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We derive a nonlinears model (NLSM) that represents antiferromagnetic Heisenberg spin chain
with inhomogeneous spin magnitudes and inhomogeneous nearest-neighbor exchange constants a
in finite periods. The only restriction is that the average spin magnitude on a sublattice is the same
that on another sublattice. The NLSM yields the gapless condition in terms of the spin magnitudes
exchange constants. We apply this condition to several cases, including systems with impurities.
result shows that the spin gap persists, despite impurities, in many cases. [S0031-9007(99)09421-
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In 1983 Haldane predicted that a homogeneous antif
romagnetic Heisenberg spin chain is gapful if the spin ma
nitude is an integer, and is gapless if it is a half-odd integ
[1]. Since his theory is based on mapping of a spin mod
to the nonlinears model (NLSM), the importance of the
NLSM in condensed matter physics is recognized; va
ous interesting aspects of the NLSM method are seen
Refs. [2–4]. Affleck [5] reformulated the NLSM method
in an operator formalism. He divided a spin chain int
spin pairs and transformed the spin operators for each s
pair into operators representing an antiferromagnetic m
tion and a small fluctuation. The operator formalism is a
plicable even to a spin chain with bond alternation, whic
is the simplest model with inhomogeneity for the exchan
constant. It shows that, e.g., a spin chain with magnitu
1y2 has a gapless spin excitation only at the phase bou
ary point between dimerized phases.

Generally, how does the inhomogeneity affect the sp
gap in an arbitrary spin chain? To answer this question
need to obtain the gapless condition for various inhomog
neous spin chains. There are two kinds of inhomogene
in a spin chain: one is for the exchange constant and
other is for the spin magnitude. It is difficult to exten
the operator formalism of Affleck to various inhomoge
neous cases, especially to cases where the spin magni
is inhomogeneous; it would need a very complicated tran
formation among operators. Fukui and Kawakami trie
to extend an NLSM method to some special inhomog
neous chains in a path integral formalism [6,7]. The
rather intuitively introduced favorable variables to form a
NLSM and did not care to preserve the degrees of freedo
Hence, although some of their results seem to be plausib
we cannot determine whether they are really correct or n
by inspecting their theory itself. The correct and gener
method for systems with inhomogeneous spin magnitu
has not been established.

In this Letter, we unambiguously derive a gener
NLSM representing a wide class of inhomogeneous an
ferromagnetic spin chains. For this purpose we divide t
system into blocks of the same size, and transform t
0031-9007y99y82(25)y5124(4)$15.00
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variables of integration for each block with preserving th
original degrees of freedom in a path integral formul
We regard a spin pair in Affleck’s method [5] as a
especially simple block. From the NLSM we obtain th
gapless condition in a simple closed form. We apply th
result to several cases including systems with impuritie

We consider the spin chain represented by t
Hamiltonian

H 
NX

j1

JjSj ? Sj11 , (1)

whereSj is the spin at sitej andJjs.0d is the exchange
constant betweenSj and Sj11. The number of lattice
sites isN , the lattice spacing isa, and the system size
is L  aN. The quantum number for the magnitude o
Sj is denoted bysj . The system is periodic with period
2b (b: a positive integer):

Jj12b  Jj , sj12b  sj . (2)

We divide the spin chain into blocks each of whic
contains2b spin sites. The block size2ba is an arbitrary
(even) positive integer times the size of the unit cell if
unit cell contains an even (odd) number of spins. In
block hJjj and hsjj are arbitrary except for the following
restriction, which excludes systems with ferrimagnet
ground states in the classical limit:

bX
j1

s2j 
bX

j1

s2j21 . (3)

The partition functionZ is written in a path integral
formula. Whens21djsjnj is the expectation value ofSj

for a coherent state, it is

Z 
Z

Dfnjg
Y

j

dsn2
j 2 1de2S . (4)

The actionS at temperature1yb is given by

S  i
NX

j1

s21djsjwfnjg 1
1
2

Z b

0
dt

NX
j1

J̃jsdnjd2 (5)
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J̃j  Jjsjsj11 . (6)

The first term in Eq. (5) comes from the Berry phase a
wfnjg is the solid angle which the unit vectornj forms in
the periodb.

