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Inertial Effects on Fluid Flow through Disordered Porous Media
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We investigate the origin of the deviations from the classical Darcy law by numerical simulation of
the Navier-Stokes equations in two-dimensional disordered porous media. We apply the Forchheimer
equation as a phenomenological model to correlate the variations of the friction factor for different
porosities and flow conditions. At sufficiently high Reynolds numbers, when inertia becomes relevant,
we observe a transition from linear to nonlinear behavior which is typical of experiments. We find that
such a transition can be understood and statistically characterized in terms of the spatial distribution of
kinetic energy in the system. [S0031-9007(99)09541-1]

PACS numbers: 47.55.Mh, 47.11.+ j
A standard approach in the investigation of single-
phase fluid flow in microscopically disordered and macro-
scopically homogeneous porous media is to characterize
the system in terms of Darcy’s law [1–3], which assumes
that a global index, the permeability k, relates the average
fluid velocity V through the pores with the pressure drop
DP measured across the system,

V � 2
k
m

DP
L

. (1)

Here L is the length of the sample in the flow direction
and m is the viscosity of the fluid. However, in order
to understand the interplay between porous structure
and fluid flow, it is necessary to examine local aspects
of the pore space morphology and relate them to the
relevant mechanisms of momentum transfer (viscous and
inertial forces). This has been accomplished in previous
studies [4–10] where computational simulations based on
a detailed description of the pore space have been quite
successful in predicting permeability coefficients and
validating well-known relations on real porous materials.

In spite of its great applicability, the concept of perme-
ability as a global index for flow should be restricted to
viscous flow conditions or, more precisely, to small val-
ues of the Reynolds number. Unlike the sudden transi-
tion from laminar to turbulent flow in pipes and channels
where there is a critical Reynolds number value separat-
ing the two regimes, experimental studies on flow through
porous media have shown that the passage from linear
(Darcy’s law) to nonlinear behavior is more likely to be
gradual (see Dullien [1], and references therein). It has
then been argued [1] and confirmed by numerical simu-
lations [11,12] that the contribution of inertia to the flow
in the pore space should also be examined in the frame-
work of the laminar flow regime before assuming that
fully developed turbulence effects are present and relevant
to momentum transport. Here we show by direct simu-
lation of the Navier-Stokes equations that the departure
from Darcy’s law in flow through high porosity percola-
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tion structures (e . ec, when ec is the critical percolation
porosity) and at sufficiently high Reynolds numbers can
also be explained in terms of the inertial contribution to
the laminar fluid flow through the void space. The calcu-
lations we perform do not apply for unstable or turbulent
Reynolds conditions. We then demonstrate that it is pos-
sible to statistically characterize the transition from linear
to nonlinear behavior in terms of the distribution of ki-
netic energy. This allows us to elucidate certain features
of the fluid flow phenomenon in irregular geometries that
have not been studied before.

Our model for the pore connectivity is based on the gen-
eral picture of site percolation disorder. Square obstacles
are randomly removed from a 64 3 64 square lattice until
a porous space with a prescribed void fraction e is gener-
ated. The mathematical description for the detailed fluid
mechanics in the interstitial pore space is based on the as-
sumptions that we have steady state flow in isothermal
conditions and the fluid is continuum, Newtonian, and
incompressible. Thus, the continuity and Navier-Stokes
equations reduce to

= ? u � 0 , (2)

ru ? =u � 2=p 1 m=2u , (3)

where r is the density of the fluid and u and p are the
local velocity and pressure fields, respectively. We use
the nonslip boundary condition at the whole of the solid-
fluid interface. End effects of the flow field established
inside the pore structure (particularly significant at high
Reynolds conditions) are minimized by attaching an inlet
and an outlet to two opposite faces. At the inlet a constant
inflow velocity in the normal direction to the boundary
is specified, whereas at the outlet the rate of velocity
change is assumed to be zero (gradientless boundary
condition). Instead of periodic boundary conditions, we
close the remaining two faces of the system with two
additional columns of obstacles. This insulating condition
reproduces more closely the experimental setup usually
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adopted with real rocks and permeameters. The Reynolds
number is defined here as Re � rVdp�m where dp is the
grain diameter [13]. For a given realization of the pore
geometry and a fixed Re, the local velocity and pressure
fields in the fluid phase are numerically obtained through
discretization (see [10] for numerical details) by means
of the control volume finite-difference technique [14,15].
Finally, from the area-averaged pressures at the inlet and
outlet positions, the overall pressure drop can be readily
calculated.

