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Localization of Spin Waves in the Quantum Hall Ferromagnet
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The topological nature of the quantized Hall plateau has a number of remarkable consequences. For
the quantum Hall ferromagnet (QHF), it leads to the identification of the topological charge density of a
spin distortion with the associated electrical charge density. Spin waves may couple to a scalar disorder
potential via their topological density. This interaction is very similar to minimal coupling of quantum
particles to a random flux. It leads to the localization of spin waves in the QHF. We derive a low-
energy description of the system in terms of a nonlinear sigma-model of unitary supermatrices. A pos-
sible experimental signature of these effects in photoemission is suggested. [S0031-9007(99)09462-4]

PACS numbers: 73.40.Hm, 75.30.Ds, 76.50.+g

The ground state of a two-dimensional electron gaslightly away fromy = 1 are electrically and topologically
(2DEG) at exact filling of a single Landau level (filling charged objects known as Skyrmions [1,2]. In addition,
fractionv = 1) is strongly ferromagnetic. The properties spin waves may couple to a scalar disorder potential via
of this quantum Hall ferromagnet (QHF) are profoundly their topological density [3]. This disorder interaction is
affected by the topological nature of the quantized Hallvery similar to minimal coupling of quantum particles to
plateau. In a quantum Hall state, there is a commensura random flux. The spin wave system provides a novel
tion between the magnetic flux through the 2DEG and theealization of this intently studied problem [4]. Quantum
electrical charge density. This leads to the identificatiorparticles localize in a random flux and one may expect the
of the topological charge density of a spin distortion withdisorder potential to have a similar effect upon spin waves.
an associated electrical charge density [1]. This identityn this Letter, we investigate this localization of spin waves
may be understood as follows: the Berry phase induced blgy weak disorder. We use supersymmetry [5] to construct
adiabatic transport through a spin distortion may be reproa low-energy description of the spin wave system in terms
duced by the Aharonov-Bohm phase induced by a fictitiou®f a nonlinear sigma model of unitary supermatrices. All
magnetic flux, proportional to the topological density of states of this model are localized in two dimensions [6].
the spin distortion. In this way, commensuration betweerThis demonstrates explicitly the localization of spin waves
flux and charge in the QH state implies commensuration oin the QHF. A possible experimental signature of these
electrical and topological charge densities. This is the diseffects in photoluminescence is suggested.
tinguishing feature of the QHF. As a consequence, the ele- Our starting point is the continuum field theory of the
mentary excitations formed as the filling fraction is movedQHF, proposed by Sondet al. [1];

S = ] d’x dt<pA[n] -9 + %(Vn)z + [)anz> + /dzx dt U(x)J,(x) + fdz V[Jo(x)], (1)

ev ! In the absence of disorder, the ground state field con-
Ju = g €wvamt = ym X 9ym, (2)  figuration of Eq. (1) is ferromagnetic. The long wave-
length spin waves are those of the familiar Heisenberg
where n(x) is an O(3)-vector order parameter of unit ferromagnet. One may imagine that weak disorder will
length, describing the local polarization of the quantuminduce small fluctuations in the ground state charge distri-
Hall system. The first line of Eq. (1) is the usual contin- bution [and, therefore, in the spin polarization via Eq. (2)].
uum field theory of a ferromagnet. It consists of the BerrySuch fluctuations would lead to a spatial variation of the
phase, spin stiffness, and Zeeman energy, respectivelgpin-stifiness. This picture is incorrect. The QH state is
A[n] is the vector potential of a unit monopole in spin incompressible and there is a gap to all static distortions in
space,s is the electron densityp(= 1/2x1%, wherelz  the charge density. The gap is the quasiparticle/Skyrmion
is the magnetic length)y; is the spin stiffness, ang is  energy. A scalar disorder potential induces no distortion in
the Zeeman coupling, into which we have absorbed théhe charge density or spin distribution if its fluctuations are
electron spin and the Bohr magneton for ease of notatiorbounded by the Skyrmion energy. This incompressibility
The second line contains terms arising due to the identitynay be shown directly from Eq. (1) using a Bogomolny
of electrical and topological charge densities in the QHFbound argument [7]. This property of the QHF is rather
U(x) is a scalar disorder potential and[Jy] is the fortunate. It allows one to perform a spin wave expansion
Coulomb self-energy of a charge distributidg(x). All about the ferromagnetic ground state and to use perturba-
of the new physics is due to these terms. tion theory in the disorder potential.
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We wish to expand Eq. (1) in small fluctuations, thick line represents a full spin wave propagator including
1 = (1,,1,,0), about the ferromagnetic ground state,the self-energyG ' = G, ' + 3. The real part of the
n=(0,0,1); n=(,hL,+1 — [1?). The effective ac- self-energy may be absorbed into a renormalization of the
tion, expanded to quadratic order in these fluctuations, ispin wave stiffness. The imaginary part is given by
given by d’q
| b ImX*(p, ») =7|mf W(p X q)’G*(q, »)
S = —/dzxdtl<— 9, — psV? — pg3>1 ™
2 2 -
__Y (P 2
o ] -2 (2 or. (6)
- lf d2X dt 8_ U(x)e,-ja,»lajl. (3) Ps
The second line of the above gives the solution to lowest