We transform spin variableshnjj into gradually chang-
ing variables hmspdj and small fluctuationshLqspdj,
wherep labels a block in the latticesp  1, 2, . . . , Ny2bd
and q labels a site in the blocksq  1, 2, . . . , 2bd. The
spin variable at theqth site in thepth block is written as

n2bp1q  s1 2 zqdmspd 1 zqmsp 2 gqd 1 aLqspd
(7)

with zq  jb 2 qjy2b andgq  sgnsb 2 q 1
1
2 d. The

original constraintshn2
j  1j are changed tohm2spd  1j

and hmspd ? Lqspd  0j. Here we notice that the num-
ber of variables increases in this transformation. T
solve the problem we can add an additional constra
for each block which is arbitrary as long as it con
sists with the other constraints; e.g.,

P2b
q1 Lqspd  0 or

L2bspd  0 is a possible one. Hence2b vector variables
hn2bp1q j q  1, 2, . . . , 2bj per block are transformed to
2b vector variableshmspd, Lqspd j q  1, 2, . . . , 2b 2 1j
per block; L2bspd is written by the other variables
through the additional constraint. Also2b original con-
straintshn2

q  1 j q  1, 2, . . . , 2bj per block are replaced
by 2b constraintshm2spd  1, mspd ? Lqspd  0 j q 
1, 2, . . . , 2b 2 1j per block. Thus we obtained a new
set of variables without changing the original degre
of freedom in the path integral formula (4). In othe
words, we transformed only the variables of integr
tion. As for the additional constraint, the choice doe
not affect physical quantities at all. This is becaus
the variableshLqspd j q  1, 2, . . . , 2bj appear only as
hLqspd 2 Lq11spd j q  1, 2, . . . , 2b 2 1j in the parti-
tion function, as will be seen.

To take a continuum limit we identify the center o
the pth block, s2bp 1 bda, as coordinatex. Then the
difference between adjacent spin variables is replaced

dn2bp1q ! af≠xmsxd 2 Rqsxdg , (8)

Rqsxd  Lqsxd 2 Lq11sxd . (9)

Equation (9) for q  2b reads asR2bsxd  L2bsxd 2

L1sxd. In the Berry phase term of the action (5), th
following relation stands due to the restriction (3):

2bX
q1

s21dqsqwfn2bp1qg 
2bX

q1

s̃qdwfn2bp1qg , (10)

wheredwfn2bp1qg  wfn2bp1q11g 2 wfn2bp1qg and

s̃q 
qX

k1

s21dk11sk . (11)

The continuum limit of the Berry phase term is taken aft
dwfn2bp1qg is transformed to thet integral ofdn2bp1q ?

sn2bp1q 3 ≠tn2bp1qd as in the usual way [3,4]. Thus the
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action (5) becomesSc  S1 1 S2 with

S1 
Z b

0
dt

Z L

0
dx

(
2i

s0

2
s≠xmd ? sm 3 ≠tmd

1
a
2

J̄s≠xmd2

)
, (12)

S2 
Z b

0
dt

Z L

0
dx

1
2b

2bX
q1

√
a
2

J̃qR2
q 1 ifq ? Rq

!
,

(13)

where s0 
P2b

q1 s̃qyb, J̄ 
P2b

q1 J̃qy2b, and fq 
iaJ̃qs≠xmd 1 s̃qsm 3 ≠tmd.

The variableshLqj appear only ashRqj in the action
Sc. The variableshRqj are not independent and equatioP2b

q1 Rq  0 stands due to the definition (9); e.g., we ca
deleteR2b by the equation. We treat the equation as a ne
constraint. The constraintshm ? Lq  0j are rewritten
as hm ? Rq  0j. Instead of deleting some variables b
constraints, we insert the correspondingd functions into
the path integral formula (4) and treat all the variable
independently. We use the integral representations
ds

P2b
q1 Rqd and dsm ? Rqd with integration variablesu

and aq. Then the following term appears in addition t
the actionSc:

S3 
Z b

0
dt

Z L

0
dx

i
2b

2bX
q1

Rq ? s2u 1 aqmd . (14)

Carrying out integrations in the partition function first with
respect tohRqj and then tou, S2 1 S3 reduces to

S0
2 

Z b

0
dt

Z L

0
dx

1
4ba

2bX
q1

1
J̃q

sF2
q 2 F̄2d , (15)

whereFq  fq 1 aqm and

F̄ 
2bX

q1

sJ̃qd21Fq

¡ 2bX
q1

sJ̃qd21. (16)

Expanding the integrand in Eq. (15), we find thathaqj
appear only in a bilinear form and are integrated out.

