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Nonlinear o Model for Inhomogeneous Spin Chains
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We derive a nonlinear model (NLSM) that represents antiferromagnetic Heisenberg spin chains
with inhomogeneous spin magnitudes and inhomogeneous nearest-neighbor exchange constants arrayed
in finite periods. The only restriction is that the average spin magnitude on a sublattice is the same as
that on another sublattice. The NLSM yields the gapless condition in terms of the spin magnitudes and
exchange constants. We apply this condition to several cases, including systems with impurities. The
result shows that the spin gap persists, despite impurities, in many cases. [S0031-9007(99)09421-1]

PACS numbers: 75.10.Jm, 75.30.Et, 75.30.Hx

In 1983 Haldane predicted that a homogeneous antiferariables of integration for each block with preserving the
romagnetic Heisenberg spin chain is gapful if the spin mageriginal degrees of freedom in a path integral formula.
nitude is an integer, and is gapless if it is a half-odd integeWe regard a spin pair in Affleck’s method [5] as an
[1]. Since his theory is based on mapping of a spin modeéspecially simple block. From the NLSM we obtain the
to the nonlineailr model (NLSM), the importance of the gapless condition in a simple closed form. We apply this
NLSM in condensed matter physics is recognized; varitesult to several cases including systems with impurities.
ous interesting aspects of the NLSM method are seen in We consider the spin chain represented by the
Refs. [2—4]. Affleck [5] reformulated the NLSM method Hamiltonian
in an operator formalism. He divided a spin chain into N
spin pairs and transformed the spin operators for each spin H = Z JiS; - Sj+1, Q)
pair into operators representing an antiferromagnetic mo- j=1
tion and a small fluctuation. The operator formalism is ap- - . o . .
plicable even to a spin chain with bond alternation, WhichWhereS’ 's the spin at sitg andJ;(>0) is the exchange

: : o : constant betweei$; and S;+;. The number of lattice
is the simplest model with inhomogeneity for the exchangeSites isN, the lattice spacing i, and the system size

iogs};[ant. It STOWS that, e.gt”ta spinIchii?hwithhmaggitud% L = aN. The quantum number for the magnitude of
/2 has a gapless spin excitation only at the phase boun [ is denoted bys;. The system is periodic with period

ary point between dimerized phases. b (b L .
Generally, how does the inhomogeneity affect the spin b (b: @ positive integer):
gap in an arbitrary spin chain? To answer this question we Jj+2m = J; Sj+2p = ;. (2)
need to obtain the gapless condition for various inhomog

e divide the spin chain into blocks each of which

neous spin chains. There are two kinds of inhomOgene't}éontainsz spin sites. The block siz&ba is an arbitrary

in & Spin chain: one 1S for _the exchqnge_ constant and thf?teven) positive integer times the size of the unit cell if a
other is for the spin magnitude. It is difficult to extend unit cell contains an even (odd) number of spins. In a

the operator formallsm of Affleck to various 'hhomoqe' block {/;} and{s;} are arbitrary except for the following
neous cases, especially to cases where the spin magnltul%

L - ) fStriction, which excludes systems with ferrimagnetic
is mho_mogeneous, it would need avery compllcated_ tra_msground states in the classical limit:
formation among operators. Fukui and Kawakami tried , b
to extend an NLSM method to some special inhomoge- Z 5y; = Z 201 3)
neous chains in a path integral formalism [6,7]. They o / = I
rather intuitively introduced favorable variables to form an
NLSM and did not care to preserve the degrees of freedom. The partition functionZ is written in a path integral
Hence, although some of their results seem to be plausiblérmula. When(—1)/s;n; is the expectation value ¢;
we cannot determine whether they are really correct or nder @ coherent state, it is
by inspecting their theory itself. The correct and general
method for systems with inhomogeneous spin magnitude Z= ] pn;1[ ] 8(nj — 1)e™". (4)
has not been established. J

In this Letter, we unambiguously derive a generalThe actions at temperaturé/ 3 is given by
NLSM representing a wide class of inhomogeneous anti- N ! B N
ferromagnetic spin chains. For this purpose we divide the ¢ — ; Z(—l)jsjw[nj] + = ] dr Z J,6m)% (5)
system into blocks of the same size, and transform the =l 2 Jo =
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with én; = n;4+; — n; and action (5) becomes, = §; + S, with

