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Quantum Wave Packet Dynamics with Trajectories
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The de Broglie–Bohm causual (hydrodynamic) formulation of quantum mechanics is computatio
implemented in the Lagrangian (moving with the fluid) viewpoint. The quantum potential and force
accurately evaluated with a moving weighted least squares algorithm. The quantum trajectory m
is then applied to barrier tunneling on smooth potential surfaces. Analysis of the tunneling mecha
leads to a novel and accurate approximation: shortly after the wave packet is launched, comp
neglect all quantum terms in the dynamical equations for motion along the tunneling coordin
[S0031-9007(99)09563-0]
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Time-dependent quantum wave packets are wide
used to study diverse phenomena in physics. Curr
computational methods for wave packet dynamics u
space-time grids, basis sets, or some combination of th
approaches. The goals of this study are to presen
new approach to wave packet dynamics, referred to
the quantum trajectory method (QTM), and to apply th
method to several problems. QTM is based upon t
hydrodynamic formulation of quantum mechanics. Fir
suggested in 1926–1927 [1,2] and later developed into
physical theory by Bohm [3] in 1952, this formulation ha
been the subject of a number of intepretative articles a
a much smaller number of computational studies [4–7
In this study, in order to solve the quantum hydrodynam
equations, we borrow techniques used in some areas
computational fluid dynamics (CFD). The QTM solve
the equations of motion to find quantum trajectorie
for “fluid particles.” Although particle trajectories are
developed, QTM is fully quantum, and is distinct from
semiclassical or classical approaches.

After presenting the dynamical equations in the “mo
ing with the fluid” Lagrangian viewpoint, the moving
weighted least squares algorithm (MWLS) is introduce
for computing derivatives of a function defined on an u
structured grid. The QTM will then be applied to barrie
tunneling in one and two dimensions. After elucidatin
the mechanism for the tunneling process, a novel appro
mation will be described.

The hydrodynamic formulation is initiated [1–3] by
substituting the wave functionc��r , t� � R��r, t�eiS��r ,t�� h̄

(R and S are real valued) into the time-dependen
Schrodinger equation (TDSE) and separating into real a
imaginary parts,

≠r��r , t�
≠t

1 �= ?

√
r

1
m

�=S

!
� 0 , (1)

2
≠S��r , t�

≠t
�

1
2m

� �=S�2 1 V ��r , t� 1 Q�r; �r, t� , (2)

where the probability density isr��r , t� � R��r , t�2. With
identification of the velocity,�y � �=S�m, and the flux,
�j � r �y, Eq. (1) is the continuity equation. Equation (2)
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the quantum Hamilton-Jacobi (HJ) equation, is identical
in form to the classical HJ equation which, however
is missing the last term. This term, the time-depende
quantum potential [3], is defined through the curvature of
the amplitude,

Q�r; �r , t� � 2
h̄2

2m
1
R

=2R � 2
h̄2

2m
r21�2=2r1�2. (3)

Taking the gradient of Eq. (2) leads to the equation o
motion,

m
d �y
dt

� 2 �=�V 1 Q� � �fc 1 �fq , (4)

where the Lagrangian time derivative isd�dt � ≠�≠t 1

�y ? �=. In Eq. (4), there are two force terms: the “classi
cal” force arising from the gradient of the potential surfac
and thequantum force arising from the tilt of the quantum
potential.

By analogy to CFD, two paths are possible for solv
ing the hydrodynamic equations. In the Lagrangian view
point, which will be followed here, solutions are obtained
in a reference frame moving with the fluid. By contrast
in the Eulerian viewpoint, the equations are solved usin
fixed in space grids or basis sets. However, there are s
nificant advantages to the Lagrangian “go with the flow
viewpoint. Several methods have been used to solve t
Lagrangian equations in CFD, including those that de
fine an underlying mesh so as to compute derivatives
to support basis functions. From our viewpoint,mesh-
less methods [8], in which moving fluid particles serve as
nodes for interpolation, are more generally applicable.

An equation in the Lagrangian viewpoint is needed t
update the density. Returning to Eq. (1), we note that
may be written,√

≠

≠t
1 �y ? �=

!
r �

dr

dt
� 2r �= ? �y . (5)

The last equation may be integrated to give the updat
density,

r��r , t 1 dt� � V�t 1 dt, dt�r��r , t� � e2� �=? �y�dtr��r , t� .
(6)
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Equations (4)–(6) are the Lagrangian equations of mo-
tion. In the QTM, the probability fluid is represented by
N nodes or “particles” (each of mass m), which form an
unstructured topology.

