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Universal Finite-Size Scaling Functions in the 3D Ising Spin Glass
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We study the three-dimensional Edwards-Anderson model with binary interactions by Monte Carlo
simulations. Direct evidence of finite-size scaling is provided, and the universal finite-size scaling
functions are determined. Monte Carlo data are extrapolated to infinite volume with an iterative
procedure for correlation lengths up ® = 140. The infinite-volume data are consistent with a
conventional power-law singularity at finite temperatiéiye Taking into account corrections to scaling,
we find 7, = 1.156 £ 0.015, » = 1.8 £ 0.2, andn = —0.26 = 0.04. The data are also consistent
with an exponential singularity at finitE., but not with an exponential singularity at zero temperature.
[S0031-9007(99)09407-7]

PACS numbers: 75.10.Nr, 64.60.Fr, 75.40.Mg, 75.50.Lk

The critical properties of the Ising spin glass in three Model and FSS method-We consider the 3D
dimensions are still not very well understood. NumericalEdwards-Anderson model, whose Hamiltonian is
simulations have led to some progress [1,2], but have been
hampered by technical difficulties. Large-scale Monte H==> ooy, 1)
Carlo (MC) simulations at correlation length= 10 lat- (xy)
tice units [3—5] are consistent with both a continuous phas@hereo, are Ising spins on a simple cubic lattice of linear
transition with power-law divergence @f at finite tem-  size L with periodic boundaries, and,, are independent
peraturel’ = T, and an exponential divergenceZat= 0,  random interactions taking the valugd with probability
which is expected at the lower critical dimension. High—%, The sum runs over pairs of nearest neighbor sites.
statistics MC simulations of smaller systems [6—-8] give |et (T, L) be a suitably defined finite-volume correla-
certain evidence of &, # 0 transition with an ordered tjon length, and let® (T, L) be any singular observable,
spin glass phase beloli, but cannot exclude either an ex- such asé(T, L) itself or the spin glass susceptibility (see

ponential divergence dt = 0 or a line of critical points at  pelow). Then FSS theory [12] predicts that
T =T. # 0]6,8,9], as in the Kosterlitz-Thouless theory

of the 2DXY model. Understanding whether an ordered O.L) _ folé(T,»)/L], (2)
spin glass phase exists in three dimensions is clearly an is- O(T, )
sue of major interest. where fo is a universal function and corrections to FSS

In this work, we study the 3D Ising spin glass with an are neglected. From Eq. (2), one obtains the relation
approach, based on finite-size scaling (FSS) and MC simu- O(T.2L)
lations in the paramagnetic phase, introduced in Ref. [10] —_—
(see Ref. [11] for similar methods) and thus far applied to O(T,L)
nondisordered systems. Let us summarize our main revhere Fp is another universal function and only finite-
sults. (i) We provide a direct test of the FSS hypothesisyolume observables are involved. Our approach works
independent of the nature of the divergence in the infias follows (see Ref. [10] for details). We make MC runs
nite system. In particular we determine, for the first timeat numerous pair§l’, L), (T,2L) and we plot® (T',2L)/
to our knowledge, theiniversalFSS functions. (i) We O(T, L) versusé(T,L)/L. If all of these points fall with
demonstrate the effectiveness of an iterative procedure tgpood accuracy on a single curve—thus verifying the ansatz
extrapolate the MC data to infinite volume that allows us(3)—we choose a smooth fitting functidipy . Then, using
to reaché ~ 140. (iii) Exploiting the higher range of, the functionsF; and Fp, we extrapolate the paii, O)
we show that an exponential divergenceTat 0 is ex- iteratively fromL — 2L — 2°L — ... — o,
cluded, but we still cannot decide between a power-law Computational details—We simulate the model in
divergence aff. # 0 and a line of critical points termi- Eq. (1) with the heat-bath algorithm. We measyte=
nating atT, # 0. (iv) Under the hypothesis of power-law o,7, andg = L™3 Y, ¢, from two independent replicas
divergence, we show that corrections to scaling are importo, 7) with the same/,,. We choose as a definition of
tant and we estimatg,. and the critical exponents. &(T, L) the second-momertorrelation length

= Folé(T,L)/L], 3)
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[S(0)/S(p) — 1]/ ferentL. An implicit assumption of the iterative proce-
E(T,L) = 2sinipl2) (4)  dure is that the ansatz (3) with a given functibg will
p continue to hold ad. — . This assumption could fail
whereS (k) is the Fourier transform if the system exhibits a crossover at larfjeas in any
_ iker FSS analysis. However, as shown in Table Il, extrapola-
Stk) = 2 " axqrer) ) tions atT = 1.4084 from smallL are consistent with data

from largeL, which have little or no finite-size effects. We
gherefore believe that a crossover is unlikely.
In order to test for systematic errors due to corrections to
FSS, we repeated the analysis excluding 5, 6 from the
fits of F ., F¢ and we found that extrapolated data change
yvithin their error bars. We have good control on the
extrapolated data up ® = 140; at lower temperatures the
statistical errors become quite large, and the data are more
nsitive to the region of high, where there are few data

(argumentsT, L are omitted) andp = (0,0,27/L) is
the smallest nonzero wave vector [13]. The spin glas
susceptibility isysg (T, L) = L3(g?) = 5(0). The symbol
() represents a double average over thermal noisg gnd
which is estimated fronv, samples with different, .

