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Kolmogorov-Sinai Entropy Rate versus Physical Entropy

Vito Latora* and Michel Baranger†

Center for Theoretical Physics, Laboratory for Nuclear Sciences and Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 28 May 1998)

We elucidate the connection between the Kolmogorov-Sinai entropy ratek and the time evolution
of the physical or statistical entropyS. For a large family of chaotic conservative dynamical system
including the simplest ones, the evolution ofSstd for far-from-equilibrium processes includes a stag
during whichS is a simple linear function of time whose slope isk. We present numerical confirmation
of this connection for a number of chaotic symplectic maps, ranging from the simplest two-dimensi
ones to a four-dimensional and strongly nonlinear map. [S0031-9007(98)08099-5]
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This paper tries to clarify the connection between th
Kolmogorov-Sinai (KS) entropy and the physical entrop
for a chaotic conservative dynamical system. This co
nection is obviously very important if one is to understan
the impact on thermodynamics and statistical mechan
of the large amount of work done by mathematicians o
the behavior of chaotic systems [1]. To start with the K
entropy, it is not really an entropy but an entropy per un
time, or an “entropy rate.” It is a single numberk, which is
a property solely of the chaotic dynamical system consi
ered. As for the physical entropySstd, the entropy of the
second law of thermodynamics, it is a function of time, an
this function depends not only on the particular dynamic
system, but also on the choice of an initial probability dis
tribution for the state of that system. Though it is clea
that the original definition ofk [2] was meant to provide a
connection withSstd, the precise connection does not seem
to be well known nowadays, and the few statements fou
in the textbooks are often vague [3].

The simplest connection one might guess would be t
following: the KS entropy rate would be the maximum
possible absolute value of the rate of variation of th
physical entropy, i.e.,jdSydtj # k. But this is wrong,
because a counterexample can easily be found [4,
The actual connection is less direct and, in many cas
it requires thatSstd be averaged over many histories
(or trajectories), so as to give equal weights to initia
distributions from all regions of phase space. The
assuming these initial distributions to be very far from
equilibrium, the variation with time of the physical
entropy goes through three successive, roughly separa
stages. In the first stage,Sstd is heavily dependent on
the details of the dynamical system and of the initia
distribution; no generic statement can be made;dSydt can
be positive or negative, large or small; and, in particular,
can be larger thank. In the second stage,Sstd is a linear
increasing function whose slope isk. In the third stage,
Sstd tends asymptotically toward the constant value whic
characterizes equilibrium, for which the distribution is
uniform in the available part of phase space. It ma
0031-9007y99y82(3)y520(4)$15.00
e
y
n-
d
ics
n

S
it

d-

d
al
-
r

nd

he

e

5].
es,

l
n,

ted

l

it

h

y

happen, however, that the simple and generic stage
is absent, with stages 1 and 3 merging into each oth
This is true when the initial distribution is not sufficiently
different from the equilibrium distribution.

We make no claim of having a rigorous mathematic
proof of these statements. We do have an incomple
but quite suggestive, analytical discussion [4], which ca
not fit in the space available here. The latter part
this Letter will present a few very convincing numerica
simulations for symplectic maps of two and four dimen
sions. Reference [4] contains more map results, as wel
a three-dimensional flow. There is already some work
Dellago and Posch [6] which contains a two-dimension
nonlinear map treated in a very similar way. Some
our ideas are also present in Ref. [7], including the thre
stage idea, but the crucial connection with the KS entro
rate, valid for any number of dimensions and for non
linear systems, is not there. Note that the definition of
single globalk is not always a useful one, for instance
for several weakly coupled subsystems; in such cases
connection clearly needs generalization.

The definition of the KS entropy rate can be found i
many textbooks [8]. To calculate it here, we use the fa
that it is equal to the sum of the positive Lyapunov exp
nents [9]. Our definition for the out-of-equilibrium physi
cal entropy isS ­ const2 I , where I is the Shannon
information [10]. TheseS andI are coarse grained [11].
Coarse graining consists in performing a slight smea
ing, or smoothing, of the probability distribution in phas
space before calculatingS or I. The fine-grained quanti-
ties do not vary with time at all, because Liouville’s theo
rem says that the volume of phase space is conserv
The shape of that volume, however, becomes increasin
complicated and fractalized, due to the chaotic dynami
Hence, under smoothing, the volume occupied keeps
creasing. There are many ways to perform a coarse gra
ing. For this paper, we assume that phase space is divi
into a large number of cellsca with volumesya, such thatP

a ya ­ V , the total volume of available phase spac
Then we defineI by
© 1999 The American Physical Society
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Istd ­
X
a

pastd log

∑
V
ya

pastd
∏

, (1)

where pastd is the probability that the state of the
system in phase space at timet falls inside cell ca .
In the following it will be more convenient to work
with Istd rather thanSstd. This is because, whenI is
used, there is a convenient reference point, the unifor
distribution, whoseI always vanishes, irrespective of the
coarse graining. On the other hand, the constant quan
I 1 S, and thereforeS, do depend on the coarse graining

This type of coarse graining allows an alternativ
version of the significance ofk for the evolution of a
physical system. Let us assume the initial distributio
to be very strongly localized in phase space; i.e., mo
cells contain zero probability initially. Then, during the
generic “second stage” mentioned earlier, the total numb
of occupied cells, i.e., cells with nonvanishingpa, varies
proportionally toekt . Our simulations verify this fact well
(see Fig. 3).

