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Kolmogorov-Sinai Entropy Rate versus Physical Entropy
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We elucidate the connection between the Kolmogorov-Sinai entropyxrated the time evolution
of the physical or statistical entrogy. For a large family of chaotic conservative dynamical systems
including the simplest ones, the evolution $fr) for far-from-equilibrium processes includes a stage
during whichsS is a simple linear function of time whose slopeds We present numerical confirmation
of this connection for a number of chaotic symplectic maps, ranging from the simplest two-dimensional
ones to a four-dimensional and strongly nonlinear map. [S0031-9007(98)08099-5]
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This paper tries to clarify the connection between thehappen, however, that the simple and generic stage 2
Kolmogorov-Sinai (KS) entropy and the physical entropyis absent, with stages 1 and 3 merging into each other.
for a chaotic conservative dynamical system. This conThis is true when the initial distribution is not sufficiently
nection is obviously very important if one is to understanddifferent from the equilibrium distribution.
the impact on thermodynamics and statistical mechanics We make no claim of having a rigorous mathematical
of the large amount of work done by mathematicians orproof of these statements. We do have an incomplete,
the behavior of chaotic systems [1]. To start with the KSbut quite suggestive, analytical discussion [4], which can-
entropy, it is not really an entropy but an entropy per unitnot fit in the space available here. The latter part of
time, or an “entropy rate.” Itis a single numberwhichis  this Letter will present a few very convincing numerical
a property solely of the chaotic dynamical system considsimulations for symplectic maps of two and four dimen-
ered. As for the physical entrog(¢), the entropy of the sions. Reference [4] contains more map results, as well as
second law of thermodynamics, it is a function of time, anda three-dimensional flow. There is already some work by
this function depends not only on the particular dynamicaDellago and Posch [6] which contains a two-dimensional
system, but also on the choice of an initial probability dis-nonlinear map treated in a very similar way. Some of
tribution for the state of that system. Though it is clearour ideas are also present in Ref. [7], including the three-
that the original definition of [2] was meant to provide a stage idea, but the crucial connection with the KS entropy
connection withS(¢), the precise connection does not seenrate, valid for any number of dimensions and for non-
to be well known nowadays, and the few statements fountinear systems, is not there. Note that the definition of a
in the textbooks are often vague [3]. single globalx is not always a useful one, for instance,

The simplest connection one might guess would be théor several weakly coupled subsystems; in such cases the
following: the KS entropy rate would be the maximum connection clearly needs generalization.
possible absolute value of the rate of variation of the The definition of the KS entropy rate can be found in
physical entropy, i.e.|dS/dt| = k. But this is wrong, many textbooks [8]. To calculate it here, we use the fact
because a counterexample can easily be found [4,5that it is equal to the sum of the positive Lyapunov expo-
The actual connection is less direct and, in many casesents [9]. Our definition for the out-of-equilibrium physi-
it requires thatS(s) be averaged over many histories cal entropy isS = const— I , where! is the Shannon
(or trajectories), so as to give equal weights to initialinformation [10]. TheseS andl are coarse grained [11].
distributions from all regions of phase space. ThenCoarse graining consists in performing a slight smear-
assuming these initial distributions to be very far froming, or smoothing, of the probability distribution in phase
equilibrium, the variation with time of the physical space before calculating or 7. The fine-grained quanti-
entropy goes through three successive, roughly separatéiégs do not vary with time at all, because Liouville's theo-
stages. In the first stag€(rs) is heavily dependent on rem says that the volume of phase space is conserved.
the details of the dynamical system and of the initialThe shape of that volume, however, becomes increasingly
distribution; no generic statement can be mai¥,dr can  complicated and fractalized, due to the chaotic dynamics.
be positive or negative, large or small; and, in particular, itHence, under smoothing, the volume occupied keeps in-
can be larger thar. In the second stagé(z) is a linear creasing. There are many ways to perform a coarse grain-
increasing function whose slope s In the third stage, ing. For this paper, we assume that phase space is divided
S(¢) tends asymptotically toward the constant value whichinto a large number of cells, with volumesv,,, such that
characterizes equilibrium, for which the distribution is Y , v, = V, the total volume of available phase space.
uniform in the available part of phase space. It mayThen we defind by

