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Flux Lattice Symmetry in V3Si: Nonlocal Effects in a High-k Superconductor
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In the high-k cubic superconductor V3Si, phase transitions of the flux lattice structure occur as a
function of applied field and temperature. With the field parallel to the fourfold [001] axis, the flu
lattice transforms from triangular to square symmetry at approximately 1 T. With the field parall
to the twofold [110] axis, the lattice, which is a nearly perfect hexagonal array at the lowest field
distorts as the field is increased; the rate of increase in this distortion changes abruptly at 1.3 T.
Tc is approached, the system tends towards a more isotropic hexagonal array of the flux lines. Th
transitions are largely but not completely in agreement with a recent theory of the effects on the fl
line arrangements of nonlocal electrodynamics in the London limit. [S0031-9007(99)09351-5]

PACS numbers: 74.60.Ge, 61.12.Ex, 74.70.Ad
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Magnetic fields penetrate a type-II superconductor
quantized flux lines. Each flux line contains one quantu
shy2ed of flux and an array of them creates a modulatio
of the magnetic field. Flux lines are generally expected
be arranged in a regular hexagonal lattice since their int
action is repulsive and a hexagonal lattice that maximiz
the distance between them can reasonably be expecte
be the lowest energy configuration. However, square l
tices of flux lines have been seen experimentally. T
flux line lattices (FLL) in the rare-earth nickel borocar
bides have been quite interesting because they exhib
not just a square lattice [1,2] but phase transitions in t
FLL symmetry [3,4] as the field was increased. It has r
cently been shown [5] that the square lattice arises fro
the fact that the cross section of a single flux line has
fourfold symmetric component at short distances from t
core and hence the vortices stack in a square array w
the distance between them becomes small enough. Th
symmetry changes have also been explained by theore
calculations [6] of the effects on the flux line lattice sym
metries of nonlocality in the London limit. The abov
mentioned studies which indicated a fourfold symmet
for the cross section of a single flux line in a material wi
no (in-plane) mass anisotropy implies a variation of th
London penetration depth within the basal plane that
inconsistent with local London theory and points direct
to the importance of nonlocal interactions.

In this Letter, we demonstrate that nonlocal electrod
namics plays an important role in clean, high-k mate-
rial [7] sk ø 25d V3Si, which is a cubic superconductor
Nonlocality causes symmetry changes in the flux line la
tice and its effects are encountered well outside the 40
range of the coherence length. This is quite contrary
what is generally considered to be the case that nonlo
electrodynamics is relevant only where the coheren
length, j, of a superconductor is large, such as in ni
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bium, wherek ø 1. In the compound V3Si, the effects
of nonlocality were thought to be very minor.

Previously, Kogan and collaborators [8] applied the
model of nonlocal effects in the London limit to existing
small-angle neutron scattering (SANS) data [9] on th
FLL in V 3Si, and predicted a number of changes in th
vortex lattice symmetry in this compound as a function o
field and temperature along various symmetry direction
Here, we report on the observation of the predicted pha
transitions in the symmetry of the FLL in V3Si, studied
by SANS techniques.