We return to the need for averaging, in our simulation
many histories starting from different parts of phas
space. This has to be done whenever the localk (the
sum of the positive local Lyapunov exponents) varie
appreciably from place to place, which is the norma
case for nonlinear systems. For linear maps (like th
generalized cat map below) it is not necessary. For oth
systems, it would never be necessary if we could use
fine-enough coarse graining, to give the probability tim
to spread throughout phase space before any apprecia
increase in entropy. Unfortunately, such fine grain wou
require computers far more powerful than exist now. I
the real thermodynamical world with many dimensions
what kind of coarse graining should preferably be used
we believe, a wide open question.

For what may be the simplest of all conservativ
chaotic systems, the baker’s map, the correctness of o
three-stage description for the behavior ofIstd can be
shown analytically [4]. Our first simulations are done
with the “generalized cat map” inside a unit square:

P ­ p 1 kq smod 1d ,

Q ­ p 1 s1 1 kdq smod 1d ,
(2)

wherek is a positive control parameter. Figure 1 show
Istd for four values of k (see caption). The coarse-
graining grid is obtained by dividing each axis into 400
equal segments. The initial distribution consists of106

points placed at random inside a square whose size is t
of a coarse-graining cell, and the center of that squa
is picked at random anywhere on the map. Each of th
four curves is an average over 100 runs, i.e., 100 histor
with different initial distributions chosen at random, a
mentioned. Each curve shows clearly the stage-2 line
behavior, the negative of the slope being accurately giv
by the (analytically calculable) Lyapunov exponent:

l ­ log 1
2 s2 1 k 1

p
k2 1 4k d ­ k . (3)
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FIG. 1. Generalized cat map:k ­ 10, 3, 1, and 0.5 (from left
to right); k ­ 2.48, 1.57, 0.96, and 0.69, respectively;N ­
106; grid ­ 400 3 400; Vi ­ Vcell; average of 100 histories.
Here, and in Figs. 2, 3, 4, 6, and 7, we show in dashes, a
slightly displaced from the simulation results, straight lines wit
the predicted2k.

Figure 2 shows howIstd depends on the initial distribu-
tion and on the coarse graining. Nowk ­ 1 only. Other
conditions are the same as in Fig. 1, except that we calc
late a single history instead of averaging 100. This mak
no big difference in this case, because the local Lyapun
exponent is the same everywhere. In the six top curves
different sizes are compared for the initial square; the gr
is as in Fig. 1. The first size is that of 1 coarse-grainin
cell, then 4 cells, 16, 64, 256, and 1024 cells (from top t
bottom). All six curves have the same stage-2 slope giv
by 2k. Their vertical displacement is log2 for each fac-
tor of 2 in the linear dimension of the initial distribution.
The three bottom curves show howIstd depends on the
coarse graining. The size of the initial square is alway
that of 1024 original coarse-graining cells. For the uppe
curve (sixth from the top) the cells are as in Fig. 1, fo
the middle curve they are squares 4 times larger in are
and for the bottom curve they are 4 times larger agai

FIG. 2. Generalized cat map:k ­ 1; k ­ 0.96; N ­ 106.
From top to bottom: grid­ 400 3 400, ViyVcell ­ 1, 4,
16, 64, 256, and 1024 (six curves); and grid­ 200 3
200, 100 3 100, ViyVcell ­ 1024 (two curves), one history.
521
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FIG. 3. Generalized cat map:k ­ 1; k ­ 0.96; N ­ 106;
grid ­ 400 3 400; ViyVcell ­ 1, 16, and 256 (bottom to top),
one history.

Once again, all three curves have the same stage-2 s
of 2k. They are displaced vertically from each other b
the log of the factor in coarse-graining linear dimensio
i.e., log2.

In Fig. 3 we plot on a log scale the number of occupie
cells vs time for the finest coarse graining and thr
progressively larger initial distributions, whose centers a
picked at random as always. All three stage-2 straig
lines are indeed fitted byekt . Their vertical displacement
is a factor of 4, which is also the factor in the linear siz
of the initial distributions.

