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A theory of low-temperature (T) electron spin resonance (ESR) in half-integer spin antiferromagnetic
chains is developed using field theory methods and avoiding previous approximations. It is compared
to experiments on Cu benzoate. Power laws are predicted for the linewidth broadening due to various
types of anisotropy. AtT ! 0, zero width absorption peaks occur in some cases. The second ESR
peak in Cu benzoate, observed atT , 0.76 K, is argued not to indicate Néel order as previously
claimed, but to correspond to a sine-Gordon “breather” excitation. [S0031-9007(99)09424-7]
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In electron spin resonance (ESR) a static magnetic fie
is applied and the absorption of radiation polarized alon
the field direction is measured, as a function of frequenc
The absorption intensity is proportional to the Fourie
transform of the correlation function of the (zero wave
vector) total spin operator,Gstd ; kS1stdS2s0dl, when the
field is along thez axis. (HereS ;

P
Sj .) We write the

Hamiltonian:

H ­ H0 1 H 0 1 HZ , (1)

where H0 is the isotropic Heisenberg Hamiltonian,
J

P
Si ? Si11, HZ is the Zeeman term,2H

P
Sz

i , and
H 0 represents various possible small anisotropic term
(We setgmB ­ 1.) WhenH 0 ­ 0, fH , S2g ­ HS2,
implying that the absorption spectrum consists only o
a d-function peak at the Zeeman energy,H. The shift
and nonzero width of this peak are caused by the sm
anisotropic terms in the Hamiltonian,H 0.

In this paper we develop a new approach to calculatin
the ESR intensity for one dimensional antiferromagne
(1D AF’s) of 1y2-integer spin. Using bosonization and
the standard Feynman-Dyson self-energy formalism w
are able to avoid making assumptions about the relaxati
function as in the previous treatment [1].

We then calculate the width and shift perturbatively
avoiding previous Hartree-Fock approximations which a
generally invalid in 1D. This perturbation theory generall
breaks down due to infrared divergences at lowT where
universal scaling functions give the shift and width, whos
calculation requires more powerful methods, based, f
example, on exact integrability. We study the case whe
H 0 corresponds to a staggered field [2]. We show that th
width is proportional tosHyT d2 and the shift tosHyTd3 at
intermediate temperatures. The predicted dependence
T , H and field direction is shown to agree with experimen
on Cu benzoate. We argue that the low-temperature ES
experiments are observing excitation of a sine-Gordo
breather above the ground state, rather than Néel order
previously claimed.
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We bosonize the spin operators, withH0 corresponding
to a free boson Lagrangian,s1y2d

R
dx ≠mf ≠mf and

Sz
j ø

1
p

2p

≠f

≠x
1 const3 s21dj coss

p
2p fd ,

S2
j ø ei

p
2p f̃fconst3 cos

p
2p f 1 Cs21djg .

(2)

Here, the fields may be decomposed into left and rig
movers asf ­ fL 1 fR and f̃ ­ fL 2 fR and we
set the spin-wave velocity to 1. Noting thatHZ ­
2sHy

p
2p d≠fy≠x, we see thatHZ may be eliminated

by the field redefinition,

f ! f 1 sHy
p

2p dx . (3)

This shift must be applied to the bosonization formul
of Eq. (2). Upon Fourier transforming the spin oper
tors, this means that some momenta get shifted by6H.
Writing the low-momentum parts of the spin operators
terms of left and right spin currents,sJL 1 JRd, we see
that the ESR absorption intensity can be written in term
of the Green’s functions of these operators. The effe
of shifting f is to shift the Fourier modes of the current
asJ6

