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The phase diagram of star polymer solutions in a good solvent is obtained over a wide range of
densities and arm numbers by Monte Carlo simulations. The effective interaction between the stars
is modeled by an ultrasoft pair potential which is logarithmic in the core-core distance. Among the
stable phases are a fluid as well as body-centered cubic, face-centered cubic, body-centered orthogona
and diamond crystals. In a limited range of arm numbers, reentrant melting and reentrant freezing
transitions occur for increasing density. [S0031-9007(99)09465-X]

PACS numbers: 64.70.–p, 61.25.Hq, 82.70.Dd
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A major challenge in statistical physics is to understan
and predict the macroscopic phase behavior from a m
croscopic many-body theory for a given interaction b
tween the particles [1]. For a simple classical fluid [2], th
interaction is specified in terms of a radially symmetric pa
potentialV �r� wherer is the particle separation. Signifi-
cant progress has been made during the last decade
predicting the thermodynamically stable phases for simp
intermolecular pair potentials, such as for Lennard-Jon
systems, plasmas or hard spheres, using computer si
lations [1], and density functional theory [3]. Importan
realizations of classical many-body systems are susp
sions of colloidal particles dispersed in a fluid medium.
striking advantage of such colloidal samples over molec
lar ones is that their effective pair interaction is eminent
tunable through experimental control of particle and so
vent properties [4]. This brings about more extreme pa
interactions, leading to novel phase transformations. F
instance, if the colloidal particles are sterically stabilize
against coagulation, the “softness” of the interparticle r
pulsion is governed by the length of the polymer chain
grafted onto the colloidal surface, their surface graftin
density, and solvent quality. Computer simulations an
theory have revealed that a fluid freezes into a bod
centered-cubic (bcc) crystal for soft long-ranged repu
sions and into a face-centered-cubic (fcc) one for stro
short-ranged repulsions [5]. This was confirmed in expe
ments on sterically stabilized colloidal particles [6]. A
similar behavior occurs for charge-stabilized suspensio
where the softness ofV �r� is now controlled by the con-
centration of added salt [7]. Less common effects we
observed for potentials involving an attractive part asi
from a repulsive core. In reducing the range of the attra
tion, a vanishing liquid phase has been observed [8] and
isostructural solid-solid transition was predicted [9]. Mor
complicated pair potentials can even lead to stable q
sicrystalline phases and a quadruple point in the phase
agram [10].

The aim of this Letter is to study the phase diagram of
ultrasoft repulsive pair potentialV �r� which is logrithmic
in r inside a core of diameters and vanishes exponen-
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tially in r outside the core. The motivation to do this i
twofold: first, such a potential is a good model for the e
fective interaction between star polymers in a good solve
[11,12], which can be regarded as sterically stabilized pa
ticles where the size of the particles is much smaller th
the length of the grafted polymer chains [13]. These sta
are characterized by their arm number (or functionality)f,
i.e., the number of polymer chains tethered to the cent
particle, and their corona diameters which measures the
spatial extension of the monomer density around a sing
star center. Second, more fundamentally, phase transiti
for such soft potentials are expected to be rather differe
from that for stronger repulsions. From a study of the pu
logarithmic potential in two spatial dimensions [14], it is
known that one needs a critical prefactor to freeze the sy
tem, which is quite different from, e.g., inverse-power po
tentials. Furthermore, the potential crossover atr � s is
expected to influence drastically the freezing transition,
the number densityr of the stars is near the overlap con
centration,r� � 1�s3.