The second system studied is the standard map [1
again a two-dimensional conservative map in the u
square, but this time nonlinear,

P ­ p 1
k

2p
sins2pqd smod 1d ,

Q ­ q 1 P smod 1d .
(4)

The map is only partially chaotic, but the percentage
chaos increases with the control parameterk, and we use
large values ofk, namely, 20, 10, and 5. Fork ­ 5 there

FIG. 4. Standard map:k ­ 20, 10, 5 (from left to right),
k ­ 2.30, 1.62, and 0.98 respectively;N ­ 106; grid ­ 400 3
400; Vi ­ Vcell; average of 100 histories (k ­ 20, 10); 1000
histories (k ­ 5).
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FIG. 5. Standard map:k ­ 5; k ­ 0.98; three single histories
compared with the average from Fig. 4.

are two sizable regular islands, associated with a period
stable trajectory. We calculated the Lyapunov expone
numerically, leaving out the regular islands fork ­ 5.
This yieldedl ­ k ­ 2.30, 1.62, and 0.98, respectively
for the threek’s. Figure 4 shows the three curvesIstd,
with the top curve corresponding to the smallestk. The
coarse-graining grid, the choice of initial distribution, an
the averaging are the same as for Fig. 1, but it wa
necessary to include 1000 histories in the averaging f
k ­ 5. Each curve has a stage-2 linear portion whos
slope is correctly given by2k. Figure 5 presents three
single histories (3) for k ­ 5, as well as the average
curve from Fig. 4 (±). For such a very nonlinear system
with too coarse a grain, the single curves vary wildly an
the averaging is essential.

Our next example is a four-dimensional system,
generalized cat map. It is a linear symplectic map [13
reduced to a unit-size hypercube by introducing “mod 1
in each of the four transformation equations. The tw
positive Lyapunov exponentsl1 andl2 can be calculated
analytically, and the KS entropy rate isk ­ l1 1 l2.
For this system we made up the coarse-graining grid

FIG. 6. Four-dimensional generalized cat map;l1 ­ 0.223;
l2 ­ 0.247; k ­ 0.470; N ­ 106; grid ­ 204; Vi ­
s20d24Vcell; two single histories.
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FIG. 7. Four-dimensional nonlinear map: (Bottom)k1 ­
10; k2 ­ 5; m ­ 0.5; l1 ­ 1.65; l2 ­ 0.75; k ­ 2.40.
(Middle) k1 ­ 5; k2 ­ 3; m ­ 0.5; l1 ­ 1.03; l2 ­ 0.45;
k ­ 1.48. (Top) k1 ­ 3; k2 ­ 1; m ­ 0.5; l1 ­ 0.62;
l2 ­ 0.16; k ­ 0.78. N ­ 106; grid ­ 204; Vi ­ Vcell;
average of 100 histories.

dividing each of the four axes into 20 equal segmen
The initial distribution consists of106 points placed at
random inside one hypercube of size40021 3 40021 3

40021 3 40021, and the center of the hypercube is picke
at random anywhere on the map. Figure 6 showsIstd for
2 single histories. They differ greatly in their stage-1, bu
both have nearly linear stage-2’s with the correct slop
given by2k.

Finally we have a four-dimensional nonlinear map
made up of two coupled standard maps,

P1 ­ p1 1
k1

2p
sins2pq1d smod 1d ,

Q1 ­ q1 1 P1 1 mP2 smod 1d .
(5)

P2 ­ p2 1
k2

2p
sins2pq2d smod 1d ,

Q2 ­ q2 1 P2 1 mP1 smod 1d .
(6)

We worked with 3 sets of control parameterssk1, k2d,
namely, (10,5), (5,3), and (3,1). The coupling paramet
m was 0.5 in all cases. We calculated the two Lyapuno
exponents numerically [14], then added them up to g
k. The numerical values are in the figure caption. Th
initial volume was the size of one cell, and we average
over 100 histories. Figure 7 showsIstd. It has a fairly
well defined second stage with a slope close to2k in
all cases.

The work we have reported makes very explicit th
connection between the KS entropy rate, when it
meaningful, and the time dependence of the physic
entropy or information. Yet it is far from a complete
answer. It assumes that, at the beginning of the system
evolution, the probability distribution spreads very fas
to all corners of phase space before undergoing mu
ts.
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fractalization, so that its subsequent variation is we
described by a globalk. But there are other possible
scenarios. For instance, there may be gradual over
evolution in space as well as in time, a possibility which
is not included by our assumption that all parts of phas
space must start on an equal footing. In conclusio
although this work constitutes only a quick foray into
the subject, we hope that our assertions can functio
as guiding principles for research attempting to brin
together the mathematics of chaos and the physics of fa
from-equilibrium thermodynamics.

We thank A. D’Andrea, A. Rapisarda, and M. Saracen
for fruitful discussions. We also thank S. Ganguli and
B. Müller who furnished some pointers to the literature
Financial support was provided by INFN (for V. L.), and
at MIT by the U.S. Department of Energy (D.O.E.) unde
Contract No. DE-FC02-94ER40818.

Note added.—Since this Letter was submitted, anothe
example of the connection between KS entropy rate an
physical entropy was published by Dzugutovet al. [15].
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