N B L !
- - Jj JJS/SJ+1- (6) S, = f de dx{—is(axm) . (m X §,m)
The first term in Eq. (5) comes from the Berry phase and 0 0 2
w[n;] is the solid angle which the unit vectay forms in
the periodg. + 4 j(axm)Z], (12)
We transform spin variablef;} into gradually chang- 2
ing variables{m(p)} and small fluctuationsL,(p)}, 8 L 1 2./,
wherep labels a block in the latticep = 1,2,...,N/2b) S, = f drf dx — Z(—JqRé + if, - Rq>,
and ¢ labels a site in the blockg = 1,2,...,2b). The 0 o 205\ 2
spin variable at theth site in thepth block is written as (13)
Nyppig = (1 = zgm(p) + zgm(p — yy) + aLy(p) erere s’ = 3};1 Sq/by J = flhzl‘lq/Zb’ and f, =
7) iaJ,(9,m) + 5,(m X 9,m).
The variables{L,} appear only agR,} in the action
o ) 4 5 S.. The variable§R,} are not independent and equation
original constraint¢nj = 1} are changed tém*(p) = 1} -2 R, = 0 stands due to the definition (9); e.g., we can
andim(p) - Ly(p) = 0}. Here we notice that the num- eleiop’ by the equation. We treat the equation as a new

ber of variables increases in this transformation. To., ciaint  The constraintén - L, = 0} are rewritten

solve the problem we can add an additional constraings{m R, = 0. Instead of deleting some variables by
e : . ; .

for each block which is e_lrbltlrary as long as It CoN- consiraints, we insert the correspondididunctions into

Sists W'tE the other constraints; €.8.,~; Ly(p) =0 0r  {he nath integral formula (4) and treat all the variables

Lay(p) = 0_'5 a possible one. 'I"erll% vector \f/arlables independently. We use the integral representations of

{nappiqlg = 1,2,...,2b} per block are transformed to 8", R,) and(m - R,) with integration variables

2b vector variabledm(p), Ly(p) g = 1,2,...,2b — 1} 554 a,. Then the following term appears in addition to
per block; Lo, (p) is written by the other variables the actions..

through the additional constraint. AlsXb original con- 8 . 2

straints{n = 11¢ = 1,2,...,2b} per block are replaced ¢, — f de dx - SR, (—u+ aym). (14)
by 2b constraintsim?(p) = 1,m(p) - L,(p) = 0|q = 0 0 2b g=1

1,2,...,2b — 1} per block. Thus we obtained a new
set of variables without changing the original degree
of freedom in the path integral formula (4). In other 2
words, we transformed only the variables of integra- 5! = fﬁd de R Z L(Fz — 2 (15)
tion. As for the additional constraint, the choice does 2 0 T 0 x 4p =i ],1 4 ’

not affect physical quantities at all. This is because

the variables{L,(p)|g = 1,2....,2b} appear only as WhereF, =f, + a,m and

T o~ ) . 2b 2b
{Ly(p) = Lga(p)lg =1,2,...,2b — 1} in the parti F=>J)"'F, / AN (16)
q=1 q=1

with z, = |b — gql/2b andy, = sgn(b — ¢ + 3). The

Carrying out integrations in the partition function first with
%espect tdR,} and then tau, S, + S3 reduces to

tion function, as will be seen.

To take a continuum limit we identify the center of
the pth block, (2bp + b)a, as coordinater. Then the Expanding the integrand in Eq. (15), we find tHat,}
difference between adjacent spin variables is replaced asippear only in a bilinear form and are integrated out.
®) CollectingsS; and the remnant of} after the integration

6 — aldy - R , . . - .
n2p+q = ald.m(x) gl with respect tde,}, we have the final effective action:

R,(x) = L,(x) — Ly+1(x). (9) B L JO
Equation (9) forg = 2b reads asR,,(x) = Lo (x) — Serr = fo deO dx) =i Jgym - (6,m X 9,m)
Li:(x). In the Berry phase term of the action (5), the 1 FO (O
following relation stands due to the restriction (3): —— = — = | (8,m)?
% b 2aJD \ J©@ J
—1)?s,w[n = 5,0w[n , 10
[{Zi( ) q [ 2bp+q] ; q [ 2bp+q] ( ) + ;J(O)(axm)z}, (17)

wheresw[n = w[n — wln and

[n25p+q] [,,Zb'HqH] [n25p+4] where{J "} are defined as

5o = D (=DF g (12) 11 &3 m=0L2 @18
" Jo T &y, T

The continuum limit of the Berry phase term is taken after
dwlny,,+4]is transformed to the integral ofénz,+, -+ with Egs. (6) and (11). Thus we have obtained the
(mopp+q X 97N2p,44) @s in the usual way [3,4]. Thus the action of the NLSM describing the Hamiltonian (1) in the
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continuum limit. The real-space cutoff is the length ofJ;) = (2 — 1)/4. This equation gives the single gap-

a block of the minimum size. The topological angle less pointJ,/J; = 1(I = 1) for s = 1/2 and J,/J, =

is given by setting/©/J® in the first term as#/47. 1/3(1 = 1) for s = 1. Numerical calculations fos = 1

The velocity v and the coupling constarg are given show that the gapless point is &/J; = 0.6 [8,9] and

by equating the coefficients ¢b,m)> and of(9,m)> as  an experiment fof{Ni(333-tet) (x-N3)},](ClOy), agrees

1/2gv andv/2g, respectively. Note that the coefficient with this value [10]. Hence the method of the NLSM does

of (9,m)? is always positive. not always give quantitatively correct results. However
The action (17) is independent of the way to divide thethe NLSM is expected to represent the essence of quantum

system into blocks. First we displace each block by onespin systems.

