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Quantum Limit of Decoherence: Environment Induced Superselection of Energy Eigenstates
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We investigate decoherence in the limit where the interaction with the environment is weak and
the evolution is dominated by the self-Hamiltonian of the system. We show that in this case
quantized eigenstates of energy emerge as pointer states selected through the predictability sieve.
[S0031-9007(99)09512-5]
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The relevance of decoherence in the context of the qu
tum to classical transition has been recently recogniz
[1–3]. The basic idea is that classicality is an emerge
property induced in open quantum systems by their e
vironments. Because of the interaction with the enviro
ment, the vast majority of states in the Hilbert space
a quantum open system becomes highly unstable to
tangling interaction with the environment, which in effec
monitors selected observables of the system. After a
coherence time, which for macroscopic objects is typica
many orders of magnitude shorter than any other dynam
cal time scale [4], a generic quantum state decays int
mixture of “pointer states.” In this way the environmen
induces effective superselection rules (“einselection”) th
precluding the stable existence of superpositions of poin
states. Experimental testing of decoherence has been
cently initiated [5]. Here we investigate decoherence
the limit of weak interaction and show that it can en
force “quantum jumps” between discrete energy eige
states which now become stable pointer states.

Pointer states are distinguished by their ability t
persist in spite of the environmental monitoring an
therefore are the ones in which quantum open systems
observed. Understanding the nature of these states
the process of their dynamical selection is of fundamen
importance. This process has been studied first in
measurement situation: When the system is an appara
whose intrinsic dynamics can be neglected, pointer sta
turn out to be eigenstates of the interaction Hamiltoni
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between the apparatus and its environment [1]. Even
this idealized limit, decoherence may be experimenta
testable [6]. In more general situations, when the system
dynamics is relevant, einselection is more complicate
Pointer states result from the interplay between se
evolution and environmental monitoring.

To study einselection, an operational definition o
pointer states has been introduced [7,8]. This is t
“predictability sieve” criterion, based on an intuitive idea
Pointer states can be defined as the ones which beco
minimally entangled with the environment in the course
the evolution. The predictability sieve criterion is a wa
to quantify this idea by using the following algorithmic
procedure: For every initial pure statejC�, one measures
the entanglement generated dynamically between
system and the environment by computing the entro
HC�t� � 2Tr� rC�t� logrC�t�� or some other measure
of predictability [7–9] from the reduced density matrix o
the systemrC�t� [which is initially rC�0� � jC� �Cj].
The entropy is a function of time and a functional o
the initial state jC�. Pointer states are obtained b
minimizingHC over jC� and demanding that the answe
be robust when varying the timet.

The nature of pointer states has been investigated us
the predictability sieve criterion only for a limited numbe
of examples [9]. Apart from the case of the measureme
situation (where pointer states are eigenstates of
interaction Hamiltonian) the most notable example is th
of a Brownian particle interacting through the positio
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with a bath of independent harmonic oscillators. In such
case pointer states are localized in phase space, even
though the interaction Hamiltonian involves the position
of the particle [8]. Pointer states are the result of the
interplay between self-evolution and interaction with the
environment and turn out to be coherent states.

One may think that the above is a generic situation.
However in nature there are systems which are not
found in localized states but in eigenstates of energy.
Therefore, it is natural to ask how can this be possible.
A conceivable answer could be that such systems (the
electron in an atom, for example) are coupled to their
environments through their self-Hamiltonian [10]. But
this suggestion is easily dismissed because the form of the
interaction is rather universal and generically local [1].

In this Letter we will show that, for a large class of cir-
cumstances, even when the interaction between the system
and the environment depends on position (or other, es-
sentially arbitrary observable), the pointer states selected
through decoherence turn out to be energy eigenstates.
We will illustrate this emergence of quantized energy as a
pointer observable by using the simple but physically rele-
vant example of a particle interacting locally with a quan-
tum scalar field. The nature of pointer states—we shall
see—strongly depends upon the spectral density of the
environment and, when the dominant frequencies present
in the environment are slow with respect to the system’s
own time scale, pointer states turn out to be eigenstates of
energy. On the other hand, only when the environment
modes include frequencies comparable or higher than the
ones associated with the system are the pointer states lo-
calized in phase space.

