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Flux Lattice Symmetry in V3Si: Nonlocal Effects in a High-« Superconductor
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In the high« cubic superconductor 35i, phase transitions of the flux lattice structure occur as a
function of applied field and temperature. With the field parallel to the fourfold [001] axis, the flux
lattice transforms from triangular to square symmetry at approximately 1 T. With the field parallel
to the twofold [110] axis, the lattice, which is a nearly perfect hexagonal array at the lowest fields,
distorts as the field is increased; the rate of increase in this distortion changes abruptly at 1.3 T. As
T. is approached, the system tends towards a more isotropic hexagonal array of the flux lines. These
transitions are largely but not completely in agreement with a recent theory of the effects on the flux
line arrangements of nonlocal electrodynamics in the London limit. [S0031-9007(99)09351-5]

PACS numbers: 74.60.Ge, 61.12.Ex, 74.70.Ad

Magnetic fields penetrate a type-Il superconductor abium, wherex = 1. In the compound ¥Si, the effects
quantized flux lines. Each flux line contains one quantunof nonlocality were thought to be very minor.
(h/2e) of flux and an array of them creates a modulation Previously, Kogan and collaborators [8] applied their
of the magnetic field. Flux lines are generally expected tanodel of nonlocal effects in the London limit to existing
be arranged in a regular hexagonal lattice since their intesmall-angle neutron scattering (SANS) data [9] on the
action is repulsive and a hexagonal lattice that maximize§LL in V;Si, and predicted a number of changes in the
the distance between them can reasonably be expectedtortex lattice symmetry in this compound as a function of
be the lowest energy configuration. However, square latfield and temperature along various symmetry directions.
tices of flux lines have been seen experimentally. TheHere, we report on the observation of the predicted phase
flux line lattices (FLL) in the rare-earth nickel borocar- transitions in the symmetry of the FLL in;%i, studied
bides have been quite interesting because they exhibitdy SANS techniques.
not just a square lattice [1,2] but phase transitions in the The measurements were carried out on the 30-m SANS
FLL symmetry [3,4] as the field was increased. It has refacility at the High Flux Isotope Reactor at Oak Ridge
cently been shown [5] that the square lattice arises fronNational Laboratory. The incident wavelength used was
the fact that the cross section of a single flux line has &.75 A. For all the measurements, the neutron beam
fourfold symmetric component at short distances from thevas horizontal, and two different geometries for the
core and hence the vortices stack in a square array whepplied field were used. In the horizontal field geometry,
the distance between them becomes small enough. The#e field was nearly collinear with the neutron beam,
symmetry changes have also been explained by theoreticakcept rotated (about the vertical axis) by the relatively
calculations [6] of the effects on the flux line lattice sym- small Bragg angles to satisfy the scattering condition.
metries of nonlocality in the London limit. The above In the second geometry, the field was vertical and
mentioned studies which indicated a fourfold symmetryperpendicular to the neutron beam, the Bragg spots were
for the cross section of a single flux line in a material within the horizontal plane of the detector, and the sample
no (in-plane) mass anisotropy implies a variation of thehad to be rotated about the vertical axis by the angle
London penetration depth within the basal plane that idetween planes. (This would be a rotation of° @a
inconsistent with local London theory and points directlythe case of a perfect hexagonal lattice to observe an
to the importance of nonlocal interactions. equivalent symmetry-related reflection.) The horizontal

In this Letter, we demonstrate that nonlocal electrodyfield geometry has the advantage that all the Bragg spots
namics plays an important role in clean, highmate- can be seen simultaneously and symmetries of the lattice
rial [7] (« = 25) V3Si, which is a cubic superconductor. are readily apparent. In the vertical field geometry, the
Nonlocality causes symmetry changes in the flux line latangles between basis vectors can be much more accurately
tice and its effects are encountered well outside the 40 Aetermined and are related only to the direct rotation of
range of the coherence length. This is quite contrary taghe sample and not to experimental parameters, such as
what is generally considered to be the case that nonlocalample size, detector calibration, or resolution element.
electrodynamics is relevant only where the coherenc&he flux line lattice was grown as the sample was cooled
length, &, of a superconductor is large, such as in nio-in a field.
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The sample of YSi was a cylinder of diameter 8.3 mm

and length 10.4 mm. The physical cylinder axis was de- 2
termined to be thez axis of the crystal to within an
uncertainty of 2. The mosaic was less than 0.the reso- -0.1
lution with which the measurement was made. The sample

had adH.,/dT slope of—2 T/K and a critical tempera- 00
ture of 16.3 K (midpoint), as characterized by SQUID
magnetization measurements. The extrapolates(0) 0.1
as obtained from the expressiow1(dH.,/dT)T. is ap-
proximately 22 T. With the Ginzburg-Landau expression 0.2
H., = ¢o/2mwE&?, this corresponds to a coherence length

