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Homoclinic Structure Controls Chaotic Tunneling
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Tunneling from a chaotic potential well is explained in terms of a set of complex periodic o
which contain information about the real dynamics inside the well, as well as the complex dyn
under the confining barrier. These orbits are associated with trajectories which are homoclinic to
trajectory emerging from the optimal tunneling path. The theory is verified by considering a m
double-well problem. [S0031-9007(99)09464-8]
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Chaos is ubiquitous in nature. For this reason, its eff
on quantum systems is very well studied [1] and power
semiclassical techniques have been developed to t
it. However, tunneling has largely remained impervio
to such analysis. We show that a simple princip
underlies the detailed behavior of tunneling in chao
systems—state-to-state fluctuations in the tunneling r
are determined by a restricted set of complex classi
trajectories which can be constructed straightforward
using known techniques of dynamical systems.

Previous analyses of chaotic tunneling exist in conte
where a quantum state is initially localized in an integrab
region of phase space and tunnels into or through a cha
region [2,3]. Our goal is different; we consider system
that are almost completely chaotic and tunneling is throu
an energetic barrier. We then construct a period
orbit theory of tunneling analogous to Gutzwiller’
celebrated formula for the density of states. It relat
tunneling rates to a set of complex classical trajector
which can be understood intuitively as follows. In an
potential barrier, there is an optimal tunneling route d
termined by a complex trajectory with minimal imaginar
action. Interference effects in the tunneling rate a
produced by trajectories which originate from and retu
to a small region of phase space surrounding the minim
trajectory. In chaotic systems, such recurrent trajector
are understood on the basis of “homoclinic intersection
Technical details come later, but the main point is th
such trajectories are standard in dynamical systems the
and are relatively easy to find. These orbits domina
tunneling rates in a manner similar to the way in whic
they control wave packet recurrences as discovered in
(see also [5]).

We treat double-well potentials for which
V �2x, y� � V �x, y� and examine the energy level split
tings of quasidegenerate doublets labeled byn (although
our general conclusions apply equally to resonances
metastable wells [6,7]). Detailed numerical calculatio
will be for V �x, y� � �x2 2 1�4 1 x2y2 1 my2 with
m � 1�10. It will prove useful, instead of dealing di-
0031-9007�99�82(26)�5237(4)$15.00
ect
ful
reat
us
le
tic
ate
cal
ly

xts
le
otic
s

gh
ic-
s
es
ies
y
e-
y
re
rn
al

ies
s.”
at
ory
te
h
[4]

-

in
n

rectly with the energy-level spectrum, to regardq � 1�h̄
as a parameter and ask for the valuesqn for which a given
energy E is an eigenvalue—this leads to calculation
with fixed classical dynamics. We then obtain double
at valuesqn with splittings Dqn between them. We
investigate tunneling by constructing the function [8],

f�q� �
X

Dqnd�q 2 qn� . (1)

The spectrum and tunneling splittings are encoded
f�q�. Semiclassically, it can be approximated as a su
over pseudoperiodic orbits which start on one side o
the energy barrier and, after evolution in complex tim
finish at the symmetric image of the initial point. In [8
it was shown that, when the optimal tunneling route
along a symmetry axis, a quasiperiodic oscillation aris
in the tunneling rate which is related to the action of a re
periodic orbit, also on the symmetry axis. However, the
remain significant fluctuations which we now explai
using nonaxial orbits homoclinic to this real orbit.

We can visualize a complex pseudoperiodic orbit as
one-dimensional path in complex phase space. Howev
it is not unique—it corresponds to a specific conto
describing its evolution in the complex time plane; an
deformation of this contour gives an equivalent orb
Because of this freedom, a systematic and unambigu
description is difficult if we work in full phase space. Th
situation simplifies considerably if we restrict dynamics
a surface of section. Pseudoperiodic orbits then reduc
single, isolated points of intersection with the surface
section, and classification of them is simpler. An add
advantage is that metastable systems can be treated w
the same formalism [6,9].