The measurements were carried out on the 30-m SAN
facility at the High Flux Isotope Reactor at Oak Ridge
National Laboratory. The incident wavelength used wa
4.75 Å. For all the measurements, the neutron bea
was horizontal, and two different geometries for th
applied field were used. In the horizontal field geometr
the field was nearly collinear with the neutron beam
except rotated (about the vertical axis) by the relative
small Bragg angles to satisfy the scattering conditio
In the second geometry, the field was vertical an
perpendicular to the neutron beam, the Bragg spots we
in the horizontal plane of the detector, and the samp
had to be rotated about the vertical axis by the ang
between planes. (This would be a rotation of 60± in
the case of a perfect hexagonal lattice to observe
equivalent symmetry-related reflection.) The horizonta
field geometry has the advantage that all the Bragg sp
can be seen simultaneously and symmetries of the latt
are readily apparent. In the vertical field geometry, th
angles between basis vectors can be much more accura
determined and are related only to the direct rotation
the sample and not to experimental parameters, such
sample size, detector calibration, or resolution elemen
The flux line lattice was grown as the sample was coole
in a field.
© 1999 The American Physical Society
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The sample of V3Si was a cylinder of diameter 8.3 mm
and length 10.4 mm. The physical cylinder axis was d
termined to be thea axis of the crystal to within an
uncertainty of 2±. The mosaic was less than 0.4±, the reso-
lution with which the measurement was made. The samp
had adHc2ydT slope of22 TyK and a critical tempera-
ture of 16.3 K (midpoint), as characterized by SQUID
magnetization measurements. The extrapolatedHc2s0d
as obtained from the expression0.71sdHc2ydT dTc is ap-
proximately 22 T. With the Ginzburg-Landau expressio
Hc2 ­ f0y2pj2, this corresponds to a coherence leng
jGLs0d ­ 38 Å. Just aboveTc, the electrical resistivityr
was1.9 3 1026 ohm cm (residual resistance ratio RRR­
32). From the productr, ­ 0.64 3 10211 ohm cm2 (ob-
tained from analyzing the equilibrium magnetization da
using Ginzburg-Landau-Abrikosov-Gor’kov (GLAG) ex-
pressions [10]), one then obtains the value, ­ 320 Å for
the electronic mean free path. Thus, ¿ j and we con-
clude that the material is clean. Clean materials are
prerequisite for the nonlocal effects that have been o
served. Although qualitative, another measure of clea
liness is the relatively weak vortex pinning, which gives
critical current densityJc of 1 3 104 Aycm2 at 5 K in a
field of 1 T. For comparison, the depairing current densi
is J0 ­ cHcy3

p
6 l ø 2 3 108 Aycm2, corresponding to

a ratioJcyJ0 ø 1024. The weak pinning and particularly
the large mean free path imply that nonlocal effects ma
be pronounced in this material.

Of the predictions mentioned above, the first was th
with the applied field parallel to thea axis at low
temperature, there would be a transition from hexagon
to square symmetry at about 3 T. This hexagonal-squa
transition was observed, in fact, but at a field of 1 T
considerably smaller than predicted. Scattering patter
for the FLL at three different fields (0.75, 1.0, and 1.5 T
are shown in Fig. 1. Here, the horizontal and vertical ax
are symmetry-equivalent 110 directions and the field
applied along the [001], an axis with fourfold symmetry
At low field, 0.75 T, the underlying fourfold symmetry of
the crystalline lattice manifests itself in the existence o
two triangular FLL domains, one of which is considerabl
larger than the other. Each of these domains is orient
such that the triangle base vector of each FLL is paral
to a crystallographic 110 direction. At 1 T, the intensit
is split about equally between the triangular and squa
lattices and by 1.5 T, nearly all of the intensity is in th
square lattice and a very small fraction of the intensi
can be attributed to the triangular array. Because there
no mechanism by which this change could possibly occ
in a continuous manner and there are no intermedia
changes in structure, it would suggest that this transiti
is first order in nature. However, although the transitio
from triangular to square appears to happen in a sing
step, it does occur over an extended range of appli
field. This could be influenced by a varied density o
pinning centers or other inhomogeneities in the crysta
e-
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FIG. 1(color). The scattering pattern from the FLL at 0.7
1.0, and 1.5 T shows the structural transition in the flux li
lattice. The real space arrangement and its relationship
the crystal orientation is indicated alongside. The scatter
pattern at 1.0 T is a superposition of the triangular and squ
lattices. The sample temperature was 1.8 K. The 0.75 a
1.0 T data are taken at a single angular setting. The 1.5 T d
are summed over a rocking curve.

The stable structure nearTc, where the lattice first forms
(since the sample is field cooled), could be differe
than that at low temperatures. Pinning could cause
structure stabilized nearTc to persist. However, the
narrow transition sDTcs10% 90%d ø 0.2 Kd indicates
relatively high compositional homogeneity, and near
reversible magnetization curves are observed nearTcsHd.

Although the FLL appears to have sixfold symmetry
lower fields sB k f001gd, the lattice here is not perfectly
hexagonal. That is, the apex angleb, the angle between
the two Bragg peaks, indicated in Fig. 1 is not exac
60±. The angleb extrapolates to 60± at zero field and
it is smaller than 60± for low values of the applied field.
The apex angle decreases with increasing field until
transition occurs to the square symmetry (whereb is 90±)
(see Fig. 1). The measurement of the lattice perfect
5113
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in the triangular phase was resolution limited. Howeve
for the square FLL, the mosaic spread [11] (vertical fie
geometry) was quite broad (2± FWHM).