The classical approach to macroscopically characterize
the effect of inertia on flow through real porous media is
to use the Forchheimer equation [1,2],

2
DP
L

� amV 1 brV 2. (4)

The coefficient a corresponds to the reciprocal perme-
ability of the porous material and b is usually called the
“inertial parameter.” Both a and b should depend on the
porosity e of the porous material. At sufficiently low ve-
locities, Eq. (4) reduces to Darcy’s law, Eq. (1). The term
brV 2 can be interpreted as a second order correction to
account for the contribution of inertial forces in fluid flow.
Equation (4) is not a purely empirical expression, since it
can be derived by an appropriate average of the Navier-
Stokes equation for one-dimensional, steady incompress-
ible laminar flow of a Newtonian fluid in a rigid porous
medium [1]. Rearranging (4) in the form,

f �
1

Re0
1 1, (5)

where f � 2DP�LbrV2 and Re0 � brV�am, we ob-
tain a friction factor–Reynolds number type of correla-
tion which is presumably “universal.” Equation (5) has
been extensively and successfully used to correlate experi-
mental data from a large variety of porous materials and
a broad range of flow conditions [1]. Certainly, a bet-
ter representation for experimental data in the non-Darcy
flow regime can be obtained with the addition to the
Forchheimer equation of third order corrections in the ve-
locity [2,11,12]. The theoretical basis for this type of cor-
rection term, however, is still controversial.

Figure 1 shows the results of our flow simulations in
terms of the Forchheimer variables f and Re0 for three
different values of lattice porosity (e � 0.7, 0.8, and 0.9).
After computing and averaging the overall pressure drops
for all realizations at different values of e and Re, we
fit the results with Eq. (4) to estimate the coefficients
a and b and calculate f and Re0. In agreement with
real flow experiments, we observe a transition from linear
(Darcy’s law) to nonlinear flow. Moreover, the point
of departure from linear to nonlinear behavior in the
range 1022 , Re0 , 1021 is consistent with previous
experimental observations. However, in the region 6.2 3

1022 , Re0 , 1.8, the Forchheimer equation generally
overestimates the computed values of the friction factor.
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FIG. 1. Logarithmic plot showing the dependence of the
generalized friction factor f on the modified Reynolds number
Re0. The solid line is the best fit to the Forchheimer
equation (4), while the dashed line is the best fit to Darcy’s
law of the data at low Re0. Note that three pairs of a and b
parameters have been estimated for each of the three porosity
values (e � 0.7, 0.8, and 0.9). These simulations have been
performed with up to five lattice realizations. The error bars
are smaller than the symbols.

In addition, for a fixed value of Re0, the variability in this
transition region is sufficient to suggest a dependence of
the type f � f�Re0, e� [16].

The flow distribution in two-dimensional incompress-
ible systems can be conveniently described in terms of the
stream function c [17]. Figure 2a shows the contour plot
of c for a typical realization of a highly porous void space
(e � 0.9) subjected to low Reynolds conditions, Re �
0.0156. In spite of the well-connected pathways available
for flow at this large porosity value, the predominant vis-
cous forces in the momentum transport through the com-
plex void geometry generates well defined “preferential
channels” of fluid flow. As shown in Fig. 2b, the situation
is quite different at high Re, where the degree of channel-
ing is clearly less intense than in Fig. 2a. In the case of
Fig. 2b, due to the relevant contribution of inertial forces to
the flow, the distribution of streamlines along the direction
orthogonal to the main flux y becomes more homogeneous.