We use the complex notatioh,= [ + il, | = I; = il.  qrder in the disorder strength. The disorder averaged spin
The first line of Eq. (3) is the usual Schrédinger effective,, 5ve Green’s function is then

action for spin waves in a continuum ferromagnet. The . o
second line is due to the identity of charge and topologi- R _ 2 _P@W . P
cal charge embodied in Eq. (2). It describes the interac- (&% p, @) <pslp| 2 T 27,,,) - 0
tion of spin waves with a scalar disorder potential. Spin Al 5 " .
wave interactions, both via the Coulomb potential and dudVN€re 7o = 4ppi(pw/2)"/y. In writing down this
to higher orders in the spin wave expansion, have beefXPression, we have replaceg|® in Eq. (6) by its
ignored. The grounds upon which one may do this ar@n-Shell value,pw/2p,. This 3 JUSt;f'ed by Taylor
discussed in the penultimate paragraph. Throughout thgxpansmn in powers ofpw /16p;. v/p; < 1 for weak
bulk of the calculations presented in this paper, we will ig-diSorder ang /16p, <1 at frequencies much less than
nore the Zeeman term in Eq. (3). It is a simple matter td"'€ Skyrmion energy. . . .
reintroduce it at the end of our calculations. To see the re- 1 1€ [most important point to notice here is that the
lationship of Eq. (3) to the effective action for SchrodingerSCattering time diverges as the frequency goes to zero.
particles in a random flux [4], one should integrate the in-_The charge density of a superposition of spin waves
teraction term by parts. The result looks like minimal cou-IS Proportional to the second power of the momentum.
pling to a vector potentiald; = —(ev/167)€;;0;U(x), Therefore, despltg the disorder strength being the same
for all momenta it has less effect upon low momenta.

aside from the absence of dA|> term. In the remain- h duction in ch densi I I
der of this Letter, we use the supersymmetry technique ofhe re uction in charge density at low momenta also
leads to a divergent lifetime in the case of the realistic

Efetov [5] in order to consider the possibility of spin wave - . .
[5] P y P disorder correlations of Eqg. (4). This divergence is less

localization in the QHF. S S . .
The correlations in the disorder potentiflt by the r.ap'dr':w = 8p;/y'w. The ldlvlergencle of the scatterlngh
two-dimensional electron gas in GaAs heterostructures afdne has some important calculational consequences. The
conveniently modeled as follows [8]: spectral weight is concentrated in a small energy range

oy 1/27, < pw/2 of the bare pole apw/2 = p,|q|*> as
UUN = 2728 + a)y' & 4 requwed for self-consistency of the perturbative expansion.
(UgUqn = 2m)°a(a + @)y lql? @ This should be compared to the case of electrons scattering

d is the width of the insulating spacer layer separating thér]f)?; a(;randqm fscaltgr p.otentlal t[5]t,hwr|1:ere 'ghe bare pole
electrons from the ionized donor impurities.’ is a mea- of the Green's function Is near to the Fermi energy,

sure of the disorder strength and is related to the area deﬂnd the scattering ratel,/ 7, IS constant, The validity
sity of donor impurities,iy; y' = (e</fia/2€)2(v /8. of the perturbative expansion for electrons depends upon

Notice that the disorder has long range correlations. T(Bhe STﬁ”nefS (C)jf t_het_paramti;e/TI:;F. Itr.' the Fireslemdt
simplify our explicit calculation, we assume a Gaussian 2S¢, the extra dervalives in Ine interaction vertex lead 1o

é-function correlated distribution for the disorder poten-'the existence of a small expansion parameter without the