Let S denote a surface of section through one of t
wells, defined in the usual manner of real dynamics (e.
x � x0, �x . 0 andH � E). Let F:S ! S denote the
first return surface of section mapping, defined by letti
trajectories start onS and evolve under real dynamic
until they intersectS once again. Real periodic orbits
correspond to fixed points of some iterateFr of F. We
© 1999 The American Physical Society 5237
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incorporate tunneling by introducing a second complex
map F acting on the same section S as follows.

Any potential barrier has an orbit g0 which crosses it
with minimum imaginary action iK0 in an imaginary time
2it0. It evolves in complex phase space except at two
turning points where it is fully real. There is a real point
z0 on S which evolves to one of these end points under
real time evolution. It has a symmetric image sz0 on sS

which evolves to the other end point. (Here s refers to
the symmetry operation—reflection in x in our example.)
The point z0 evolves into sz0 if we integrate along a
complex time contour C as follows: First the contour
evolves along the real axis until the trajectory reaches
the turning point of g0, then it descends parallel to the
imaginary axis until the turning point on the other side of
the barrier is reached, and finally retraces the evolution
parallel to the real axis (in negative real time) until sz0 is
reached. The net time of evolution is 2it0.

We define the map F by deforming g0. If a point
z0 near z0 is chosen on S, a deformation of C can be
found such that the final point z00 is on sS. By invoking
the symmetry operation to map sS back to S, we define
a complex symplectic map F :z0 � z � s21z00 from S

onto itself. The central orbit g0 corresponds to a real
fixed point z0 of F while other initial conditions, even
if real, are mapped to complex images under F . Just as
the real periodic orbits give real fixed points of Fr , the
complex pseudoperiodic orbits give complex fixed points
of F Fr ; such fixed points define orbits with r oscillations
in one well before tunneling across the barrier.

Following [10], the classical maps F and F have quan-
tizations [6] as unitary and Hermitian operators, respec-
tively, acting on a Hilbert space which quantizes S. The
expression for f�q� as a sum over the fixed points of F Fr

has an interpretation as a sum over traces of such opera-
tors, as will be shown in a future publication [9]. Neglect-
ing multiple tunneling traversals and the uniform analysis
needed at the bottom and top of the wells,

f�q� � f0�q� 1
2
p

Re
X̀
r�1

X
g[Pr

Age
iqSg , (2)

where Pr denotes the set of fixed points of F Fr . The
f0�q� term is determined by g0, is monotonic and gives the
average behavior of the splittings [8]. The contributions
with r $ 1 have complex actions Sg with nonzero real
parts and describe fluctuations superimposed on f0�q�.
The amplitudes are Ag � 1�

q
2 det�Mg 2 I� where Mg

is the complex 2 3 2 symplectic matrix linearizing F Fr

about g (note that a different phase convention was used
in [8]). The choice of root in Ag can be unambiguously
assigned using the real dynamics [9].

In problems with an additional symmetry axis (for us
it is along y � 0), the point z0 is a fixed point of both
F and F and thus of each F Fr . The treatment in [8]
consisted of treating only this fixed point in each of the
5238
terms in (2). We now systematically include the other
fixed points, which are generally complex.

We now scale out the smooth exponential variation with
q by defining g�q� � f�q��f0�q� which is a function of
order unity. It is the same as Eq. (1) but with Dqn replaced
by xn � Dqn�f0�qn�. We find

g�q� � 1 1 Re
X̀
r�1

X
g[Pr

A0
ge

iq�Sg2iK0�, (3)

where A0
g is the rescaled amplitude. Note that q appears

only in the exponents and that the residual action Sg 2 iK0
is predominantly real if ImSg � K0 so that g�q� is an
oscillatory function.

In Fig. 1 we show the Fourier transform g̃�s� of g�q�
for energy E � 0.9 and q [ �30, 100�, chosen to put us
well within the semiclassical regime. For each r , the fixed
point of F Fr at z0 has action Sg � rS0 1 iK0, where
S0 is the action of the on-axis real periodic orbit in one
of the wells. Therefore g̃�s� exhibits a series of simple
peaks at the harmonics s � rS0, well reproduced by the
semiclassical theory. More interesting is the additional
structure, primarily in the form of a sequence of regularly
spaced peaks shifted away from the simple harmonics,
which we now explain using nonaxial orbits.