In the geometry where the applied field is parallel t
the f1̄10g, a nearly perfect hexagonal lattice is seen
the lowest field (b ­ 62± at 0.5 T) in agreement with
previous [9] measurements. Here, only one domain exi
and the primary Bragg reflections are aligned once ag
to a crystallographic [110] direction. The existence o
a single domain is consistent with the twofold crysta
symmetry in this geometry, since the [110] and [001
which are perpendicular to each other, are not equival
directions. With an increasing field, the lattice is seen
be distorted from the perfect hexagonal. As a functio
of the field, the variation of the apex angle,b, for this
geometry is shown in Fig. 2. It is seen thatb increases
with the applied field; however, the field dependenc
changes abruptly at 1.3 T, approximately the same fie
at which the hex-square phase transition occurs
B k f001g. Beyond 1.3 T, the increase inb appears to
remain linear up to 5 T, the highest field measured. T
FLL at all fields was perfect and the mosaic was limite
by the resolution forB k f1̄10g.

The theoretical prediction for the FLL in this geometr
sB k f1̄10gd is the same as that forB k f001g. That is, a
hexagonal to square lattice transition is expected at
same field as that in the other geometry. However,
should be noted that the FLL symmetry in the lowe
order theoretical construct (fourfold) is higher than th
actual crystallographic (twofold) symmetry.

As the temperature is increased, the apex angle te
towards 60±. The apex angles for any given field are stab
up to approximately 7 K (Fig. 3). Above this temperatur
b systematically decreases with temperature. There
some unusual dependence ofb at 1 T, near the field where
the transitions occur in the FLL as a function of field. A

FIG. 2. The apex angle,b, varies as a function field and
shows an abrupt change in slope at 1.3 T. Note that the d
acquired in the vertical field geometry (filled diamonds) ar
considerably more precise than those obtained in the horizon
field geometry (crosses).
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1 T, the nearest neighbor distance between the flux l
centers is approximately 450 Å in a square arrangem
(or 480 Å for a triangular configuration). This is not
particularly suggestive length scale; it would appear th
the features in the anisotropy are strong at this distan
from the vortex core. It has been postulated that t
magnetic field falloff has a short range anisotropic pa
and a more slowly varying isotropic part. In this cas
at low fields when the vortices are far from each other, t
interaction potential is nearly isotropic. But at larger field
the vortices are closer to each other and the anisotro
becomes more evident. This is certainly the trend tha
observed; the hexagonal lattice is more strongly distor
as the field is increased.

The intensity of the flux lattice Bragg peak with
B k f001g is considerably lower (by a factor of more tha
3) than that with the field parallel to thef1̄10g. This is
not entirely unreasonable for the following reason: Th
lattice in the first instancesB k f001gd consists of two
lattices related by symmetry to each other by a rotati
of 90±. Even though one of these lattices is much le
populated than the other, the average size of a “perfe
domain in the more prevalent direction is most like
smaller than in the case where a single lattice exis
Since the intensity of a Bragg peak [12] is proportion
to the square of the number of (coherent) scatterers,
Bragg peak forB parallel tof1̄10g, with its single lattice
orientation, is likely to have a higher intensity in th
Bragg peak, all other factors remaining equal. Howev
given this inequity in the intensities and the fact that the
exists a symmetry transition in the middle of the rang
the temperature dependence of the intensities can
be analyzed in a simple manner. More information
required, particularly for higher order reflections, in ord
to adequately correct the intensities and elicit the “tru
dependence of the order parameter.