CollectingS1 and the remnant ofS0
2 after the integration

with respect tohaqj, we have the final effective action:

Seff 
Z b

0
dt

Z L

0
dx

(
2i

Js0d

Js1d m ? s≠tm 3 ≠xmd

1
1

2aJs1d

√
J s1d

J s2d 2
J s0d

J s1d

!
s≠tmd2

1
a
2

Js0ds≠xmd2

)
, (17)

wherehJ sndj are defined as

1
J snd 

1
2b

2bX
q1

ss̃qdn

J̃q
sn  0, 1, 2d (18)

with Eqs. (6) and (11). Thus we have obtained th
action of the NLSM describing the Hamiltonian (1) in th
5125
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continuum limit. The real-space cutoff is the length o
a block of the minimum size. The topological angleu

is given by settingJ s0dyJ s1d in the first term asuy4p.
The velocity y and the coupling constantg are given
by equating the coefficients ofs≠tmd2 and of s≠xmd2 as
1y2gy andyy2g, respectively. Note that the coefficien
of s≠tmd2 is always positive.

The action (17) is independent of the way to divide th
system into blocks. First we displace each block by o
site. Then the spin magnitudes in a new block are o
dered asss2, s3, . . . , s2b , s1d instead ofss1, s2, s3, . . . , s2bd.
Denoting quantities related to the new blocks by le
ters with prime, we have relations̃s0

q  s1 2 s̃q11 for
1 # q # 2b 2 1 and s̃0

2b  0. Using these relations we
obtain the following transformation:J 0s0d  J s0d,

1
J 0s1d 

s1

Js0d 2
1

Js1d ,
1

J 0s2d 
s2

1

Js0d 2
2s1

Js1d 1
1

Js2d .

(19)

This transformation does not change the coefficient
s≠tmd2 in Eq. (17). The topological angle (divided by
2p) changes as

2J 0s0d

J 0s1d  2s1 2
2J s0d

Js1d . (20)

Here the first term,2s1, is an integer and does not affec
physics. The negative sign of the second term is a
irrelevant. Thus the action (17) is invariant under th
block displacement.

Second we inspect the effect for the action when w
use the block of size2rba (r: a positive integer) instead
of 2ba. The order of the spin magnitudes in a new bloc
is then r times repetition ofss1, s2, . . . , s2bd. Because
of the restriction (3) we have relatioñs0

2jb1q  s̃q for
q  1, 2, . . . , 2b and j  1, 2, . . . , r. Using this relation
we see thatJ 0snd  Jsnd for n  0, 1, 2 and the action (17)
is invariant under the block enlargement.

The NLSM has a gapless excitation whenuy2p is a
half-odd integer. This condition is written as

2J s0d

Js1d 
2l 2 1

2
, (21)

where l is an arbitrary integer. In what follows we
examine this condition for several cases.

We first apply the general formula (17) to the homo
geneous case:s1  s2  · · ·  sN ; s and J1  J2 
· · ·  JN ; J. In this case Eq. (18) givesJs0d  Js2,
J s1d  2Js, and Js2d  2J. The coefficients in Eq. (17)
are simple asuy4p  sy2, 1y2gy  1y8aJ, andyy2g 
aJs2y2. Hence Eq. (17) in this case is equivalent to th
NLSM which Haldane originally considered [1].

For b  1, a block contains only two spins and the re
striction (3) reads ass1  s2. Although the correct NLSM
in this case has already been obtained [2,5], we rest
some results based on the general formula (17).hJ sndj are
calculated asJs0d  2s2J1J2ysJ1 1 J2d, J s1d  2sJ1, and
J s2d  2J1. The gapless condition (21) is thensJ2ysJ1 1
5126
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J2d  s2l 2 1dy4. This equation gives the single gap
less pointJ2yJ1  1sl  1d for s  1y2 and J2yJ1 
1y3sl  1d for s  1. Numerical calculations fors  1
show that the gapless point is atJ2yJ1  0.6 [8,9] and
an experiment forfhNis333-tetd sm-N3djng sClO4dn agrees
with this value [10]. Hence the method of the NLSM doe
not always give quantitatively correct results. Howev
the NLSM is expected to represent the essence of quan
spin systems.

For b  2, the restriction (3) is nows1 1 s3 
s2 1 s4. In the case ofs1  s2, s3  s4, J1  J3, and
J2  J4, we have 2J s0dyJs1d  2s1s3ss1 1 s3dyss2