£61(0) = 38 A. Just abovd., the electrical resistivity 01
was1.9 X 107% ohm cm (residual resistance ratio RRR

32). From the produch€ = 0.64 X 10~'! ohmcn? (ob- 00
tained from analyzing the equilibrium magnetization data E
using Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) ex- ~ 01
pressions [10]), one then obtains the vafue 320 A for e
the electronic mean free path. Thés> ¢ and we con- 02
clude that the material is clean. Clean materials are a
prerequisite for the nonlocal effects that have been ob- 03
served. Although qualitative, another measure of clean- 5
liness is the relatively weak vortex pinning, which gives a '
critical current density/. of 1 X 10* A/cn? at 5 K in a 0.1
field of 1 T. For comparison, the depairing current density 00

isJo = cH./3/6 A = 2 X 108 A/cm?, corresponding to
aratioJ./Jy = 107*. The weak pinning and particularly
the large mean free path imply that nonlocal effects may 0.2
be pronounced in this material.

Of the predictions mentioned above, the first was that
with the applied field parallel to the: axis at low
temperature, there would be a transition from hexagonal
to square symmetry at abQUt 3T. This hexa_gonal—squarEIG_ 1(color). The scattering pattern from the FLL at 0.75,
transition was observed, in fact, but at a field of 1 T,10, and 1.5 T shows the structural transition in the flux line
considerably smaller than predicted. Scattering patterniattice. The real space arrangement and its relationship to
for the FLL at three different fields (0.75, 1.0, and 1.5 T)the crystal orientation is indicated alongside. The scattering
are shown in Fig. 1. Here, the horizontal and vertical axegt‘:itggs‘ atTlh-g Zaﬁw Sl :L;gﬁ: ggfallttlgrne vavggeltréaﬂguﬁrh an ;guaar:g
are §ymmetry-equwalent 110 _dlre_ctlons and the field i .0 T data are taken at a single angular setting. The 1.5 T data
applied along the [001], an axis with fourfold symmetry. are summed over a rocking curve.

At low field, 0.75 T, the underlying fourfold symmetry of

the crystalline lattice manifests itself in the existence of

two triangular FLL domains, one of which is considerably The stable structure nedt, where the lattice first forms
larger than the other. Each of these domains is orientefsince the sample is field cooled), could be different
such that the triangle base vector of each FLL is parallethan that at low temperatures. Pinning could cause the
to a crystallographic 110 direction. At 1 T, the intensity structure stabilized neaf. to persist. However, the

is split about equally between the triangular and squar@arrow transition (AT.(10%-90%) =~ 0.2 K) indicates
lattices and by 1.5 T, nearly all of the intensity is in therelatively high compositional homogeneity, and nearly
square lattice and a very small fraction of the intensityreversible magnetization curves are observed fig@f ).

can be attributed to the triangular array. Because there is Although the FLL appears to have sixfold symmetry at
no mechanism by which this change could possibly occulower fields (B || [001]), the lattice here is not perfectly
in a continuous manner and there are no intermediatkexagonal. That is, the apex angde the angle between
changes in structure, it would suggest that this transitiothe two Bragg peaks, indicated in Fig. 1 is not exactly
is first order in nature. However, although the transition60°. The angleB extrapolates to 60at zero field and
from triangular to square appears to happen in a singlé is smaller than 60for low values of the applied field.
step, it does occur over an extended range of appliedihe apex angle decreases with increasing field until the
field. This could be influenced by a varied density oftransition occurs to the square symmetry (wheéris 90°)
pinning centers or other inhomogeneities in the crystal(see Fig. 1). The measurement of the lattice perfection

0.1

03

-03 02 -01 -00 01 02 03

Q, (hm-")