FIG. 3. The temperature dependence of the apex angle,b, at
an applied field of 1 T.Tcs1 Td ­ 15.8 K (vertical field: filled
circles; horizontal field: open circles).
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In the local London model, the local supercurrent de
sity, j, is proportional to the vector potential,a, at the
corresponding point in space. In the nonlocal generaliz
tion, the current density becomesk dependent withjskd ­
Qskdaskd, whereQ is k dependent kernel. This implies
that the currentj at a pointr is proportional to an average
over a surrounding volume of radiusøjBCS. Within the
first order terms of the nonlocal correction (in the theoret
cal treatment), the magnetic field distribution has fourfo
symmetry for any field direction, except along the [111
direction where it is isotropic (since the anisotropy pa
rameter in this case is zero). Since the true symmetry
B k f111g is sixfold rather than isotropic, the correct sym
metry is reproduced in the model only for the field paralle
to the 001 direction. The first nonlocal correction term
with its fourfold symmetry will stabilize a square FLL in
high fields for any field direction other than the [111]. O
the other hand, a square FLL is experimentally observ
only for the field along the fourfold (001) axis. It is obvi-
ous from the data that at high fields, the fullk dependence
of the expression [6,8] becomes important and just the fi
order term is insufficient. Accounting for the higher orde
terms in the nonlocal correction has proved to be cumbe
some, but it was readily apparent that the next term in t
expansion additionally breaks the symmetry such that it
twofold for B k f1̄10g and sixfold symmetry forB k f111g,
while remaining 90± invariant along the 001 direction.
Thus, the formal incorporation of the next higher or
der correction term would make the symmetry of th
field coincide with the symmetry of the underlying lattice

In conclusion, it is seen that nonlocal effects ar
important even in high-k cubic materials. Here, since
mass anisotropy is absent, all distortions of the FLL ma
be considered as variations of the penetration depth d
to the effects of the finite size of the core. Where th
anisotropy of the intervortex interaction is felt strongly
enough to precipitate the triangular-square transformatio
the distance between vortices is about 450 Å, which
more than 10 times the coherence length.

It is evident from present and previous measuremen
that the FLL and crystal lattice symmetry are highly cor
related. The FLL shape is dependent on the field dire
tion and always reflects the symmetry of the crystal plan
normal to the field. The other distinctive feature is tha
the hexagonal FLL at low inductions distorts as the fie
increases and abruptly becomes square for certain fi
directions. This is in contradiction with the prediction
of the London model for cubic superconductors. Withi
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the simple local London model, vortices repel each othe
with force that depends on distance only; the interaction
isotropic, which should result in a hexagonal rather tha
square lattice. Presumably, in fields much smaller tha
Hc2, the vortex-vortex interaction is mainly due to the
Lorentz force and is given by a single vortex field distri-
bution. The experimental results indicate that there is
region around the vortex core where magnetic field distr
bution is anisotropic (even in cubic crystals) and that th
anisotropy depends on the vortex orientation within th
crystal. Finally, since the field falloff from a vortex is
direction dependent, this will result in an anisotropic sup
pression of the gap as well. This may well effect the
predictions of the FLL symmetry, since the theoretica
construct assumes a naive picture where the gap
isotropic and the core has no structure.

We thank K. J. Song for assistance with the magnet
measurements and R. Feenstra for the electrical res
tance measurement. This work was carried out at Oa
Ridge National Laboratory, which is managed by Lock
heed Martin Energy Research Corporation under Contra
No. DE-AC05-96OR22464. This work was also funded
in part by a grant to the University of Warwick from the
EPSRC, U.K.

[1] M. Yethiraj, D. McK. Paul, C. V. Tomy, and E. M. Forgan,
Phys. Rev. Lett.78, 4849 (1997).

[2] U. Yaron et al., Nature (London)382, 236 (1996).
[3] M. R. Eskildsenet al., Phys. Rev. Lett.78, 1968 (1997).
[4] D. McK. Paul et al., Phys. Rev. Lett.80, 1517 (1998).
[5] M. Yethiraj, D. McK. Paul, C. V. Tomy, and J. R. Thomp-

son, Phys. Rev. B58, R14 767 (1998).
[6] V. G. Koganet al., Phys. Rev. B55, R8693 (1997).
[7] The coherence length is approximately 40 Å and the

penetration depth is 1000 Å.
[8] V. G. Koganet al., Phys. Rev. Lett.79, 741 (1997).
[9] D. K. Christen et al., Physica (Amsterdam)135B, 369

(1985). These measurements were all performed at field
less than 1 T; hence the structural transition was no
observed.

[10] BCS and GLAG relations are conveniently tabulated in
the appendix of T. P. Orlando, E. J. McNiff, Jr., S. Foner
and M. R. Beasley, Phys. Rev. B19, 4545 (1979).

[11] The rocking curve width in the vertical field geometry
measures the perfection of the two-dimensional lattic
over the whole sample, i.e., the mosaic of the flux line
crystal. This is not a measure of the straightness or leng
of the flux lines, as it is in the horizontal field geometry.

[12] C. G. Darwin, Philos. Mag.27, 315 (1914).
5115