We will consider the following simple model: The
system is a particle with position �x (moving in a N-
dimensional space) and the environment is a quantum
scalar field f. The interaction is local and is described
by the Hamiltonian Hint � ef� �x�. Expanding the scalar
field in normal modes, the Hamiltonian can be written
as Hint �

R
dN �k �h�k exp�i �k �x� 1 H.c.� where the Fourier

components h �k are proportional to anihillation operators
of the quantum field [i.e., h�k � ea �k��2p�N�2�2vk�1�2].
More generally, we consider models in which the particle-
field interaction is slightly nonlocal taking into account
the finite extent of the particle. In this case, the interac-
tion Hamiltonian H̃int � e

R
dN �y W� �x 2 �y�f� �y� depends

upon the window function W��r� (whose support is a sphere
of radius R, the Compton radius of the particle, centered
around the origin). This nonlocal interaction corresponds
to a Hamiltonian whose Fourier components h �k are multi-
plied by Ŵ� �k� [the transform of W��r�].

For this class of models we can derive a master equation
for the reduced density matrix of the particle. This equa-
tion is obtained under two assumptions: (i) an expansion
up to second order in perturbation theory, and (ii) initial
states with no correlations between the system and the en-
5182
vironment (the initial state of the environment being ther-
mal equilibrium). The master equation reads [11]

�r � 2
i
h̄

�H, r� 2
e2

h̄2

Z
dN �k

Z t

0
dt1

3 ���GH� �k, t1� ���ei �k �x , �e2i �k �x�2t1�, r����

2 2iGR� �k, t1� �ei �k �x , �e2i �k �x�2t1�, r	���� . (1)

Here, �x�t� is the Heisenberg position operator for the
particle (evolved with the free Hamiltonian H) and
GR,H� �k, t� are the Fourier transform of the retarded
and symmetric two point functions of the scalar field
(multiplied by the appropriate window function if the
interaction is nonlocal). When the environment is a
free field, GR� �k, t� � W� �k� sin�v �kt��2v�k , GH� �k, t� �
W� �k� cos�v �kt� �1 1 2Nk��2v �k , where Nk is the number
density of particles in the initial state of the quantum
field (the above result is valid if the field is not free in
which case the propagators are appropriately dressed).
The master Eq. (1) is extremely rich. One of its most
interesting features is that it is local in time [note that the
density matrix appearing in the right-hand side of (1) is
evaluated at time t]. We will use this equation to derive
the main results of this Letter. But before, it is useful to
show how some known results follow from Eq. (1).

The most widely used approximation for the particle-
field model is the dipole approximation (dominant wave-
lengths in the environment are much larger than the length
scale over which the position of the particle varies). Ex-
panding up to second order ( �k �x ø 1) we obtain

�r � 2
i
h̄

�H, r� 2
e2

h̄2

Z t

0
dt1

3 ���FH�t1� ��� �x, � �x�2t1�, r����

2 iFR�t1� � �x, � �x�2t1�, r	���� , (2)

where FR,H�t1� �
R

dN �k �k2GR,H� �k, t1��N�2p�N�2.
One can recognize (2) as the master equation of a

Brownian particle interacting with an environment of os-
cillators. It can be further simplified for a harmonic oscil-
lator with frequency V since in this case, the Heisenberg
operator is x�t� � x cos�Vt� 1

1
mV p sin�Vt�. Using

this, we rewrite the master equation as

�r � 2
i
h̄

"
H 1

1
2

mṼ2�t�x2, r

#
1 2ig�t� � �x, � �p, r	�

2 D�t� ��� �x, � �x, r���� 2 f�t���� �x, � �p, r���� . (3)

Here the time dependent coefficients [the frequency renor-
malization Ṽ�t�, the damping coefficient g�t�, and the two
diffusion coefficients D�t� and f�t�] are
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Ṽ2�t� � 2
2h̄
m

Z t

0
dt0 cos�Vt0�FR�t0� ,

g�t� � 2
h̄

2mV

Z t

0
dt0 sin�Vt0�FR�t0� ,

D�t� �
Z t

0
dt0 cos�Vt0�FH�t0� ,

f�t� �
1

mV

Z t

0
dt0 sin�Vt0�FH�t0� .