5113



VOLUME 82, NUMBER 25 PHYSICAL REVIEW LETTERS 21 UNE 1999

in the triangular phase was resolution limited. However,1 T, the nearest neighbor distance between the flux line
for the square FLL, the mosaic spread [11] (vertical fieldcenters is approximately 450 A in a square arrangement
geometry) was quite broad {EWHM). (or 480 A for a triangular configuration). This is not a
In the geometry where the applied field is parallel toparticularly suggestive length scale; it would appear that
the [110], a nearly perfect hexagonal lattice is seen athe features in the anisotropy are strong at this distance
the lowest field B = 62° at 0.5 T) in agreement with from the vortex core. It has been postulated that the
previous [9] measurements. Here, only one domain existsiagnetic field falloff has a short range anisotropic part
and the primary Bragg reflections are aligned once agaiand a more slowly varying isotropic part. In this case,
to a crystallographic [110] direction. The existence ofat low fields when the vortices are far from each other, the
a single domain is consistent with the twofold crystalinteraction potential is nearly isotropic. But at larger fields,
symmetry in this geometry, since the [110] and [001],the vortices are closer to each other and the anisotropy
which are perpendicular to each other, are not equivalefiecomes more evident. This is certainly the trend that is
directions. With an increasing field, the lattice is seen toobserved; the hexagonal lattice is more strongly distorted
be distorted from the perfect hexagonal. As a functioras the field is increased.
of the field, the variation of the apex anglg, for this The intensity of the flux lattice Bragg peak with
geometry is shown in Fig. 2. It is seen thatincreases B || [001] is considerably lower (by a factor of more than
with the applied field; however, the field dependence3) than that with the field parallel to tH@10]. This is
changes abruptly at 1.3 T, approximately the same fielahot entirely unreasonable for the following reason: The
at which the hex-square phase transition occurs folattice in the first instancéB || [001]) consists of two
B || [001]. Beyond 1.3 T, the increase i@ appears to lattices related by symmetry to each other by a rotation
remain linear up to 5 T, the highest field measured. Thef 90°. Even though one of these lattices is much less
FLL at all fields was perfect and the mosaic was limitedpopulated than the other, the average size of a “perfect”
by the resolution fo || [110]. domain in the more prevalent direction is most likely
The theoretical prediction for the FLL in this geometry smaller than in the case where a single lattice exists.
(B || [110]) is the same as that fa® || [001]. Thatis, a Since the intensity of a Bragg peak [12] is proportional
hexagonal to square lattice transition is expected at th the square of the number of (coherent) scatterers, the
same field as that in the other geometry. However, iBragg peak forB parallel to[110], with its single lattice
should be noted that the FLL symmetry in the lowestorientation, is likely to have a higher intensity in the
order theoretical construct (fourfold) is higher than theBragg peak, all other factors remaining equal. However,
actual crystallographic (twofold) symmetry. given this inequity in the intensities and the fact that there
As the temperature is increased, the apex angle tendasists a symmetry transition in the middle of the range,
towards 60. The apex angles for any given field are stablethe temperature dependence of the intensities cannot
up to approximately 7 K (Fig. 3). Above this temperature,be analyzed in a simple manner. More information is
B systematically decreases with temperature. There igquired, particularly for higher order reflections, in order
some unusual dependence®t 1 T, near the field where to adequately correct the intensities and elicit the “true”
the transitions occur in the FLL as a function of field. At dependence of the order parameter.
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shows an abrupt change in slope at 1.3 T. Note that the data

