
VOLUME 82, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 21 JUNE 1999

arlo
ling
tive

.

5128
Universal Finite-Size Scaling Functions in the 3D Ising Spin Glass

Matteo Palassini
Department of Physics, University of California, Santa Cruz, California 95064

and Scuola Normale Superiore and INFM, 56100 Pisa, Italy

Sergio Caracciolo
Scuola Normale Superiore and INFN, 56100 Pisa, Italy

(Received 10 February 1999)

We study the three-dimensional Edwards-Anderson model with binary interactions by Monte C
simulations. Direct evidence of finite-size scaling is provided, and the universal finite-size sca
functions are determined. Monte Carlo data are extrapolated to infinite volume with an itera
procedure for correlation lengths up toj ø 140. The infinite-volume data are consistent with a
conventional power-law singularity at finite temperatureTc. Taking into account corrections to scaling,
we find Tc ­ 1.156 6 0.015, n ­ 1.8 6 0.2, and h ­ 20.26 6 0.04. The data are also consistent
with an exponential singularity at finiteTc, but not with an exponential singularity at zero temperature
[S0031-9007(99)09407-7]
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The critical properties of the Ising spin glass in thre
dimensions are still not very well understood. Numerica
simulations have led to some progress [1,2], but have be
hampered by technical difficulties. Large-scale Mont
Carlo (MC) simulations at correlation lengthj ø 10 lat-
tice units [3–5] are consistent with both a continuous pha
transition with power-law divergence ofj at finite tem-
peratureT ­ Tc and an exponential divergence atT ­ 0,
which is expected at the lower critical dimension. High
statistics MC simulations of smaller systems [6–8] giv
certain evidence of aTc fi 0 transition with an ordered
spin glass phase belowTc, but cannot exclude either an ex-
ponential divergence atT ­ 0 or a line of critical points at
T # Tc fi 0 [6,8,9], as in the Kosterlitz-Thouless theory
of the 2DXY model. Understanding whether an ordere
spin glass phase exists in three dimensions is clearly an
sue of major interest.

In this work, we study the 3D Ising spin glass with an
approach, based on finite-size scaling (FSS) and MC sim
lations in the paramagnetic phase, introduced in Ref. [1
(see Ref. [11] for similar methods) and thus far applied t
nondisordered systems. Let us summarize our main
sults. (i) We provide a direct test of the FSS hypothesi
independent of the nature of the divergence in the in
nite system. In particular we determine, for the first tim
to our knowledge, theuniversalFSS functions. (ii) We
demonstrate the effectiveness of an iterative procedure
extrapolate the MC data to infinite volume that allows u
to reachj ø 140. (iii) Exploiting the higher range ofj,
we show that an exponential divergence atT ­ 0 is ex-
cluded, but we still cannot decide between a power-la
divergence atTc fi 0 and a line of critical points termi-
nating atTc fi 0. (iv) Under the hypothesis of power-law
divergence, we show that corrections to scaling are impo
tant and we estimateTc and the critical exponents.
0031-9007y99y82(25)y5128(4)$15.00
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Model and FSS method.—We consider the 3D
Edwards-Anderson model, whose Hamiltonian is

H ­ 2
X
kxyl

sxJxysy , (1)

wheresx are Ising spins on a simple cubic lattice of linea
sizeL with periodic boundaries, andJxy are independent
random interactions taking the values61 with probability
1
2 . The sum runs over pairs of nearest neighbor sites.

Let jsT , Ld be a suitably defined finite-volume correla
tion length, and letO sT , Ld be any singular observable
such asjsT , Ld itself or the spin glass susceptibility (se
below). Then FSS theory [12] predicts that

O sT , Ld
O sT , `d

­ fOfjsT , `dyLg , (2)

wherefO is a universal function and corrections to FS
are neglected. From Eq. (2), one obtains the relation

O sT , 2Ld
O sT , Ld

­ FOfjsT , LdyLg , (3)

whereFO is another universal function and only finite
volume observables are involved. Our approach wor
as follows (see Ref. [10] for details). We make MC run
at numerous pairssT , Ld, sT , 2Ld and we plotO sT , 2Ldy
O sT , Ld versusjsT , LdyL. If all of these points fall with
good accuracy on a single curve—thus verifying the ans
(3)—we choose a smooth fitting functionFO . Then, using
the functionsFj and FO , we extrapolate the pairsj, O d
iteratively fromL ! 2L ! 22L ! · · · ! `.