The runs are done on a Cray T3E parallel compute
with a fast code that exploits the parallelism of spin
glass simulations. The binary variables and J,, at
corresponding sites of 64 samples (each represented . X
a single bit) are stored in a 64-bit integer variable, an om largeL. (The largesk used for the extrapolations is
64 o’s are updated simultaneously with only 31 logical* = -7 fromT = 1.2059,L = 5.)
instructions and one random number [14]. Average speeg In F'g.' 2 we .ShOW that, with our extrapo!ated data,
on a single processor (PE) i5 X 107 spin updates g. (2) is satisfied remarkably well, /erowdlng a fur-
per second (DEC Alpha EV5, 600 MHz). The PEs arether test O.f the method. 'f@. A asig /_V’ *
arranged in a virtual parallelepiped along whose axis wden fo (%) in Eq. (2) must satisfyfo (x) ~ x~7'* as
can distribute independent groups of 64 samples, different — . As shown in Fig. 2 (insets), our curves indeed
“slices” of a large lattice, and different temperatures. We

typically used 32 to 128 PEs. Equilibration of the runs 55 i aed
is verified with the criterion introduced in Ref. [15]. The 5 £ 0) @F‘ E
sizes simulated range frofm = 4 to L = 48, from which s N
we form 104 pairs(T,L), (T,2L). In Table | some 45 ¢ g}&? E
parameters of the simulations are given. The equivalent  ~ 4 F 4 E
of about two years of computer time on a single PE was = i lé ]
employed. X35 3 i a6 E
FSS analysis—In Fig. 1 we show that, within our sta- g‘ 3 F &t ¢ 8
tistical accuracy, the FSS ansatz (3) is well verified for = - £ &% . 12;
O = ysg and O = ¢. No systematic deviations from e # ]
the curves are detectable, but datalat 4, not dis- 2 - = 16
Lo o ’ : Y ]
played in Fig. 1, are significantly outside the curves for 15 b @g x 24
&(T,L)/L = x > 0.2. We verified that other observables, TF -t ]
such as the Binder ratio, also satisfy Eq. (3). We empha- 1| meaw@ ™ T
size that FSS was not assumadgriori and that Eq. (3) e e
contains no adjustable parameters. Furthermore, no par- 2T b) @H 1]
ticular dependence af and ysg on T was assumed. I ]
We fit the data in Fig. 1 to two functions,, F¢ of the 1.8 ' -
form F(x) =1+ ,_,, a;exp(—i/x), obtaining good —_ I
fits with n = 3 or 4 (goodness of fiparameteiQ > 0.9). 216l ]
UsingF ., F¢, We then computgsg (T, %), é(T, ) with N i
the iterative procedure described above. In Table Il we g
show that extrapolations from differeiit are consistent, = Lar ]
providing a test of the method. In our final analysis, we e i ]
take the weighted average of the extrapolations from dif- 12 + ; .
I o
TABLE I. Maximum number of sample#/;, minimum tem- 1r %%}E&? .
peratureT,,, and Monte Carlo sweeps (MCS) performedrat il I I I B I B
as a function of the sizé. 0 01 02 03 04 05 06 07
L 4-8 10 12 16 24 32 48 £(T.L)/L
N 1920 1536 960 448 448 448 64
T, 0.9401 0.9793 1.0936 1.1642 1.2059 1.3397 1.4084  FIG. 1. Finite-size-scaling plot with the form in Eq. (3) for
MCS/10° 3 10 10 10 10 10 10 (@) O = ysg and (b) ® = £. Error bars (estimated with a

jackknife procedure) are 1 standard deviation.
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have a power-law asymptotic decay, with negative slopef8], 1.19 = 0.01 [17]; » = 1.3 = 0.1 [4], 1.20 = 0.04
v/v = 2.30 = 0.08 in Fig. 2(a) and=1 in Fig. 2(b). [5], 1.7 = 0.3 [6], 2.00 = 0.15 [7], 1.33 £ 0.05 [17];
We emphasize thaniversalityof the scaling functions » = —0.22 = 0.05[4], —0.35 = 0.05[6], —0.30 = 0.06
in Figs. 1 and 2. It would be interesting to determine the[7], —0.37 = 0.04 [8], —0.22 = 0.02 [17] (notice that
same functions for different distributions of thk,, in  in Ref. [7] a Gaussian distribution of the bonds was
order to test for possible violations of universality [16,17]. considered).
Nature of the phase transitior-We now compare our (i) We fit our data to
extrapolated data with the following scenarios: (fj.a# 0 . o
continuous phase transition; (ii) a line of critical points ¢(T) = feexige/(T = To)7], (8)
terminating atT. # 0, with an exponential divergence as testing the fit stability as above. The fits are excellent with