acquired in the vertical field geometry (filled diamonds) areFIG. 3. The temperature dependence of the apex apyglat
considerably more precise than those obtained in the horizontan applied field of 1 T.7.(1 T) = 15.8 K (vertical field: filled
field geometry (crosses). circles; horizontal field: open circles).
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In the local London model, the local supercurrent denthe simple local London model, vortices repel each other
sity, j, is proportional to the vector potentiat, at the with force that depends on distance only; the interaction is
corresponding point in space. In the nonlocal generalizaisotropic, which should result in a hexagonal rather than
tion, the current density becomeslependent withi(k) =  square lattice. Presumably, in fields much smaller than
Q(k)a(k), whereQ is k dependent kernel. This implies H,.,, the vortex-vortex interaction is mainly due to the
that the currenj at a pointr is proportional to an average Lorentz force and is given by a single vortex field distri-
over a surrounding volume of radiaségcs. Within the  bution. The experimental results indicate that there is a
first order terms of the nonlocal correction (in the theoreti-region around the vortex core where magnetic field distri-
cal treatment), the magnetic field distribution has fourfoldbution is anisotropic (even in cubic crystals) and that the
symmetry for any field direction, except along the [111]anisotropy depends on the vortex orientation within the
direction where it is isotropic (since the anisotropy pa-crystal. Finally, since the field falloff from a vortex is
rameter in this case is zero). Since the true symmetry fodirection dependent, this will result in an anisotropic sup-
B || [111] is sixfold rather than isotropic, the correct sym- pression of the gap as well. This may well effect the
metry is reproduced in the model only for the field parallelpredictions of the FLL symmetry, since the theoretical
to the 001 direction. The first nonlocal correction termconstruct assumes a naive picture where the gap is
with its fourfold symmetry will stabilize a square FLL in isotropic and the core has no structure.
high fields for any field direction other than the [111]. On We thank K.J. Song for assistance with the magnetic
the other hand, a square FLL is experimentally observedheasurements and R. Feenstra for the electrical resis-
only for the field along the fourfold (001) axis. Itis obvi- tance measurement. This work was carried out at Oak
ous from the data that at high fields, the fullependence Ridge National Laboratory, which is managed by Lock-
of the expression [6,8] becomes important and just the firdheed Martin Energy Research Corporation under Contract
order term is insufficient. Accounting for the higher order No. DE-AC05-960R22464. This work was also funded
terms in the nonlocal correction has proved to be cumbeilin part by a grant to the University of Warwick from the
some, but it was readily apparent that the next term in th&€PSRC, U.K.
expansion additionally breaks the symmetry such that it is
twofold for B || [110] and sixfold symmetry foB || [111],
while remaining 90 invariant along the 001 direction. [1] M. Yethiraj, D. McK. Paul, C.V. Tomy, and E. M. Forgan,
Thus, the formal incorporation of the next higher or- Phys. Rev. Lett78, 4849 (1997).
der correction term would make the symmetry of the [2] U. Yaronet al., Nature (London)382 236 (1996).
field coincide with the symmetry of the underlying lattice. [3] M. R. Eskildsenet al., Phys. Rev. Lett78, 1968 (1997).

In conclusion, it is seen that nonlocal effects are [4] D-McK. Pauletal., Phys. Rev. Lett80, 1517 (1998).

important even in highe cubic materials. Here, since [51 M. Yethirgj, D. McK. Paul, C.V. Tomy, and J.R. Thomp-
P g : ) son, Phys. Rev. B8, R14 767 (1998).

mass anisotropy is absent, all distortions of the FLL may [6] V.G. Koganet al., Phys. Rev. B55, R8693 (1997).

be considered as variations of the penetration depth du§7] The coherence length is approximately 40 A and the

to the effects of the finite size of the core. Where the penetration depth is 1000 A.

anisotropy of the intervortex interaction is felt strongly [8] V.G. Koganet al., Phys. Rev. Lett79, 741 (1997).

enough to precipitate the triangular-square transformation[9] D.K. Christen et al., Physica (Amsterdam}Ll35B, 369

the distance between vortices is about 450 A, which is (1985). These measurements were all performed at fields

more than 10 times the coherence length. less than 1 T; hence the structural transition was not
It is evident from present and previous measurements _ observed. . , .

that the FLL and crystal lattice symmetry are highly cor-[10] BCS and C_ELAG relations are conveme_ntly tabulated in

related. The FLL shape is dependent on the field direc- e appendix of T.P. Orlando, E.J. McNiff, Jr., S. Foner,

tion and always reflects the symmetry of the crystal plan and M.R. Beasley, Phys. Rev. B, 4545 (1979).

. R . ‘fll] The rocking curve width in the vertical field geometry
normal to the field. The qther d_lstlnct!ve feature is t_hat measures the perfection of the two-dimensional lattice
the hexagonal FLL at low inductions distorts as the field  oyer the whole sample, i.e., the mosaic of the flux line
increases and abruptly becomes square for certain field  crystal. This is not a measure of the straightness or length
directions. This is in contradiction with the prediction of the flux lines, as it is in the horizontal field geometry.
of the London model for cubic superconductors. Within[12] C.G. Darwin, Philos. Mag27, 315 (1914).
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