We obtain the full phase diagram of star polymer so
lutions by Monte Carlo simulation and theory. As a re
sult, among the stable phases are a fluid as well as b
fcc, body-centered orthogonal (bco), and diamond cry
tals. We emphasize that the stability of a bco cryst
with anisotropic rectangular elementary cell and a diamo
structure was never obtained before for aradially symmet-
ric pair potential. In fact, there is a widespread belief in th
literature that anisotropic or three-body forces are sole
responsible for a stable diamond lattice [15]. We sho
that both the crossover atr � s and the ultrasoftness of
the core are crucial for the stability of the bco and th
diamond phase. Moreover, we get reentrant melting f
34 & f & 60, and reentrant freezing for44 & f & 60 as
r is increasing. Some features of the presented phase
gram have already been observed in a system of copolym
micelles exhibiting a very similar interaction to star poly
mers [6,16].

With kBT denoting the thermal energy, our effective pa
potential between two star centers is a combination of
logarithm inside the core of sizes and a Yukawa potential
© 1999 The American Physical Society 5289
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outside the core [12],
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(1)
such that both the potential and its first derivative (or,
equivalently, the force) are continuous at r � s [12].
The decay length of the exponential is given by the
largest blob diameter within the Daoud-Cotton theory
for single star polymers [17]. Experimental support for
this potential comes from neutron scattering data on the
structural ordering of 18-arm stars in the fluid phase [12]
and shear moduli measurements in the crystalline phase
of micelles [18]. Furthermore, microscopic simulations of
two star polymers have shown that this potential provides
an excellent description of the effective star interaction for
a broad range of arm numbers [19]. We note that V �r�
becomes the hard sphere potential for f ! `.

Because of the purely entropic origin of the interstar
repulsion, the strength of the pair potential (1) scales
linearly with kBT , causing the temperature to be an irrele-
vant thermodynamic quantity. Therefore, for the calcu-
lation of the phase diagram, only the packing fraction of
the stars, h � p�6rs3, and the arm number f matter,
the latter playing the role of an “effective inverse tempera-
ture.” We use computer simulations to access the phase
diagram. The free energies of the fluid phase and sev-
eral possible solid phases are calculated by thermodynamic
integration via Monte Carlo simulations [20]. The free en-
ergy of the fluid phase, Ffl, is obtained either by the well-
known “pressure or density route” [2,20], or, alternatively,
by the so-called “f route.” The pressure route relates the
free energy for nonvanishing h to that at zero packing frac-
tion, keeping f fixed. In the f route, f is used as an arti-
ficial thermodynamic variable, now keeping h fixed. The
free energy of star polymers with a certain arm number f
is then obtained by the following integration:

Ffl �
Z f

0
df 0

ø
≠U
≠f 0

¿
f 0

. (2)

Here, U �
P

i,j V �jri 2 rjj� is the total potential energy
function which depends on f since V �r� depends on f
parametrically. �· · ·�f 0 denotes the canonical ensemble
average for a system with fixed arm number f 0. Therefore,
in order to carry out the f-route integration, a series of
simulations at fixed h but for increasing f 0 is performed
to calculate the integrand of Eq. (2).

We use the Frenkel-Ladd method for continuous poten-
tials to obtain the free energy of the solid phases [20,21].
For these Monte Carlo calculations, suitable candidate
crystal structures have to be chosen. Our method to get
information about the possible stable structures for fixed
5290
f and h consists of two steps: first, we calculate lattice
sums for a wide class of crystals, including the “usual”
structures with cubic elementary cells (fcc, bcc, hcp, and
simple cubic) and several “unusual” structures. These un-
usual structures are the hexagonal lattice, the diamond
lattice, representations of quasicrystalline structures (see,
e.g., Ref. [10]), and generalizations of the usual struc-
tures, which were obtained by stretching the elementary
cell lengths (denoted as a, b, and c) of these structures
by arbitrary factors, then using the two independent ra-
tios b�a and c�a as minimization parameters of the lat-
tice sum. Second, we calculate the global bond order
parameters [22] of the equilibrated structures, which were
spontaneously formed in a first set of simulations, always
starting from a purely random configuration. Crystal struc-
tures whose bond order parameters are in agreement with
these measured parameters, and which have reasonably
small values of the lattice sum, are then chosen as candi-
date structures for the free energy calculations. This pro-
cedure was performed for a wide range of arm numbers
18 # f # 512 and packing fractions 0 # h # 1.5. Fi-
nally, the obtained free energy data at fixed f were used
to explore the phase boundaries via the common dou-
ble tangent construction. The resulting phase diagram is
displayed in Fig. 1. In the explored range of f and h,
four different stable crystal structures are found besides a
fluid phase. For f , fc 	 34, the fluid phase is stable
for all densities, which is in agreement with results ob-
tained from an effective hard sphere mapping procedure
[23] and from scaling theory [11]. We remark that Witten
et al. [11] only estimated fc within 1 order of magnitude
to be around f 	 100. For f $ fc, at least one stable