T — TF; (iii) an exponential divergence & = 0. The = 1.3 but, due to strong correlations betweeandT,

last two scenarios imply a lower critical dimension exactlythe errors on the fit parameters are large. &pr= 1.9 the

equal to three. best fit giveso = 0.20 = 0.05, T, = 1.13 £ 0.02, f; =

(i) We fit our data to (1.0 £ 0.2) X 1073, g, =7 =2 (Q = 0.77). Notice,
E(T) = ce(T — T)’[1 + ae(T — T.)°], (6) however, that any power law can be approximated by

ysg (&) = bEX 1 + df—A], @) an exponential with sufficiently smadt. For &, = 3.8

the best fit (shown in Fig. 4) gives = 0.5 = 0.3, T, =

1.08 £ 0.04, f, = (1.1 £08) X 107!, g, =24 =15

(0O = 0.69). The deviations of the data from this fit for
& < 3 are consistent with corrections to scaling=ef0%.

In general, in the presence of an exponential singularity

with fixed correction-to-scaling exponengsand A [18].

In the fit we include data witl§f = £,,, varyingé,, in order

to test the stability of the fits. Without the corrections to
scaling(ag = d = 0), the quality of fits is good fog,, >
3-4 (Q = 1), but fit parameters (noticeab®., » and n)
show smallsystematicvariations with &,, in the whole —rr
range available. Including the corrections, we obtain ex- i
cellent and stable fits with = 8 = 2 and1 = A = 1.5,

the preferred values beingg = 14 (Q > 0.6) andA =

1.3 (Q > 0.98). Our estimates for the fitting parameters
areT, = 1.156 = 0.015, » = 1.8 £ 0.2, n = —0.26 =
0.04, c; =07 =02, a;g =05 %03, b =33 %03,
andd = 0.9 = 0.1, where the errors take into account the
uncertainties ord and A. We then obtainy = v(2 —

n) = 4.1 = 0.5. As shown in Figs. 3 and 4, corrections
to scaling are important fof = 10 [19]. Since the fits
do not include theanalytic corrections to scalingA and

@ should be regarded as “effective” exponents. For com-
parison, we quote some estimates from other MC works:
T. = 1.175 = 0.025 [4], 1.11 *= 0.04 [6], 1.13 = 0.06

x(T.L)/x(T)

TABLE Il. Examples of measured and extrapolated values of
the correlation length and the spin glass susceptibility. See
Ref. [10] for how to estimate error bars of extrapolated values.

T L &T,L) &(T,*) xsc(T,L) xsg(T,»)

§(TL)/E(T)

12059 5 285(7)  120(60) 36.1(3) 1.8(5) X 10° I )
6 342(6) 150(60)  55.1(5) 2.8(8) X 10 0.6 |- [
8  447(6)  126(30) 103(1)  1.9(5) X 10° ) I B% S : -
10 5.57(6)  146(30)  171(2) 2.8(8) X 10° 04 [ w00 11010y
12 6.60(8) 143(30)  260(3) 2.7(8) X 10° ol L1 ]
16  8.60(15) 131(30) 473(10) 2.1(8) X 10° i %0 1
B . |
14084 5 2285 85(9)  254(2) 43(3) X 102 0.2 1 Y ]
6 2664) 87(7)  36.14) 46(3) X 10? ; e,
8  333(4)  8.4(4) 60.0(6) 4.3(2) X 10? o L W gty
10  3.94(4)  8.4(3) 88.3(1) 4.3(2) X 102 S - ol »
12 45105 8.6(3) 120(2) 4.5(2) x 107 10 1 10 10
16  5.46(8)  8.6(3) 178(4)  4.4(2) X 10? ¢(T)/L
24 6.60(11) 8.1(2) 269(6) 4.2(2) X 10?
32 7.16(15) 7.8(2) 32009) 3.8(2) X 10? FIG. 2. Finite-size-scaling plot with the form in Eq. (2) for

48 8.6(6) 8.9(7) 404(30)  4.3(3) X 102 (@ O = xsg and (b)O = ¢. The insets represent the same
data in a log-log plot, showing power-law decay for lagé..
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FIG. 4. Critical behavior of the infinite-volume data. The
solid line is the best fit to Eq. (6) fof = 1.9, the dotted line

is the leading term from the same fit, the dashed line is the best
fit to Eqg. (8) for¢ = 3.8, and the dotted-dashed line is the best
fit to Eq. (10) for¢ = 14.

FIG. 3. Ciritical behavior of the infinite-volume data. The
solid line is the best fit to Eq. (7) fof = 1.8, the dotted line

is the leading term from the same fit, the dotted-dashed line i
the best fit to Eqg. (9) fog = 2.2.
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