R skd ! J6
R sk 1 Hd, J6

L skd ! J6
L sk 2 Hd. Note that

the bosonized version ofH0 1 HZ is apparently inde-
pendent ofH and hence SU(2) invariant; it is only the
mapping from the lattice spin operators to the field theo
which depends onH. [Actually, it is known that the cor-
relation exponents vary withH, corresponding to a change
in the compactification radius off. However, this can be
seen to be irrelevant to ESR, which probes the finite e
ergy ,H. The effective SU(2) symmetry is manifeste
by the zero linewidth of the ESR peak.) The ESR inte
sity is determined by the Green’s functions ofJ6

L,R, which
are given by exponentials offL,R. On the other hand,
the Green’s functions ofJz

L,R are easier to deal with since
these fields are linear infL,R. In particular, we may use
the standard Dyson result to write the retarded Gree
function for f in terms of the self-energy,Psq, v, T d:
Gf ­ fv2 2 k2 2 Pg21. This is a very useful formula
© 1999 The American Physical Society
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for ESR because, in the limit where we may treatH 0 per-
turbatively, the shift and width are simply given by th
real and imaginary parts ofPsH, Hd. Using the effective
SU(2) symmetry of the bosonized theory we may expre
the ESR intensity in terms of the Green’s functions ofJz

L,R .
Note that the validity of Dyson’s formula is a highly non
trivial result of the structure of perturbation theory to all or
ders, resulting from the multiple insertions of one-partic
irreducible diagrams and free propagators. In our new a
proach, this essentially replaces the previous assumpti
[1] about the relaxation functions.

We consider the particular example of a transver
staggered field:

H 0 ­ h
X

j

s21djSx
j . (4)

This term arises, withh ~ H, from either a staggered
off-diagonal component of theg tensor or from a
Dzyaloshinskii-Moriya (DM) interaction [2]; both of these
occur in Cu benzoate. The bosonized interaction isH 0 ­
hC

R
dx coss

p
2p f̃d, which is unaffected by the field

redefinition. In the caseH ­ 0, H0 1 H 0 is invariant
under rotation about thez axis by p. It then follows
that the Green’s function giving the ESR intensity can b
expressed asG12 ­ Gxx 1 Gyy, sinceGxy ­ 0. (Here
Gab ; 2ikfSa, Sbgl.) We now use the SU(2) symmetry
of H0 to prove thatGxx for a staggered field in thex
direction is the same asGzz for a staggered field in thez
direction andGyy for a staggered field in thex direction
is the same asGzz for a staggered field in they direction.
As argued above, this SU(2) symmetry remains presen
the bosonized version ofH0 1 HZ for nonzeroH. Thus
we have succeeded in expressing the ESR intensity
terms ofkffl although we apparently must consider tw
different forms ofH 0. In fact these two differentH 0s
differ only by the interchange off $ f̃, corresponding to
Jz

R $ 2Jz
R. Thus, the contribution to the ESR intensity

~ kJz
LJz

Ll 1 kJz
RJz

Rl, is identical in both cases. Thus ou
formula for the ESR intensity,Isv, H, T d becomes

I ~ 2v Im

"
H2 1 v2

v2 2 H2 2 Psv, H, T d

#
. (5)

This fundamental formula replaces the moread hocones
generally used in ESR theory. It will be particularly usefu
whenH 0 can be treated as a small perturbation, resulti
in a small value ofPsH, HdyH ø H, T . In this case
Eq. (5) predicts an approximately Lorentzian line sha
with shift RePsH, Hdy2H and width2ImPsH, Hdy2H.

Note thath is a relevant coupling constant of scaling d
mension 3y2. It produces an excitation gap,D ~ J1y3h2y3.
Thus perturbation theory inh will be valid only at highT ;
infrared divergences occur forT # D. It follows from
general scaling arguments that the shift and width bo
have the formTfisDyT , HyT d, for two different scaling
functions fi. We first consider the caseT ¿ D where
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we may use lowest order perturbation theory inh; we
consider the lowT case later. The first nonvanishin
term isOsh2d. We must amputate the external lines fro
the Green’s functionkf expfi

p
2p fg expf2i

p
2p fgfl.