Computational details.—We simulate the model in
Eq. (1) with the heat-bath algorithm. We measureqx ­
sxtx andq ­ L23

P
x qx from two independent replicas

ss, td with the sameJxy. We choose as a definition of
jsT , Ld thesecond-momentcorrelation length
© 1999 The American Physical Society



VOLUME 82, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 21 JUNE 1999

-

la-

to

e
e

ore

,
-

d

jsT , Ld ­
fSs0dySspd 2 1g1y2

2 sinsjpjy2d
, (4)

whereSskd is the Fourier transform

Sskd ­
X

r
eik?rkqxqx1rl , (5)

(argumentsT , L are omitted) andp ­ s0, 0, 2pyLd is
the smallest nonzero wave vector [13]. The spin gla
susceptibility isxSGsT , Ld ; L3kq2l ­ Ss0d. The symbol
k?l represents a double average over thermal noise andJxy,
which is estimated fromNs samples with differentJxy.

The runs are done on a Cray T3E parallel comput
with a fast code that exploits the parallelism of spi
glass simulations. The binary variablessx and Jxy at
corresponding sites of 64 samples (each represented
a single bit) are stored in a 64-bit integer variable, an
64 sx ’s are updated simultaneously with only 31 logica
instructions and one random number [14]. Average spe
on a single processor (PE) is4.5 3 107 spin updates
per second (DEC Alpha EV5, 600 MHz). The PEs ar
arranged in a virtual parallelepiped along whose axis w
can distribute independent groups of 64 samples, differe
“slices” of a large lattice, and different temperatures. W
typically used 32 to 128 PEs. Equilibration of the run
is verified with the criterion introduced in Ref. [15]. The
sizes simulated range fromL ­ 4 to L ­ 48, from which
we form 104 pairssT , Ld, sT , 2Ld. In Table I some
parameters of the simulations are given. The equivale
of about two years of computer time on a single PE wa
employed.

FSS analysis.—In Fig. 1 we show that, within our sta-
tistical accuracy, the FSS ansatz (3) is well verified fo
O ­ xSG and O ­ j. No systematic deviations from
the curves are detectable, but data atL ­ 4, not dis-
played in Fig. 1, are significantly outside the curves fo
jsT , LdyL ; x . 0.2. We verified that other observables
such as the Binder ratio, also satisfy Eq. (3). We emph
size that FSS was not assumeda priori and that Eq. (3)
contains no adjustable parameters. Furthermore, no p
ticular dependence ofj andxSG on T was assumed.

We fit the data in Fig. 1 to two functionsFxSG , Fj of the
form Fsxd ­ 1 1

P
i­1,n ai exps2iyxd, obtaining good

fits with n ­ 3 or 4 (goodness of fitparameterQ . 0.9).
UsingFxSG , Fj, we then computexSGsT , `d, jsT , `d with
the iterative procedure described above. In Table II w
show that extrapolations from differentL are consistent,
providing a test of the method. In our final analysis, w
take the weighted average of the extrapolations from d

TABLE I. Maximum number of samplesNs, minimum tem-
peratureTm, and Monte Carlo sweeps (MCS) performed atTm,
as a function of the sizeL.

L 4 8 10 12 16 24 32 48
Ns 1920 1536 960 448 448 448 64
Tm 0.9401 0.9793 1.0936 1.1642 1.2059 1.3397 1.4084
MCSy106 3 10 10 10 10 10 10
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ferent L. An implicit assumption of the iterative proce
dure is that the ansatz (3) with a given functionFO will
continue to hold asL ! `. This assumption could fail
if the system exhibits a crossover at largeL, as in any
FSS analysis. However, as shown in Table II, extrapo
tions atT ­ 1.4084 from smallL are consistent with data
from largeL, which have little or no finite-size effects. We
therefore believe that a crossover is unlikely.

