlated dislocation [Fig. 5(e)] are formed. The point
defects appear in pairs in our MC calculations, which are
a consequence of the periodic boundary condition. Note
that in a single layer crystal the total energy of a non-
bounded pair of a “centered vacancy” and a “centered in-
terstitial” is E � 0.29kBT0. In the square bilayer crystal
the point defects like “vacancy” and the “ interstitial,” de-
picted in Figs. 5(c) and 5(d), appear also in pairs, and the
energy of this unbounded pair is E � 0.315kBT0. The
disclinations bound into a quartet and point defects pro-
duce only a negligible effect on the periodic lattice struc-
ture and Gu � 0.8 0.9 and Gtr � 0.85 0.95 [group A in
Figs. 4(a) and 4(b)]. It should be noted that in spite of
prolonged annealing of the system during 5 3 105 MC
steps at a temperature T1, which is just below melting, we
5295
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FIG. 5. The defects in a single layer crystal: (a) quartet of
disclinations, and (b) two unbounded disclination pairs. In the
square lattice bilayer crystal: (c) “vacancy,” (d) “ interstitial,”
(e) correlated dislocations, and (f) a pair of disclinations.

did not find more complex isomers than point defects and
quartets of disclinations.

At the temperature T � T2 uncorrelated extended dis-
locations with nonzero Burgers vector and unbounded
disclination pairs are formed which causes a substantial
decrease of the translational order [group B in Figs. 4(a)
and 4(b) and defects shown in Figs. 5(b) and 5(f)]. At
this temperature single disclinations appear, the system
loses order, both order factors become small, and the sys-
tem transits to the isotropic fluid [group C in Figs. 4(a)
and 4(b)].

Figures 4(a) and 4(b) clearly illustrate that for a square
lattice the defects which are able to destroy the transla-
tional and orientational order have a substantially larger
energy than those of a single layer crystal with hexagonal
symmetry. As a whole the localized and extended dislo-
cations as well as disclinations in the square bilayer crys-
tal are defects with a higher energy as compared to the
ones in the hexagonal bilayer crystal. Thus, the square
type bilayer crystal requires larger energies in order to
create defects which are responsible for the loss of the
bond-orientational and the translational order and thus for
melting of the crystal.
5296
In conclusion, we studied the melting temperature of
the five lattice structures in a bilayer crystal and found
evidence that the melting temperature depends on the
crystal symmetry. A square lattice has a substantially
larger melting temperature than, e.g., a hexagonal lattice.
In order to understand this result we investigated the
defect structures responsible for melting and found that
the defects in a square lattice have a larger energy
as compared to those in a hexagonal structure, and
consequently larger thermal energy is required to create
them. We also formulated a new melting criterion: in
two dimensional layers and bilayers melting occurs when
the bond-angular order factor is Gu � 0.45, which is
independent of the functional form of the interparticle
interaction.
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