FIG. 1. The phase diagram of star polymer solutions for
different arm numbers f versus packing fraction h. The
squares and the circles indicate the phase boundaries as
obtained from computer simulations and theory, respectively;
lines are only guides to the eye. The statistical error of the
simulations is of the order of the symbol size. The triangles
indicate the freezing and melting point of hard spheres.
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crystal phase is found. We focus first on the crystal phases
at 0.2 & h & 0.7: for fc , f & 54, a bcc phase is found,
whereas for f * 70, only the fcc structure turns out to be
stable. At intermediate f (54 & f & 70), bcc-fcc phase
transitions occur. For 0.2 & h & 0.7, the mean interpar-
ticle distance r � r21�3 is larger than s, leaving only the
exponential part of V �r� to be relevant for the phase be-
havior. Therefore, the observance of a fcc phase for large
f, corresponding to a short-range, strongly screened poten-
tial, and a bcc phase for small f, corresponding to a long-
range, less screened potential, is analogous to the phase
behavior found for charged colloids [5,7]. In Fig. 1, the
freezing and melting points for hard spheres, correspond-
ing to f ! `, are shown as well, denoted by black trian-
gles. We emphasize that even star polymers with very high
arm numbers freeze at considerably smaller h than hard
spheres. In fact, our simulations show that a “hard sphere-
like” structure is found only for extremely high arm num-
bers f * 10 000. Thus the change in the phase boundary
cannot be shown on the scale of the figure.

Let us now consider the phase behavior for h 	 0.7,
where r is in the order of s and the logarithmic part of
V �r� becomes relevant. From our calculations, a reentrant
melting transition, i.e., a transition from a solid to a
liquid phase with increasing h, is found for 34 , f &

60. We note that this reentrant melting was already
predicted qualitatively by Witten et al. [11]. For f * 60,
a solid-solid phase transformation into a bco phase takes
place. This unusual phase is stable up to h 	 1.0. For
44 & f & 60, the remolten liquid refreezes into this bco
structure at h 	 0.80. At h 	 1.0, a further solid-solid
phase transition from the bco into a diamond structure is
found, the latter being stable for arm numbers f * 44
and packing fractions up to h 	 1.4 1.5. Notice that
the extension of the two phase regions (“density jumps” )
of all encountered phase transitions is extremely small
due to the soft character of V �r� [24]. Moreover, the
empirical Hansen-Verlet freezing rule [25] is valid for all
points at the phase boundaries where we calculated the
static structure factor S�q�. This also includes the reentrant
melting transition for h 	 0.7, where the S�q� for the fluid
begins to show unusual behavior [23].