This can easily be done by Taylor expanding the expon
tials and gives two terms corresponding to Feynman d
grams in which the external lines are attached to the sa
or different vertices. This gives

PsH, Hd ø 2psChd2fG0sH, Hd 2 G0s0, 0dg , (6)

where G0 represents the retarded Green’s function
sins

p
2p fd in the free theory. We also performed

field-theory calculation using the traditional approach [
to find the same result as above, in the lowest order
perturbation. Of course, the higher order perturbat
terms from our new formulation, and in particular th
nonperturbative lowT behavior, go beyond the traditiona
approach.

G0 has been evaluated by Schulz [3]. In general
a normalized primary field with left and right scalin
dimensionsxL ­ xR ­ xy2 the retarded Green’s function
is given by, usingv6 ­ v 6 q,

Gsv, qdx ­ 2s2pT d2x22Fx

√
v2

T

!
Fx

√
v1

T

!
sinpx ;

(7)

Fxsed ; Gsxy2 2 iey4pd
3 Gs1 2 xdyGs1 2 xy2 2 iey4pd , (8)

whereG is Euler’s Gamma function. For the stagger
field case,x ­ 1y2. Also considering the limitH ø T ,
we may Taylor expandFxsed. Although the proportional-
ity factor, C, in the bosonization formula, Eq. (2) is no
universal it was recently evaluated exactly using Be
ansatz results [4]. Because of a marginally irrelevant
erator in the Hamiltonian, so far ignored,C2 is effectively
proportional to lnT (for T ¿ H). This finally gives the
results for the shift,dv and widthh:

dv ø 0.42596slnJyT dJh2HyT3,

h ø 0.685701slnJyT dJh2yT2.
(9)

The effective staggered field,h, is determined by a linea
combination of the staggered component of theg tensor
and the DM interaction. It takes the formh ­ cH where
the proportionality constant,c, is a strong function of the
direction of the applied field. Thus the shift and wid
should scale as essentiallysHyT d3 and sHyT d2, respec-
tively, with strong field-direction dependence, in the tem
perature rangeD, H ø T ø J. (In experiments, usually
the frequency is kept fixed; the frequency dependence
responds to theH dependence.) Note that the width an
shift increasewith decreasingT . The increase of the shif
(but not the width) due to the staggeredg tensor was al-
ready discussed by Nagata [5] using a classical spin
proximation, although our result is quite different from hi
5137
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Such a peculiar behavior of the width was actually ob
served in Cu Benzoate [6]. We choose the DM vecto
sDa00 , Dc00d ­ s0.13, 0.02dJ, which seems consistent with
most of the experimental data on Cu benzoate [2]. Fi
ures 1 and 2 show the dependence of the width on fie
direction,T and H. [There we replaced the logarithmic
factor in Eq. (9) by unity.] We see from Fig. 1 that while
the direction dependence and magnitude of the width a
roughly reproduced, there appears to be an addition
smaller contribution to the width with weaker dependenc
on field direction. We expect such a contribution from ex
change anisotropy (discussed below); there may be ot
contributions as well. In Fig. 2, the temperature depe
dence of the linewidth forH k c00 is shown for several
resonance frequencies (i.e., field magnitudeH). We see
that the dependence of the width onH andT are well re-
produced by our theory of the staggered field effect, a
though an additional contribution to the width, dependin
less strongly onH andT , is evident.

Another possibility is that the increasing width with
decreasingT is related to the onset of Néel order a
low T due to interchain couplings ignored in our theory
However, there is no evidence for Néel order from neutro
scattering or susceptibility measurements [7]. (As w
argue below, the interpretation [8] of ESR at still lowerT
as evidence for Néel order seems incorrect.) Furthermo
it seems unlikely that the peculiar dependence of th
width on the three different variables,T , H and direction,
captured by our purely 1D theory, could be explained
this way.