Among barrier-crossing orbits, the minimum imaginary
action is that of g0; the contributions of other orbits are
suppressed by order exp�2DK�h̄�, where DK is the ad-
ditional imaginary action. To be numerically significant,
orbits in the sum [Eq. (3)] should have a small DK and so
should begin and end near z0. On the other hand, to con-
tain information about the entire spectrum as implied in
(1), they should fully explore the phase space. These two
requirements are satisfied by trajectories homoclinic to z0.
Asymptotically, these trajectories approach z0 under both
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FIG. 1. Dashed curve: Fourier transform of g�q� obtained
quantum mechanically. Upper solid curve: semiclassical pre-
diction using just the axial orbits. Lower solid curve: theory,
using the six homoclinic families shown in Fig. 2. Inset: the
quantum-mechanical Reg̃�s� and the semiclassical prediction in
a limited range (note that there are two superimposed curves).
Peaks not accounted for by the lower curve correspond to non-
computed secondary intersections.
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forward and backward time evolution as d�t� � e2njtj,
where n is the stability exponent of the central orbit and
t counts intersections with the Poincaré section. In prac-
tice, they are easily calculated as the intersections of the
stable and unstable manifolds of z0 (the sets of points in
phase space which approach z0 under forward and back-
ward time evolution, respectively). For a general discus-
sion see Ref. [11].

Let �. . . , x22, x21, x0, x1, x2, . . .� be the intersection
of one such trajectory with S. Then a truncation
�x2M , . . . , x21, x0, x1, . . . , xN � is a finite length trajec-
tory which is almost a periodic orbit if M and N are
large because x2M and xN are exponentially close to
z0 and to each other. By slightly perturbing the initial
condition, one can find a nearby fixed point of F Fr ,
where r � M 1 N , by complex Newton iteration. The
tunneling segment of this trajectory is very close to g0
and as a result the imaginary part of the action is close to
the optimal value K0. In the trace formula, there is then
a competition of exponentials—the imaginary part of the
action will decay exponentially with length according
to Im�Sg 2 iK0� � e2nmin�M,N� and this can be smaller
than h̄ so that e2q�Sg2iK0� is non-negligible. For a fixed
r , each choice of M (and N � r 2 M) gives a distinct
fixed point although only a subset will be numerically sig-
nificant [the effective number depends on q and is given
by the criterion that Im �Sg 2 iK0� � e2nmin�M,N� & h̄].
While the arguments above are asymptotic in M and N ,
in practice, complex orbits could usually be found as long
as M,N . 2 for the system we examine.

The near equal spacing of the peaks is because one
extra iteration of the real map amounts to including one
extra F bounce near z0; to a good approximation this adds
S0 to the action. Also note that the homoclinic peaks are
larger than the peaks at s � rS0 beyond about r � 5.
Each homoclinic peak actually contains the contribution
of many fixed points, all with approximately the same
action. This quasidegeneracy is because there is more
than one homoclinic trajectory and because of the choice
of M for a given r as explained above. The amplitude of
any single orbit initially grows algebraically with length
due to the increasing quasidegeneracy of the orbit. This is
ultimately overcome by the exponential decay with length
due to the instability of long orbits. In this case, the
maximum is about r � 7. There is an additional structure
which dominates at larger r and which we ascribe to
secondary homoclinic intersections. This scenario is like
the calculation of wave function recurrences in [4], where
there is also a selection of trajectories which returns to a
classically small region of phase space. There the region
is determined by a Gaussian wave packet, whereas here it
is by the near-Gaussian kernel of an operator quantizing
F [6,9]. Fourier analysis reveals peak structure similarly
organized around homoclinic orbits [4,12].