We develop now a physical intuition for the unusual oc-
currence of the bco and diamond phase. For this purpose,
we report first on the detailed structure of the bco phase.
At fixed h, the bco crystal is described by the two length
ratios of its elementary cell, b�a and c�a, respectively. In
order to calculate the free energy of the bco crystal by the
Frenkel-Ladd method, these ratios had to be determined
from a first set of simulations. In these NpT simulations
[20], the system was free to adopt its optimal values for
b�a and c�a, starting either from a purely random con-
figuration or an initial bco configuration. Within the error
bars, the so determined elementary cell length ratios were
in agreement with the values obtained from the minimiza-
tion of the lattice sums. We therefore took the lattice sum
results as input for the free energy calculations. These ra-
tios increase with h from b�a 	 2.24 and c�a 	 1.32 at
h � 0.7 to b�a 	 3.14 and c�a 	 1.81 at h � 1.0 and
are nearly independent of f. Figure 2 illustrates the re-
sulting structure. As can be seen from this figure, the
anisotropy of the elementary cell leads to a strong inter-
penetration of the particle coronas along one of the lattice
axes. In fact, over the whole stability range of the bco
phase, the next neighbor distance along this axis is con-
siderably smaller than s, whereas all other next neighbor
distances are larger than s. This can be intuitively un-
derstood from the form of the potential (1): because of
the weak divergence for small r , there is no huge en-
ergy penalty in bringing the nearest neighbors close to-
gether. On the other hand, the potential falls off rapidly for
r . s, so all the remaining neighbor shells are not costly
in energy, too. With increasing h, the distance of the two
nearest neighbors in the bco is decreasing until the energy

FIG. 2. (a) A snapshot of a typical bco configuration for f �
64 and h � 0.8 in a periodically repeated (cubic) simulation
box. The diameter of the spheres is the corona diameter s;
(b) Same as (a), now seen from the “ left” side of the simulation
box shown in (a). Notice the high anisotropy of the lattice
spacings. The elementary cell length ratios are b�a 	 2.70
and c�a 	 1.57.
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penalty becomes significant. Hence, the bco will then lose
against another structure with more than two nearest neigh-
bors inside the corona. A suitable structure is the diamond
phase which possesses four tetrahedrally ordered nearest
neighbors. Indeed, our simulations show that all the other
neighbors are kept outside the corona in the stability range
of the diamond. Therefore, both the ultrasoft logarithmic
part and the crossover at r � s are crucial for the stability
of the bco and the diamond phase. This provides a sim-
ple reason why such phases have not been found earlier
for strongly repulsive interactions. We further note that
the presented scenario also nicely expresses itself in the
angle-average radial distribution functions g�r� of the bco
and diamond solid, which show a similar anomaly as found
in the g�r� of the fluid phase [23].

As for a further theoretical investigation, we solved
the accurate Rogers-Young closure [26] to obtain the free
energy of the fluid for f � 18, 32, 40, 48, and 64. For
the aforementioned solid structures, we used the Einstein-
crystal perturbation theory [27] to calculate the associated
free energies. As this theory provides only an upper bound
to the free energy, the domain of stability of the fluid is
enhanced in comparison to the simulation results. The
theory predicts 40 , fc , 48 and eliminates the domain
of stability of the bcc crystal. Otherwise, as also shown
in Fig. 1, the same phase behavior as determined from
simulations emerges.

We finally note that all our predictions for r # 2r�, i.e.,
h & 1.0, should be verifiable in scattering experiments,
since for these densities pair interactions are dominant.
In fact, in recent experimental work on spherical diblock
copolymer micelles, Gast and co-workers have already
confirmed a part of our results [6,16]. The freezing
transition in fcc and bcc crystals depending on the number
of arms f is found [6] as well as reentrant melting with
increasing h [16]. For the “most starlike” system, also a
reentrant freezing is observed as predicted in Fig. 1. For
h * 1.0 however, when three stars exhibit overlaps within
their coronae, many body interactions become important,
which we have neglected in our calculations using the pair
potential (1). Nevertheless, from a theoretical point of
view, this potential turned out to be interesting also for
h * 1.0, resulting for the first time in a stable diamond
structure for a purely radially symmetric pair interaction.

In conclusion, we have determined the phase diagram
of star polymers over a broad range of arm numbers f and
packing fractions h by computer simulations and theory.
The phase diagram includes a fluid phase as well as four
stable crystal phases. These crystal phases are a fcc crystal
and a bcc crystal, as well as an unusual anisotropic bco
structure and a diamond crystal.
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