For T # D, the above perturbative analysis break
down. In the extreme lowT limit, T ø D, we can
nonetheless make some statements about the ESR
tensity based on general principles and on exact resu
on the sine-Gordon model [2]. The simple picture of
Lorentzian line shape characterized by just a shift and
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FIG. 1. The field-direction dependence of the ESR linewid
in the ac plane at frequency 35 Hz [6] compared to Eq. (9).
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width is no longer very useful. Instead at very lowT , ESR
experiments should, in principle, be able to resolve so
of the same excitations above the ground state as s
in neutron scattering. (Related observations were ma
independently by Boucheret al. recently [9].) Using the
SU(2) rotation trick discussed above, we see that the rad
tion can create the excitations of the sine-Gordon mo
produced from the ground state by the scalar field,f.
This includes the first breather as well as a multipartic
continuum. Thus the ESR intensity,Isvd atT ­ 0 should
contain a zero width peak at the energy of the breath
with momentumH,

v ­
q

H2 1 Dshd2 , (10)

in addition to a continuum at higher energies. Calcul
tions of thef form factor [10] based on the exact integra
bility of the sine-Gordon model indicate that the intensi
of the multiparticle contribution is very small and that th
spectrum is dominated by the first breather peak at z
temperature. This breather peak can get broadened o
by collisions with thermally excited particles, so we ex
pect that its width should vanish as expf2DyT g. As the
temperature is raised other contributions to the ESR int
sity should appear corresponding to additional proces
involving thermally excited particles.

Experimentally [8] a noticeable change in ESR spectru
occurs atT of OsDd. In particular, a two-peak structure
is observed for an intermediate range ofT . At lower
T only the higher energy peak survives. A possib
interpretation of this behavior is that the higher ener
peak represents excitations from the ground state, perh
primarily the first breather whereas the lower ener
peak, which disappears with decreasingT , corresponds to
other processes involving thermally excited particles. Th
hypothesis can be tested by fitting the shift to the breat
energy of Eq. (10). Note that this leads to a characteris
direction dependence of the shift due to the strong direct
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dependence of the effective staggered field,h, and hence of
the gap,D. Using the previously determined parameter
we obtain the dependence of resonance field (i.e., shift)
direction which is compared to experimental data at lowT
in Fig. 3. The agreement looks quite good. On the oth
hand, the observed width of this lowT peak appears to go
to a nonzero value at lowT , which appears inconsistent
with the breather interpretation. This may be due to a
additional broadening mechanism which is effective
low T such as quenched disorder. Further experimen
at higher field would help to clarify the situation. In any
event, the previous interpretation of the lowT peak as
a signal of Néel order seems unjustified. Instead it c
perhaps be explained entirely within the 1D theory takin
into account the nontrivial evolution of the ESR intensit
with T andH. This would then resolve the contradiction
between the claimed observation of Néel order from ES
and its nonobservation in neutron scattering. It is wor
emphasizing that the staggered field, by producing a g
and a staggered moment, tends to suppress the interch
coupling effects.

We have also analyzed the contribution to the widt
from exchange anisotropy (and/or dipolar interaction
,

P
j Sa

j MabS
b
j11 using field theory, based on our new
r
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formulation as well as the traditional one [1]. We em
phasize that it is not necessary to use a Hartree-F
approximation to calculate the Green’s function, as h
been commonly done in the past, even when the opera
is quadratic in the lattice spin operators. Indeed su
Hartree-Fock approximations are generally qualitative
wrong in the 1D case. SinceH 0 is marginal it follows
from scaling thath ~ Tfsd, HyT d, wherejMj ~ d andf
is a scaling function. Using Eqs. (7) and (8) in the lim
of x ! 2, and including the effect of the large isotropi
marginal operator gives the width

h ~ sdyJd2flnsJyT dg2T . (11)

Such a linearT -dependence of the width is observe
approximately, over an intermediate range ofT , in a
variety of quasi-1D antiferromagnets [11–13]. As far a
we know, ours is the first derivation of this behavior from
first principles.
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