(4)

The existence of a local master equation for linear
Brownian motion was recognized some time ago [12].
In fact, for this system an exact local master equation
can always be obtained under the sole assumption of
uncorrelated initial conditions [13]. Equation (3) has
the same form as the exact master equation and its
coefficients (4) coincide with the perturbative expansion
of the exact ones. The particularly simple form of the
perturbative coefficients is worth noting. This equation
has been used to study the nature of pointer states in
Brownian motion models. In fact, if the particle moves
in one dimension (N � 1) and the high frequency cutoff
[present in W�k�] is much larger than V we have FR�t� ~

d0�t�. Moreover, in the limit of high temperatures we
also see that FH�t� ~ d�t�. Using this in Eq. (4) we find
that the coefficients appearing in the master equation are
approximately constant and using this we can prove that
pointer states tend to be localized in phase space [8].

To investigate the quantum limit of decoherence we
analyze Eq. (3) in the opposite regime considering the
case in which the frequencies in the environment are much
lower than V (the frequency of the system). In this case
FR,H �t� vary slowly in time and could be taken outside the
integrals in (4). Therefore, the coefficients of the master
equation turn out to be oscillatory functions [actually, as
FR�0� � 0 we have Ṽ�t� 
 g�t� 
 0, while the diffusion
coefficients oscillate with an amplitude proportional to
FH �0�]. Thus, one may be tempted to conclude that an
adiabatic environment does not dynamically select any
preferred basis of the system. However, we will now
show that this type environment can lead to decoherence,
although it can no longer impose its own preferences for
the pointer states which turn out to be the eigenstates of
the system Hamiltonian. To obtain this result we take
a step back and analyze the master Eq. (1) without the
dipole approximation. The master (1) is

�r � 2
i
h̄

�H, r� 2
X
k

Z t

0
dt1

3 ���ck�t1� ���Sk , �Sy
k �2t1�, r����

2 2ic0
k�t1� �Sk , �Sy

k �2t1�, r	���� , (5)

where we have written the integral over �k as a sum, and
introduced the operators Sk � exp�i �k �x�, which act on the
system’s Hilbert space and the functions ck�t� and c0

k�t�
(proportional to the Fourier transform of the symmetric
and retarded propagators of the field). When the environ-
ment behaves adiabatically we can rewrite this equation.
Thus, if ck�t� and c0

k�t� are slowly varying functions one
can take them outside the temporal integrals which can
then be performed after writing the operator Sk�t� in the
energy eigenbasis. Assuming that the system has a nonde-
generate spectrum the resulting master equation [obtained
from (5) by averaging over the largest Bohr period] can
be written in the energy eigenbasis as

�rnm � 2ivnmrnm 2 g2
nmtrnm 2 t

X
k,j

Akjnmrkj , (6)

where vnm � �En 2 Em��h̄ and g2
nm, Alnm and Blnm

depend on ck and c0
k and on the matrix elements of

Sk in the energy eigenstates jfn�. For example, g2
nm �P

k ck�S�nn�
k 2 S

�mm�
k �2 where S

�nm�
k � �fnjSkjfm�.

This equation enables us to derive our main result. On
the one hand, we can see that an environment behaving
adiabatically does not produce any change in the popula-
tion of energy eigenstates. On the other hand, the evolu-
tion of nondiagonal elements is dominated by the second
term on the right-hand side of (6) which implies that they
decay at a rate gnm which is determined by the sum of
the squared differences between the corresponding expec-
tation values of the operators Sk . Thus, neglecting the
contribution of the last terms in (6) (they will generally
have alternating signs and therefore a small net effect),
we find that rnm�t� 
 rnm�0� exp�2ivnmt� exp�2t2g2

nm�.
It is now straightforward to see that energy eigenstates
are perfect pointer states and (at the approximation level
adopted above) produce no entropy. Thus, we have
shown that energy eigenstates are the ones which are
selected by the environment as the pointer states when
the environment behaves adiabatically. As the decay rate
for nondiagonal elements depends on the difference be-
tween the corresponding diagonal elements of Sk in the
energy eigenbasis, for decoherence to take place these
operators must have nonvanishing diagonal elements in
the energy eigenbasis. This is the reason why this ef-
fect could not be found using the master equation for
quantum Brownian motion, which is obtained by apply-
ing the dipole approximation to Eq. (1): In fact, in that
case Sk 
 1 2 i �k �x, whose �x-dependent part has vanish-
ing diagonal elements in energy eigenbasis. The range of
times over which our conclusions are valid is not limited
by the use of a perturbative expansion in the equations
above but by the adiabatic approximation. The following
simple argument shows that this is indeed the case: Con-
sider an initial pure state of the system-environment en-
semble jC�0�� �

P
n anjfn� jE0� where jE0� is the initial

state of the environment. Solving the Schrödinger equa-
tion in the adiabatic approximation one finds jC�t�� �P

n exp�2ivnt� jfn� jEn�t��, where the states of the en-
vironment correlating with different energy eigenstates
5183
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are jEn�t�� � exp�2it�fnjHintjfn��h̄� jE0�. The over-
lap �En�t� jEm�t�� can be computed for some simple
examples. Thus, when �fnjHintjfn� acts as a displace-
ment operator for the environment (as in the above
particle-field model) it can be estimated to be �En�t� j
Em�t�� 
 exp�2g2

nmt2� where gnm is the coefficient ap-
pearing in (6). Thus, decoherence occurs at the predicted
rate as long as the adiabatic approximation is accurate
(times must be shorter than the environmental time scale,
which we assumed to be the longest in the problem).

There are three basically distinct regimes in which
one can analyze the properties of the pointer states
selected through decoherence. They differ through the
relative strength of the self-Hamiltonian and of the
Hamiltonian of interaction. The first one is the mea-
surement situation [1] where the self-Hamiltonian of
the system is negligible and the evolution is completely
dominated by the interaction with the environment. In
such case, pointer states are eigenstates of the interaction
Hamiltonian. The second, most common and complex
situation occurs when neither the self-Hamiltonian
nor the interaction with the environment is clearly
dominant. Then the pointer states arise from a compro-
mise between self-evolution and interaction. The most
widely studied example of this situation is the Brownian
motion model for which pointer states become localized
in phase space. The third situation completing this picture
is the one we analyzed in this Letter. It corresponds to
the case where the dynamics is dominated by the system’s
self-Hamiltonian. In this case einselection produces
pointer states which coincide with the energy eigenstates
of the self-Hamiltonian.

Our conclusion conforms with the heuristic picture of
decoherence and einselection: The environment “moni-
tors” certain states and, by doing so, elevates them to the
pointer state status. In absence of the self-Hamiltonian
this leads to the selection of eigenstates of the interac-
tion Hamiltonian. However when energy eigenstates are
separated by more than the highest energies present in the
environment a “protective monitoring” of energy eigen-
states will ensue [14]. Thus, an environment coupling to
the system through nearly any observable will become cor-
related with an energy eigenstate, because time average of
any observable over a time necessary to establish correla-
tions (achieving orthogonality of records imprinted in the
environment) can depend on the only nonoscillating quan-
tity: energy [15].

Quantum jumps are a proverbial characteristic of
quantum theory, and an old subject of heated debates.
Schrödinger had hoped that his equation would do away
with the discreteness, replacing jumps with a compre-
hensible or at least continuous process. He became
physically ill when Bohr convinced him otherwise, and
was never reconciled with this conclusion [16]. The
jumps were a phenomenological, but phenomenally
successful rule of thumb introduced by Bohr in the old
5184
quantum theory. However, in absence of some sort of
collapse postulate they are difficult to understand within
the purely unitary evolution of a closed quantum system,
as it is illustrated by recent exchanges of comments
[17]. We have now seen in one—quite generic—set
of circumstances how the telltale quantum discreteness
emerges when the continuum of Schrödinger evolution
is sieved out by einselection. Remarkably, even the
discreteness of quantum physics appears to be in part
traceable to decoherence.

We have shown how the Schrödinger equation alone
suffices to bring about discreteness by enforcing einslec-
tion of energy eigenstates, providing that the environ-
ment is included in the considerations. Granted, the
discrete spectrum of the self-Hamiltonian is a necessary,
but—alone—an insufficient condition: Superposition
principle would demand “equal rights” for arbitrary super-
positions of energy eigenstates. Yet, in the presence of an
adiabatic environment, eigenstates of the self-Hamiltonian
are selected assuming the role of pointer states.
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