1 1

s2
3 1 2s1s3J1yJ2d. Following the condition (21), a

gapless excitation appears atJ2yJ1  4y7 for s1  1y2
and s3  1, and at J2yJ1  3y7 for s1  1y2 and
s3  3y2. For s1  1 and s3  2, two gapless points
are J2yJ1  4y19 and 4y3. Fukui and Kawakami [7]
have obtained the same results [11]. Tonegawaet al.
performed numerical calculations fors1  1y2 and
s3  1 and obtainedJ2yJ1  0.77 6 0.01 for the gapless
point [12]. In the case ofs1  s2, s3  s4, J1  J2, and
J3  J4, we have2J s0dyJs1d  2s1s3yss1 1 s3d. Hence
the gapless excitation appears if and only ifs1  s3 and
the value is a half-odd integer irrespective of the valu
of J1 and J3. In the case ofs1  s2  s3  s4 ; s,
J1  1 2 d, J3  1 1 d, and J2  J4 ; J, we have
2J s0dyJs1d  2sJysJ 1 1 2 d2d. Chen and Hida per-
formed numerical calculation fors  1y2 and obtained a
phase boundary [13]. The positive-J part of their bound-
ary is close tod  s1 2 Jd1y2 determined by Eq. (21)
with l  1.

Using the block ofb  3, we can deal with various
systems. Here we examine the case that a unit cell c
tains three sites. In a block of the minimum size, th
spin magnitudes and the exchange constants are orde
as ss1, s2, s3, s1, s2, s3d and sJ1, J2, J3, J1, J2, J3d. The re-
striction (3) is satisfied. In this case we have2J s0dyJs1d 
s1 2 s2 1 s3 irrespective of the values ofJ1, J2, andJ3.
The condition (21) says that systems with one or three ha
odd-integer spins in a unit cell are gapless [7,14].

We examine a bond impurity system in the gener
formula (17). In this system all the spin magnitudes a
the same and denoted bys; hs̃qj are the same as those
for the homogeneous case. In contrast there are t
kinds of exchange constants,J0 and J. We assume that
2h impurity bonds withJ0 randomly distribute among
host bonds withJ in a block of size2b. Then sJ s0dd21

is calculated asf1 1 r0sJyJ0 2 1dgyJs2 with impurity
density r0  hyb; the randomness does not affect th
quantity. ForsJ s1dd21 we take an ensemble average sinc
the contribution of an impurity bond changes whether th
impurity site q is even or odd. We assume that all th
possible distributions occur in the equal probability an
that just half of the impurity bonds are on odd sites
the average. Hence we havesJ s1dd21  f1 1 r0sJyJ0 2

1dgy2Js. The topological angle is then given by
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uy2p  2J s0dyJ s1d  s. Since u is independent ofb,
the block size2ba is arbitrarily large [15]. The bond
impurities do not change the gapless condition of th
homogeneous case [16]. Kawaeet al. [17] argued that
the s  1 Haldane systemsCH3d4NNisNOd3 (TMNIN) is
described by the bond impurity model when nonmagnet
impurities Zn21 are doped. They observed spin gaps a
some impurity densities.

The last example is a site impurity system where impu
rity spins are located among host spins. The spin mag
tude iss0 for an impurity spin againsts for a host spin.
Exchange constants areJ0 for both sides of an impu-
rity site and areJ otherwise. The number of impurity
spins in a block is2h. They are located on the sites of
hkj j j  1, 2, . . . , 2hj in the block. Their distribution is
random in the block and the impurity density isr0  hyb.
In the calculation of̃sq on Eq. (11), we notice that it be-

comess̃
s0d
q ;

Pq
k1s21dk11s for a pure spin system. We

now replace thekth term ins̃
s0d
q by s21dk11s0 if an impu-

rity spin locates at thekth site. Then we have

s̃q  s̃s0d
q 1 ss 2 s0d

2hX
j1

s21dkj usq 2 kjd , (22)

where the step functionusxd is 1 for x $ 0 and 0 other-
wise. Taking the ensemble average with equal weight f
all possible distributions, we have

2Js0d

J s1d  s
1 1 s1 1

s0

s dr̃0

1 1 2r̃0
(23)

with r̃0  r0sJsyJ0s0 2 1d. This is independent of the
block size 2ba [15]. Derivation of this equation will
be reported elsewhere. WhenJ0s0 , Js, the gapless
condition (21) gives the following results. In the case o
s  1, Eq. (21) has no integer solution ofl for s0 # 2.
That is, impurities withs0 # 2 do not force the gapful
excitation of a homogeneouss  1 spin system to be
gapless [16,18]. In the case ofs  1y2, Eq. (21) has no
integer solution ofl for 1 # s0 # 5y2.

In summary, we obtained the NLSM (17) for a
general antiferromagnetic Heisenberg spin chain wi
inhomogeneous spin magnitudes and inhomogeneo
nearest-neighbor exchange constants arrayed in a fin
period. We applied this formula to several cases an
examined the gapless conditions. Since the formula
general, it can be applied to various cases which were n
treated here.
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