520 0031-900799/82(3)/520(4)$15.00 © 1999 The American Physical Society



VOLUME 82, NUMBER 3 PHYSICAL REVIEW LETTERS 18 ANuARY 1999

10 =Y pllog L pu0]. @

where p,(¢) is the probability that the state of the
system in phase space at timefalls inside cell ¢,. 8
In the following it will be more convenient to work
with I(¢) rather thanS(z). This is because, when is
used, there is a convenient reference point, the uniform
distribution, whosd always vanishes, irrespective of the
coarse graining. On the other hand, the constant quantity
I + §, and thereforeS, do depend on the coarse graining.
This type of coarse graining allows an alternative 0 ;
version of the significance ok for the evolution of a 0 > ume o
physical system. Let us assume the initial distribution

; : . IG. 1. Generalized cat map:= 10, 3, 1, and 0.5 (from left
to be very strongly localized in phase space; i.e., most ight): x — 2.48, 157, 0.96, and 0.69, respectively —

cells contain zero probability initially. Then, during the |- grid = 400 X 400; V; = V.n; average of 100 histories.
generic “second stage” mentioned earlier, the total numbesere, and in Figs. 2, 3, 4, 6, and 7, we show in dashes, and

of occupied cells, i.e., cells with nonvanishipg, varies slightly displaced from the simulation results, straight lines with
proportionally toe*’. Our simulations verify this fact well the predicted-«.
(see Fig. 3).

We return to the need for averaging, in our simulations,

many histo_ries starting from different parts of phasey;, and on the coarse graining. Ndw= 1 only. Other

space.f -Lh's has to tl)e dlorlie whenever the lacdthe ;4 qitions are the same as in Fig. 1, except that we calcu-
sum ot tle fposmv? oca ylapunovh_eﬁpc_)neﬂts) Var'eTIateasingle history instead of averaging 100. This makes
appre(];‘,laby Ir_om place to place, \IN ich is the Pfrmﬁ no big difference in this case, because the local Lyapunov
case for nonlinear systems. For linear maps (like t eexponent is the same everywhere. In the six top curves six

generalized cat ln(;ap beIO\t/)v) Itis not necissary. F|3r Othefitterent sizes are compared for the initial square; the grid
systems, It would never be necessary If we could US€ R »q iy Fig. 1. The first size is that of 1 coarse-graining

fine-enough coarse graining, to give the probability tir_ne ell, then 4 cells, 16, 64, 256, and 1024 cells (from top to
to spread throughout phase space before any appreciaii,my - all six curves have the same stage-2 slope given
increase in entropy. Unfortunately, such fine grain wouldy " Their vertical displacement is lagfor each fac-
require computers far more powerful than exist now. g ot 5 i the linear dimension of the initial distribution.

the real thermodynamical world with many dimensions,tha three bottom curves show hair) depends on the

what kind of coarse graining should preferably be used iSgoar5e graining. The size of the initial square is always
we believe, a wide open question.

; . that of 1024 original coarse-graining cells. For the upper
For what may be the simplest of all conservativec e (sixth from the top) the cells are as in Fig. 1, for
chaotic systems, the baker's map, the correctness of Oyie migdie curve they are squares 4 times larger in area,
three-stage description for the behavior f4f) can be 504 for the bottom curve they are 4 times larger again.
shown analytically [4]. Our first simulations are done

with the “generalized cat map” inside a unit square:
P=p+kg (mod 1),
)

Q=p+(0+kqg (modl,
wherek is a positive control parameter. Figure 1 shows
I(r) for four values ofk (see caption). The coarse-
graining grid is obtained by dividing each axis into 400
equal segments. The initial distribution consists16f
points placed at random inside a square whose size is that
of a coarse-graining cell, and the center of that square
is picked at random anywhere on the map. Each of the
four curves is an average over 100 runs, i.e., 100 histories NN
with different initial distributions chosen at random, as 5 ‘ 5‘ - 115
mentioned. Each curve shows clearly the stage-2 linear time
behavior, the negative of the slope being accurately giveRig 2. Generalized cat mapk = 1:x = 0.96;N = 10°.
by the (analytically calculable) Lyapunov exponent: From top to bottom: grid= 400 X 400, V;/Veen =1, 4,

: 16, 64, 256, and 1024 (six curves); and gd200 X
A=10og5 2+ k +Vk? + 4k) = k. (3) 200,100 X 100, V;/V1 = 1024 (two curves), one history.

Information

Figure 2 shows howi(z) depends on the initial distribu-
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FIG. 3. Generalized cat map = 1; « = 0.96; N = 106; FIG. 5. Standard mag = 5; « = 0.98; three single histories
grid = 400 X 400; V;/Ven = 1, 16, and 256 (bottom to top), compared with the average from Fig. 4.
one history.