The MWLS algorithm provides a method for comput-
ing the derivatives needed to find the quantum potential
and the quantum force. The version used here is similar
to one developed for engineering and CFD applications
[8,9]. Assume that a function f��r� is defined on an un-
structured set of points. We seek an approximate but ac-
curate value for f in the neighborhood of point �ri . In
addition, there is a basis set (dimension nb) of local poly-
nomials, pj��r 2 �ri� so that f can be expanded,

f��r� �
nbX

j�1

ajpj��r 2 �ri� . (7)

For example, in two dimensions, if we choose the basis
B � �1, j, h, j2�2, jh, h2�2, j3�6, . . .�, where j � x 2

xi and h � y 2 yi are local displacements, then the
coefficients aj are approximations to the function and
its derivatives at this point. For example, the curvature
of the function becomes �=2f�i � a4 1 a6. In order to
find the �aj�, we require that the approximation in Eq. (7)
passes through np points near point �ri (these points form
the stencil or star),

f��rk� �
nbX

j�1

ajpj��rk 2 �ri�, k � 1, 2, . . . , np . (8)

To solve these equations in the least squares sense,
we require that np . nb. In addition, each equation is
assigned a weight w�rkl� depending upon the distance rkl

between points k and l (a Gaussian is used in practice).
Error minimization criterion for the coefficients �aj� then
leads to an equation for the solution vector a (dimension
nb 3 1) in terms of the known function vector f �np 3

1�. The result is that the derivatives of f can be expressed
in terms of the known function values for points in the
star. For example, the curvature can be expressed,

�=2f�i �
npX

k�1

Vikf��rk� . (9)

An equation analogous to Eq. (9) was used to evaluate
Q, �fq, and �= ? �y (for updating the density). For the
applications that will be described, nb � 6 and np �
20 30. It should be noted that the MWLS algorithm
can break down when the particles move far apart, but
in practice this happens after useful physical information
has been extracted.

The QTM will now be applied to tunneling through one
and two dimensional smooth potential barriers. In the first
analysis based upon the Bohmian viewpoint, Dewdney
and Hiley [5] studied the scattering of Gaussian wave
packets from rectangular barriers. Commenting on this
study, Bohm and Hiley [10] (BH) stated “ In general,
the quantum potential will lower the barrier height, thus
permitting particles to enter it. This, of course, removes
the mystery as to how barrier penetration is possible. For
such penetration depends on the total potential V 1 Q
and not just the classical potential alone.” Also regarding
this study, Holland wrote [11] “ . . . the effects come
about from the modification of the total energy of each
particle . . . in the vicinity of the barrier (italics added).”
The picture presented by BH is quite appealing: as
particles approach the barrier, the effective barrier lowers
(due to the quantum potential), thus allowing some of
the particles to slip through. When the “ right number”
makes it to the other side, the effective barrier raises and
the lagging particles are forced away. Surprisingly, we
will see for smooth barrier penetration that this view is
misleading and incorrect.

We first consider the one dimensional scattering of a
Gaussian wave packet (GWP) from the Eckart potential,
V �x� � V0 sech2�a�x 2 xb��, where V0 is the barrier
height and “a” measures the barrier width. In these stud-
ies, V0 � 8000 cm21, xb � 6 a.u., and a � 0.5 a.u. The
initial GWP is �2b�p�1�4 exp�2b�x 2 x0�2 1 ikx�,
where b � 10 a.u., the translational energy is
E � h̄2k2�2m, with E in the range 10 to 12 000 cm21,
and m � 2000 a.u. The initial condition for the speed
of each particle is y � h̄k�m. At t � 0, the N particles
are centered at x0 and distributed with a spacing 0.04 a.u.
The particle ensemble, with N in the range 21–51, was
then propagated with time steps of 2 a.u. (0.048 fs).

The time-dependent reaction (transmission) probability
was computed by integrating r on the product side of the
barrier, x . xb . At late times, this probability approaches
the value denoted P�E�; see Fig. 1. The points show
the energy dependence computed with the QTM �N �
51�, and the continuous curve shows the exact proba-
bility obtained from numerical integration of the TDSE.
The remarkable feature is that over almost 4 orders of

FIG. 1. Energy dependence of the transmission probability
for an Eckart barrier with a height V0 � 8000 cm21. The
points were obtained using the quantum trajectory method with
N � 51, and the continuous curve shows exact results from the
numerical integration of the TDSE.
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magnitude, the QTM with a small number of trajectories
yields tunneling probabilities in excellent agreement (the
errors range from ,1% to 3% at the plotted points) with
the exact results.

We will now focus on the tunneling mechanism at one
initial energy, E � �3�4�V0. In this case, the leading
24 particles (No. 28–51) make it to the product region,
while the lagging 27 particles eventually form the reflected
packet. There is thus a bifurcation in the dynamics be-
tween trajectories 27 and 28. Why does No. 28 make it
through whereas No. 27 fails to make the grade? The
answer is provided in Fig. 2. First, the time dependen-
cies of the kinetic energies (KE) for these two trajectories
are shown in part (a). At t � 0, both trajectories have
the same KE, but just after launching, both particles ac-
quire KE during the boost phase. At about 4 fs, both par-
ticles begin the deceleration phase as they ascend the outer
edge of the barrier. For No. 27, deceleration continues
until a turning point is reached at 28 fs. The potential at
this point is V � 7600 cm21; particle 27 almost made it
over the top. After 28 fs, this particle rolls back down the