We now apply this formalism to the potential V �x, y�.
Figure 2 shows the stable and unstable manifolds of z0
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FIG. 2. The surface of section defined by E � 0.9 and x �
0.6. The circle is the boundary of the energetically allowed
region. Wu and Ws are the stable and unstable manifolds
whose intersections define the homoclinic trajectories: The six
distinct ones are labeled a to f. For each one, we show the
trajectory in configuration space of a corresponding tunneling
orbit. Actually shown is the full periodic orbit which is the
double iteration of the pseudoperiodic orbit used in calculation.
Also, only the real parts are shown; the small imaginary
components are too small to see.

in the x � 0.6 surface of section. Of particular interest
is a sequence of six primary intersections labeled a to
f. (All other intersections shown are either iterates of
these six or are related by reflection in y and py .) This is
a rather rich structure; often there are only two primary
intersections [11]. Each of these intersections defines
a homoclinic trajectory, and a corresponding series of
fixed points of F Fr . We show the projections in real
configuration space of complex trajectories defined for
each of these intersections by the truncation �M,N� �
�3, 5� corresponding to the peak at s � 8.2S0.

The symmetries of time reversal and reflection in y lead
to degeneracy among the orbits. The families b and c
are, respectively, mapped into those of f and e under
a combination of the two symmetries. Congruent but
distinct families are obtained if we apply either symmetry
alone. The family a maps to itself under time reversal but
a distinct family is obtained under reflection in y, while
the converse applies to d. We therefore have only four
nonequivalent families: a, b, c, and d with degeneracies 2,
4, 4, and 2, respectively. This high degeneracy (including
also the choice M), compared to the single axial orbit, is
responsible for the relative dominance of the associated
peaks in Fig. 1. In the resolution presently available, the
individual contributions of �a, b, c, d	 are not resolved, but
presumably would be with a wider q-window.
5239
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To get detailed agreement in Fig. 1 we had to include a
family of “ghost” orbits in addition to the orbits described
above. Near the intersections a and b, there is a switch-
back in the stable manifold emanating from f that almost
produces two additional intersections; at lower energies
these intersections actually occur and lead to two new
families of orbits. These can be tracked up to E � 0.9,
although they become complex. (These orbits are anal-
ogous to the ghost orbits of Ref. [13].) One of them is
exponentially large and is excluded through the Stokes
phenomenon. The other does contribute and is an impor-
tant component in the leading edges of the peaks. The
Fourier transform is then almost completely reproduced
up to about s � 8S0. Thereafter additional side peaks
emerge which can be explained by the secondary inter-
sections (which would be seen in Fig. 2 if the invariant
manifolds were extended). Therefore, a systematic cal-
culation of homoclinic structure suffices for a complete
understanding of chaotic tunneling.

While the details presented here are limited to systems
with additional symmetry in y, we claim that the guiding
principle applies generally. If the real extension of g0
is not periodic, the tunneling is given by trajectories
homoclinic to it, though they are not as simply organized
as here. The important physical notion is that homoclinic
trajectories are asymptotic to the optimal tunneling route
while fully exploring classical phase space.

There has been significant recent effort to understand
dynamical tunneling in which the barriers are not en-
ergetic but come from dynamical effects such as KAM
surfaces [2,3]. In particular, an exhaustive semiclassical
analysis was carried out for one particular system in [3].
The authors considered the propagation of a quantum state
initially localized in a regular region of phase space and
used complex trajectories to describe its penetration into a
chaotic region. Explicit semiclassical formulas were de-
veloped but it is difficult to make a direct comparison to
our results. Here we have considered a purely spectral
quantity in terms of classical invariants—the complex pe-
riodic orbits—while they considered the propagation of a
specific quantum state. In terms of the quantities consid-
ered, namely, splittings, the work of [2] is closer in spirit.
However, because of the complicated, mixed nature of the
phase space, there are no explicit semiclassical results of
the type derived here. In particular, the splittings typically
vary over many orders of magnitude, even after normal-
ization by the local mean, unlike what we observe. While
5240
it would be desirable to develop an explicit semiclassical
formalism for such systems, it is far from obvious how
this could be done.

The problem of the statistics of the normalized split-
tings will be addressed in a later publication [9]. For
now we remark that they are not governed by the
Porter-Thomas distribution but depend on the specific
properties of g0. This is in spite of the fact that
splittings are formally similar to resonance widths for
which one expects Porter-Thomas [14]. This effect is
quite general and should also apply to certain resonance
problems.
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