Once again, all three curves have the same stage-2 slopée tWo si_zable regular islands, associated with a period 2
of —«. They are displaced vertically from each other byStable trajectory. We calculated the Lyapunov exponent
the log of the factor in coarse-graining linear dimension,numerically, leaving out the regular islands for= 5.
i.e., log2. This yieldedA = « = 2.30, 1.62, and 0.98, respectively,
In Fig. 3 we plot on a log scale the number of occupiedfor the threek’s. Figure 4 shows the three curvég),
cells vs time for the finest coarse graining and thregwith the top curve corresponding to the smallest The
progressively larger initial distributions, whose centers aréoarse-graining grid, the choice of initial distribution, and
picked at random as always. All three stage-2 straighthe averaging are the same as for Fig. 1, but it was
lines are indeed fitted by*’. Their vertical displacement Necessary to include 1000 histories in the averaging for
is a factor of 4, which is also the factor in the linear sizek = 5. Each curve has a stage-2 linear portion whose
of the initial distributions. slope is correctly given by-«. Figure 5 presents three
The second system studied is the standard map [12§ingle histories X) for k =5, as well as the average
again a two-dimensional conservative map in the uni€urve from Fig. 4 ¢). For such a very nonlinear system,

square, but this time nonlinear, v;/]ith too coarse a grain,' tlhe single curves vary wildly and
the averaging is essential.

P=p+ k. sin2mq) (mod 1), Our next example is a four-dimensional system, a

2 (4) generalized cat map. It is a linear symplectic map [13],

O=g+P (mod). reduced to a unit-size hypercube by introducing “mod 1"

in each of the four transformation equations. The two

The map is only partially chaotic, but the percentage ofyqsitive Lyapunov exponents; and A, can be calculated
chaos increases with the control paraméteand we use analytically, and the KS entropy rate is = A, + Aa.

large values ok, namely, 20, 10, and 5. Far= 5there o this system we made up the coarse-graining grid by
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FIG. 4. Standard mapk = 20,10,5 (from left to right),

x = 2.30, 1.62, and 0.98 respectivelyy: = 10%; grid = 400 X FIG. 6. Four-dimensional generalized cat mag;= 0.223;
400; V; = V..q1; average of 100 historiesk (= 20, 10); 1000 A =0247, k =0470; N =10° grid=20% V=
histories ¢ = 5). (20)"*V.e11; two single histories.
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fractalization, so that its subsequent variation is well
described by a globak. But there are other possible
scenarios. For instance, there may be gradual overall
evolution in space as well as in time, a possibility which
is not included by our assumption that all parts of phase
space must start on an equal footing. In conclusion,
although this work constitutes only a quick foray into
the subject, we hope that our assertions can function
as guiding principles for research attempting to bring
together the mathematics of chaos and the physics of far-
| . . | from-equilibrium thermodynamics.
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FIG. 7. Four-dimensional nonlinear map: (Bottork) = B. Miller who furnished some pointers to the literature.
10; k=5, m=05; A =165 A, =075 «=240. Financial support was provided by INFN (for V.L.), and
(Middle) k; = 5; k, =3; m =05; A = 1.03; A, =045, gt MIT by the U.S. Department of Energy (D.O.E.) under
k=148 (Top) ki =3, k=1 m =05 A =062  conyract No. DE-FC02-94ER40818.
A = 0.16; « =0.78. N = 10° grid =20% V; = Veen; . . .
average of 100 histories. Note added—Since this Letter was submitted, another
example of the connection between KS entropy rate and

dividing each of the four axes into 20 equal segmentsphySICaI entropy was published by Dzugutetal. [15].

The initial distribution consists of0° points placed at
random inside one hypercube of siz@0~! x 400~ X
400~! X 400!, and the center of the hypercube is picked
at random anywhere on the map. Figure 6 showsfor *E-mail address: baranger@ctp.mit.edu

2 single histories. _They differ gr(,eatly_ in their stage-1, but [1] The first person who understood clearly that the modern
both have nearly linear stage-2's with the correct slope” " nqtions of “chaos” were essential to the foundations of

10

Information

[=]
=
9]

*E-mail address: latora@ctp.mit.edu
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ky . J. Ogrydziak (to be published).
Py =py + by sin2mq») (mod 1), [5] N. Krishnaswami, B.S. thesis, Massachusetts Institute of
(6) Technology, 1997.
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