FIG. 2. Trajectory analysis at the initial translational energy
E � �3�4�V0. (a) Kinetic energy vs time for trajectories 27
(nonreactive) and 28 (reactive). (b) Total force and quantum
force vs time for these trajectories.
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potential hill, picking up KE along the way. Particle 28,
however, decelerates from 4 until 25 fs, at which time it
skims over the top of the barrier with about 500 cm21 of
“excess” KE. It then accelerates down the product side of
the barrier. There is an important lesson: particle 28 made
it over the top of the hill, because it picked up sufficient
KE in the first few femtoseconds of flight. For every par-
ticle lagging behind this one, the KE boost is insufficient
to give enough “kick” to make it over the hill. Clearly,
the customary phrase “ tunneling through the barrier” is
both misleading and incorrect; the particles “tunnel” by
skimming over the top of the barrier with positive KE at
all times.

It is also instructive to examine both the quantum and
total forces for these two trajectories; see Fig. 2(b). For
both trajectories, the positive accelerating force for 3–4 fs
(the boost phase) then gives way to the deceleration phase.
Particle 28 experiences no force as it crosses the crest
of the hill at 25 fs; after that, it accelerates down the
product side of the potential. By contrast, particle 27
reaches a local minimum in the force at 28 fs (the turning
point), then accelerates back downhill with ftotal , 0.
This figure shows the important accelerating influence of
the quantum force at early times. However, after about
8–10 fs, the role played by fq is completely negligible.

The origin of the boost phase may be understood by
considering the quantum force for a freely evolving GWP
[11]: fq�x� � �4b2�m� �x 2 x0�, where b and x0 are
functions of time. Note that particles on the leading edge
feel a positive force; those on the trailing edge feel a nega-
tive force. As a result, the particles move apart, thus pro-
ducing wave packet spreading. In addition, particles more
distant from the center experience the largest accelera-
tion (if x . x0) or deceleration (if x , x0). Returning to
the barrier tunneling example described previously, par-
ticle 28 is located slightly “ahead” of particle 27, so at
early times it receives the larger accelerating force during
the boost phase. Although not explicitly considered here,
the same tunneling mechanism applies at other energies.

A dynamical approximation is suggested by this tun-
neling mechanism. Since �fq plays a significant role only
during the boost phase, let the initially prepared wave
packet evolve for a short time (up to the decoupling time,
td), then turn off the quantum force before the particles
enter the barrier region. This scheme is the decoupling
approximation. For t . td , the particles evolve as a clas-
sical ensemble. Of course, if td is too short, the lead-
ing particles do not have sufficient time to be boosted to
energies sufficient to surmount the barrier. For the case
described previously with td � 7.7 fs, P�E� � 0.345,
which is close to the exact value (0.352).

The QTM can be readily extended to multidimensional
problems. An application in two dimensions will be
considered. The model potential, expressed in �x, y�
coordinates, is an Eckart barrier along x and a harmonic
trough along y, where the force constant for the harmonic
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FIG. 3. Flux map obtained using the quantum trajectory
method for an Eckart barrier-harmonic potential surface (dots
locate the 297 particles). Flux vectors with lengths below a
threshold value were not plotted. At t � 0, the wave packet
was centered at the point �2, 0� with the barrier maximum
at �6, 0�.

potential is k � 0.191 a.u. The wave packet at t � 0
is the product of a GWP times a ground state harmonic
oscillator function for the y mode. At a series of
energies, flux maps were made at various times during the
scattering process. For example, Fig. 3 shows the flux
map at t � 24 fs for the initial energy E � �3�4�V0 with
297 particles in the ensemble. Near the barrier maximum
the flux is dividing into reactive and reflected components.
In this calculation, a decorrelation time td � 9.7 fs was
used for the tunneling mode (only). The length of the
longest vector differs by 2% from the value obtained when
the full quantum force was used for both modes.

The computational effort in the QTM calculation scales
with the number of particles approximately as N1.2 (for
N , 103). For the relatively small number of cases
where we have experience, the QTM is faster than con-
ventional wave packet propagation. Future investigations
will analyze the viability of QTM for multidimensional
problems where conventional wave packet propagation is
not possible.
In summary, some features of the quantum trajectory
method are as follows: (1) The only approximation in-
volves the use of a finite number of particles, but accurate
results can be obtained with a small number of trajecto-
ries; (2) a Lagrangian (moving) self-adaptive nodal struc-
ture is utilized; (3) there are no basis set expansions, fixed
spatial grids, or absorbing potentials at the edges of grids;
(4) only real-valued trajectories and energies are used, even
for classically forbidden barrier tunneling; (5) the method
and the computer codes can be readily extended to more
dimensions; (6) for each degree of freedom, full quantum,
partial quantum, or classical calculations can be performed
by scaling the quantum force.
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