In order to test for systematic errors due to corrections
FSS, we repeated the analysis excludingL ­ 5, 6 from the
fits of FxSG , Fj and we found that extrapolated data chang
within their error bars. We have good control on th
extrapolated data up toj ø 140; at lower temperatures the
statistical errors become quite large, and the data are m
sensitive to the region of highx, where there are few data
from largeL. (The largestx used for the extrapolations is
x ­ 0.57, from T ­ 1.2059, L ­ 5.)

In Fig. 2 we show that, with our extrapolated data
Eq. (2) is satisfied remarkably well, providing a fur
ther test of the method. IfO , jgO yn as j ! `,
then fO sxd in Eq. (2) must satisfyfO sxd , x2gO yn as
x ! `. As shown in Fig. 2 (insets), our curves indee
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FIG. 1. Finite-size-scaling plot with the form in Eq. (3) for
(a) O ­ xSG and (b) O ­ j. Error bars (estimated with a
jackknife procedure) are 1 standard deviation.
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have a power-law asymptotic decay, with negative slope
gyn ­ 2.30 6 0.08 in Fig. 2(a) andø1 in Fig. 2(b).

We emphasize theuniversalityof the scaling functions
in Figs. 1 and 2. It would be interesting to determine th
same functions for different distributions of theJxy , in
order to test for possible violations of universality [16,17]

Nature of the phase transition.—We now compare our
extrapolated data with the following scenarios: (i) aTc fi 0
continuous phase transition; (ii) a line of critical points
terminating atTc fi 0, with an exponential divergence as
T ! T1

c ; (iii) an exponential divergence atT ­ 0. The
last two scenarios imply a lower critical dimension exactl
equal to three.

(i) We fit our data to
jsT d ­ cjsT 2 Tcd2nf1 1 ajsT 2 Tcdug , (6)

xSGsjd ­ bj22hf1 1 dj2Dg , (7)
with fixed correction-to-scaling exponentsu and D [18].
In the fit we include data withj $ jm, varyingjm in order
to test the stability of the fits. Without the corrections to
scalingsaj ­ d ­ 0d, the quality of fits is good forjm .

3 4 sQ ø 1d, but fit parameters (noticeablyTc, n andh)
show smallsystematicvariations withjm in the whole
range available. Including the corrections, we obtain ex
cellent and stable fits with1 # u # 2 and1 # D # 1.5,
the preferred values beingu ­ 1.4 sQ . 0.6d and D ­
1.3 sQ . 0.98d. Our estimates for the fitting parameters
are Tc ­ 1.156 6 0.015, n ­ 1.8 6 0.2, h ­ 20.26 6

0.04, cj ­ 0.7 6 0.2, aj ­ 0.5 6 0.3, b ­ 3.3 6 0.3,
andd ­ 0.9 6 0.1, where the errors take into account the
uncertainties onu and D. We then obtaing ­ ns2 2

hd ­ 4.1 6 0.5. As shown in Figs. 3 and 4, corrections
to scaling are important forj # 10 [19]. Since the fits
do not include theanalytic corrections to scaling,D and
u should be regarded as “effective” exponents. For com
parison, we quote some estimates from other MC work
Tc ­ 1.175 6 0.025 [4], 1.11 6 0.04 [6], 1.13 6 0.06

TABLE II. Examples of measured and extrapolated values o
the correlation length and the spin glass susceptibility. Se
Ref. [10] for how to estimate error bars of extrapolated values