The channeling effect can be statistically quantified
in terms of the spatial distribution of kinetic energy in
the flowing system. In analogy with previous work on
localization of vibrational modes in harmonic chains [18],
we define a “participation” number p ,

p �

√
n

nX
i�1

q2
i

!21√
1
n

# p # 1

!
, (6)

where n is the total number of fluid cells in the numerical
grid enclosing the physical pore space, qi � ei�

Pn
j�1 ej ,

ei ~ �u2
i 1 y

2
i � is the kinetic energy associated with each

individual fluid cell, and ui and yi are the components
of the velocity vector at cell i in the x and y directions,
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FIG. 2. (a) Contour plot of the stream function c for low
Reynolds number conditions (Re � 0.0156). (b) Same as in
(a), but for a Reynolds number 1000 times larger (Re � 15.6).
In both plots, the values of c change by a constant increment
between consecutive streamlines.

respectively. From the definition Eq. (6), p � 1 indi-
cates a limiting state of equal partition of kinetic energy
(qi � 1�n, ;i). On the other hand, a sufficiently large sys-
tem (n ! `) exhibiting strong channeling effects should
correspond to a “localized” flow field, p � 0 [19]. We
calculate the function p for 10 pore space realizations
generated with e � 0.9 at different Re. Because of con-
vergence difficulties and computational limitations on the
resolution of the numerical grid, we restrict our calcula-
tions to Re # 15.6. As shown in Fig. 3, the participation
number remains constant, p � 0.37, for low Re up to a
transition point at about Re � 0.3. Above this point, the
flow becomes gradually less localized (p increases) as Re
increases. This transition reflects the onset of inertial ef-
fects in the flow, and the significant changes in p above
the transition point indicate the sensitivity of the system to
these nonlinearities. The large error bars at low Re indi-
cate that p is sensitive to structural disorder if the viscous
forces are effectively generating preferential channels in
the flow.

The difference between our results at low and high Re
can be better understood if we remember that viscous
effects extend a long way at low Reynolds conditions,
so that distant boundaries may have a large effect on
the streamlines. It is then interesting to visualize the
distortions in the local velocity field when inertial forces
become important compared to viscous forces. In Fig. 4
we show the profiles of the velocity magnitude at different
positions along the main flow direction x in a typical
realization of the porous media. At low Re (Fig. 4a), the
fluctuations in the velocity field are essentially smooth in
shape, with peaks that closely correspond to the variations
in the local porosity. At high Re (Fig. 4b), the situation
becomes quite different. Because of inertia, the effect
on the flow field of the disorder in the local pore
geometry tends to propagate further the fluctuations in
the x direction. We can follow in Fig. 4b the changes in
shape of the velocity magnitude at different x positions. If
there is an available straight void space pathway for fluid
flow, a peak generated at a smaller x can persist further
right in the next profiles located at larger x values. As
a consequence, the velocity profiles at large Re are more
rough than those at low Re.

In summary, to characterize the influence of inertial
forces on the flow of a single fluid in porous structures,
we demonstrate that incipient deviations from Darcy’s
law observed in several experiments can be modeled in
the laminar regime of fluid flow, without including turbu-
lence effects. The results of our simulations agree with
numerous experimental data which display a gradual tran-
sition at high Re from linear to nonlinear flow in the
pore space. Moreover, we show that this flow transition
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FIG. 3. Dependence of the participation number p on the
Reynolds number Re (e � 0.9). These simulations have been
performed with ten lattice realizations.
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FIG. 4. (a) Profiles of the velocity magnitude at different
positions in direction x for low Reynolds number conditions
(Re � 0.0156). The realization is the same as in Fig. 2, but
the obstacles have been removed for better visualization. (b)
Same as in (a), but for a Reynolds number 1000 times larger
(Re � 15.6). The velocity magnitudes in (a) and (b) have been
normalized by the maximum value calculated for each system.

can be characterized in terms of the partition of kinetic
energy in the fluid phase. Namely, the flow at low Re
is more localized due to channeling effects than the flow
at high Re conditions. Finally, our calculations with the
Navier-Stokes equations indicate that the Forchheimer
model should be valid for low Re and also for a limited
range of high Re numbers, even when inertial nonlineari-
ties can significantly affect the momentum transport at the
pore scale. However, the magnitude of the deviations we
find at the transition from Darcy to non-Darcy flow sug-
gests a nonuniversal behavior of the friction factor f with
the porosity e within this particular region.
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