site. Then the spin magnitudes in a new block are or- For b = 2, the restriction (3) is nows; + s3 =

dered agsy, 53, ..., 52, 51) instead of(sy, 2, 53,..., S2). so + s4. In the case ofs; = 57, 53 = s4, J1 = J3, and

Denoting quantities related to the new blocks by let-J, = J4, we have 279 /70 = 25,53(s; + s3)/(s7 +

ters with prime, we have relationgl =51 — §g+1 for s§ + 2s1s3J1/J2). Following the condition (21), a

1 =¢ =2b— 1andsh, = 0. Using these relations we gapless excitation appears .&t/J; = 4/7 for s; = 1/2

obtain the following transformation© = J©, and s3 =1, and atJ,/J; =3/7 for s; =1/2 and
1 51 1 1 52 25 1 s3 = 3/2. Fors; =1 and s3; = 2, two gapless points
7 - 0 T o> 70 = 70 T 0 + Ok are J,/J, = 4/19 and 4/3. Fukui and Kawakami [7]

have obtained the same results [11]. Tonegawaal.

(19) performed numerical calculations fos; = 1/2 and
This transformation does not change the coefficient of; = 1 and obtained,/J; = 0.77 = 0.01 for the gapless
(9,m)? in Eq. (17). The topological angle (divided by point [12]. Inthe case of; = s;, s3 = s4,J; = J,, and

27r) changes as J3 = Js, we have2J©/J0) = 25,53/(s; + s3). Hence
270 27 the gapless excitation appears if and only;if= s; and
Ty T SSU T T (20)  the value is a half-odd integer irrespective of the values

Here the first term2s;, is an integer and does not affect of Ji and J;. In the case Ofs; = sy = s3 = 53 =5,

physics. The negative sign of the second term is alsélj(z Lo, Js=1+39, andJj, =Jy =/, we have

0)/7(1) = — 52 i -
irrelevant. Thus the action (17) is invariant under the /1 ZS.J/(J +1 .6 ). Chen and H'd‘?‘ per
. formed numerical calculation for = 1/2 and obtained a

block displacement.

: . hase boundary [13]. The positivepart of their bound-
Second we inspect the effect for the action when w8 SR :
use the block of siz&rba (r: a positive integer) instead ary is close to§ = (1 — J)/* determined by Eq. (21)

: . ; with [ = 1.
of 2ba. The order of the spin magnitudes in a new block . . ) .
is then r times repetition of(s,s2,...,52,). Because Using the block ofb = 3, we can deal with various

of the restriction (3) we have relatios}, .. = 3, for systems. Here we examine the case tha_t a unit_ceII con-
— 19 b andi = 1.2 - Usinthqhis rolation (@ins three sites. In a block of the minimum size, the
o sen thal ™ — 10 tor n = 012 and t%e action (17) SPIn magnitudes and the exchange constants are ordered
is invariant under the block enléréement as (s1, 2, 83, 51,92, 83) and (1, Jo, J3, 1, /2, J3). ‘The re-
The NLSM has a gapless excitation Whéhzw i o striction (3)is satisfied. In this case we har? /Jj1) =

. : . o ) sy — so + s3 irrespective of the values of;, J,, andJs.
half-odd integer. This condition is written as The condition (21) says that systems with one or three half-

2J_(0) _2a-1 (21) odd-integer spins in a unit cell are gapless [7,14].

JO 2 7 We examine a bond impurity system in the general
where [ is an arbitrary integer. In what follows we formula (17). In this system all the spin magnitudes are
examine this condition for several cases. the same and denoted by {5,} are the same as those

We first apply the general formula (17) to the homo-for the homogeneous case. In contrast there are two
geneous cases; = s, =---=sy=s andJ; = J, = kinds of exchange constant§ andJ. We assume that

...=Jy =J. In this case Eq. (18) gives® = Js?, 2k impurity bonds withJ, randomly distribute among
JW =275, andJ® = 2J. The coefficients in Eq. (17) host bonds with/ in a block of size2b. Then (J©)~!

aresimple ag /47 = s/2,1/2gv = 1/8aJ,andv/2g = is calculated ag1 + po(J/Jo — 1)]/Js> with impurity
aJs?/2. Hence Eqg. (17) in this case is equivalent to thedensity po = h/b; the randomness does not affect this
NLSM which Haldane originally considered [1]. quantity. For(/")~! we take an ensemble average since

Forb = 1, a block contains only two spins and the re-the contribution of an impurity bond changes whether the
striction (3) reads ag; = s,. Although the correct NLSM impurity site ¢ is even or odd. We assume that all the
in this case has already been obtained [2,5], we restataossible distributions occur in the equal probability and
some results based on the general formula (7y”} are  that just half of the impurity bonds are on odd sites in
calculated ag© = 252J,J,/(J; + J»), JV = 2sJ;, and  the average. Hence we hag")~! =[1 + po(J/Jy —

J® =2J,. The gapless condition (21) is thes, /(J; + 1)]/2Js. The topological angle is then given by
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