T L jsT , Ld jsT , `d xSGsT , Ld xSGsT , `d

1.2059 5 2.85s7d 120s60d 36.1s3d 1.8s5d 3 105

6 3.42s6d 150s60d 55.1s5d 2.8s8d 3 105

8 4.47s6d 126s30d 103s1d 1.9s5d 3 105

10 5.57s6d 146s30d 171s2d 2.8s8d 3 105

12 6.60s8d 143s30d 260s3d 2.7s8d 3 105

16 8.60s15d 131s30d 473s10d 2.1s8d 3 105

1.4084 5 2.28s5d 8.5s9d 25.4s2d 4.3s3d 3 102

6 2.66s4d 8.7s7d 36.1s4d 4.6s3d 3 102

8 3.33s4d 8.4s4d 60.0s6d 4.3s2d 3 102

10 3.94s4d 8.4s3d 88.3s1d 4.3s2d 3 102

12 4.51s5d 8.6s3d 120s2d 4.5s2d 3 102

16 5.46s8d 8.6s3d 178s4d 4.4s2d 3 102

24 6.60s11d 8.1s2d 269s6d 4.2s2d 3 102

32 7.16s15d 7.8s2d 320s9d 3.8s2d 3 102

48 8.6s6d 8.9s7d 404s30d 4.3s3d 3 102
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[8], 1.19 6 0.01 [17]; n ­ 1.3 6 0.1 [4], 1.20 6 0.04
[5], 1.7 6 0.3 [6], 2.00 6 0.15 [7], 1.33 6 0.05 [17];
h ­ 20.22 6 0.05 [4], 20.35 6 0.05 [6], 20.30 6 0.06
[7], 20.37 6 0.04 [8], 20.22 6 0.02 [17] (notice that
in Ref. [7] a Gaussian distribution of the bonds was
considered).

(ii) We fit our data to

jsT d ­ fj expfgjysT 2 Tcdsg , (8)

testing the fit stability as above. The fits are excellent with
jm $ 1.3 but, due to strong correlations betweens andTc,
the errors on the fit parameters are large. Forjm ­ 1.9 the
best fit givess ­ 0.20 6 0.05, Tc ­ 1.13 6 0.02, fj ­
s1.0 6 0.2d 3 1023, gj ­ 7 6 2 sQ ­ 0.77d. Notice,
however, that any power law can be approximated b
an exponential with sufficiently smalls. For jm ­ 3.8
the best fit (shown in Fig. 4) givess ­ 0.5 6 0.3, Tc ­
1.08 6 0.04, fj ­ s1.1 6 0.8d 3 1021, gj ­ 2.4 6 1.5
sQ ­ 0.69d. The deviations of the data from this fit for
j , 3 are consistent with corrections to scaling ofø10%.
In general, in the presence of an exponential singularit
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FIG. 2. Finite-size-scaling plot with the form in Eq. (2) for
(a) O ­ xSG and (b)O ­ j. The insets represent the same
data in a log-log plot, showing power-law decay for largejyL.
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FIG. 3. Critical behavior of the infinite-volume data. The
solid line is the best fit to Eq. (7) forj $ 1.8, the dotted line
is the leading term from the same fit, the dotted-dashed line
the best fit to Eq. (9) forj $ 2.2.

we expect multiplicative logarithmic corrections to
Eq. (7). Our data fit well to

xSGsjd ­ blj
22hl slogjdr (9)

for jm . 2, giving bl ­ 1.30 6 0.03, hl ­ 20.36 6

0.03, r ­ 20.36 6 0.06 sQ . 0.9d (see also Fig. 3).
(iii) When we fit our data to

jsT d ­ fj expsgjyTsd , (10)

we find that s increases continuously withjm, from
s ø 3 to s ø 9 [20]. Even assuming thats stabilizes
for higher j, we believe that a values . 9 is implau-
sibly large. In fact, Eq. (10) implies a renormalizatio
group (RG) transformationdTydl ~ Ts11 (el being the
RG scale factor), while forT ! 0 (at the lower criti-
cal dimension) we expectdTydl ­ a2T2 1 a3T3 1 . . .
(a2 ­ 0 in the phenomenological RG theory of Ref. [21])

In conclusion, we have shown that FSS is verified in th
3D Ising spin glass and that the correlation length diverg
at afinite temperature. Whether this is a conventional co
tinuous phase transition (in which case the lower critic
dimension is probably close to three) or a transition to
line of critical points is still not known.
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