: ; : istence of a Fermi surface.
tial: (UqUq)) = 27)*yS(q + q'). In this case, the dis- EXIS
order strength is independent of the wave vector. W?h Supersymmetry-We now develop a low-energy

return to the more realistic correlations of Eq. (4) later. d_eorc)i/ for :hetllrlltera_ctlon of spin W?\_/ets V\t']'th a We"_"rlt(]
The self-energycalculated in the self-consistent Born ISorder potential, Using SUpersymmetric techniques.  the
approximation, is main subtleties of the current problem are in the handling

of the geometrical factors in the interaction. We refer
R . the reader to the literature [5] for details of the supersym-
Z%(p,w) = €ijen - (O metry itself. As noted previously, this problem is very
similar to that of noninteracting particles in a random
flux. An alternative derivation of the results presented
In this diagram, full lines represent spin wave propagatorshere may be made using the techniques of Ref. [4].
crossbars indicate spatial derivatives of these propagators We wish to determine the disorder averages of dynami-
and the dotted lines represent disorder correlations. Theal quantities involvindGAG®) and, therefore, introduce
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a four-component superfieldy = (1418 y4x®), in the  removes the need to write the partition function explicitly
usual way [5]. The superscriptg,/R, label advanced in the denominator of correlation functions and allows the
and retarded sectors, the fielgsare anticommuting. The disorder average to be performed immediately. The re-
presence of the commuting and anticommuting fieldg in  sulting Lagrangian for the superfield, is

L = f[—ilzl(—/)svz - §E>¢ + ')’(Eijai':baj‘//)z}dzr,

whereé = (Q + w/2)1 + (w/2 + i5)A and A is the diagonal supermatrix with elements’— in the advanced/
retarded sectors. As is usual in the derivation of the supersymmetric sigma model, we assumettat Disorder
averaging may induce cross correlations between the Green'’s functions only if the difference in frequencies is less than
the scattering ratpw /2 = 1/2710,1/210+0 < p /2, therefore this approximation is justified. Next, we decouple

the quartic interaction, introduced by the disorder average, with a supermatrix@digldyvherei, j € {x,y} and each
element of the X 2 matrix Q;; is a4 X 4 supermatrix:

[ dr pQN"! . 1 2}
£im[¢,Qij]—/2m St{<2ps> €0k Qijoh + 320, oii |-

The supertrace, Str, is as defined in Ref. [5] and summan the advanced/retarded sector. Henceforth, we @se
tion over repeated spatial indices is implied. Integratingo denote implicitly supermatrices with only these com-
out the superfieldys, we obtain the following free energy ponents nonzero. The corresponding actions §d.,

functional forQ;;: and 6§ 0., contain massive propagators. It is important
1 . p 57 that one should not simply ignore these massive modes.
F[Qi;] = f St{—E(InG ) + WQ;,}d r, They may lead to a renormalization of the diffusion

constant for the massless modes [4,9]. Here, we find that
(8)  this is not the case. The cross terms betwégn and
whereG(r,r/, Q) is the supermatrix Green’s function of 6Q.1/86Q., are proportional tdq|%. Integrating out the

the fieldy and satisfies the equation massive modes inducedq* term in thes Q, propagator,
5 o which we neglect at small momentum. Keeping only
<—pXV2 5 € +i SQ €xilQijoj0x + akQ,;,-aj]> fluctuations of O, over the saddle point manifold, we

o arrive at the sigma model
X G(r,r',Q) =ié(r — r'). P2 _
r . w
The saddle point equation f@?;; is F[Qs] =[ 32p S'EV{DanQsl2 - 21<%>/\Qs]
0, =005 [ b 00 S (9)
ij 50 Q)2 kiPkPj » Cij) -

here Dy is the classical diffusion constant given by
o = psTaf). This energy functional describes the dif-
- fusive propagation of fluctuations in the exchange energy.
Qij = €;VAV, All states are localized in this model [5,6], with a local-

where V is an arbitrary, unitary supermatrix such thatization length

VV = 1. The diagonal terms af;; are zero at the saddle 72D}

point and, therefore, correspond to massive modes. The ¢ = vaTq ex;{ i } ~ 03 exdQ 2], (10)
off-diagonal components, however, sit in a Mexican Ps

hat potential and have massive longitudinal fluctuationsvhich is divergent in theQ), q = 0 limit. We have
and massless transverse fluctuations. At the saddigsed Ué = (dE/dp)zlE:Q/z =2p,Q/p. There is a
point, Q;; ~ €xdxpd;if. The diagonal elements @;;  crossover from an effectively delocalized regime at low
describe charge density fluctuation,; ~ €;;0;49;¢  frequency to a localized regime at high frequency. The
[see Eg. (3)] and the off-diagonal elements describgjivergence atq = 0 is a natural consequence of the
exchange energy fluctuations;; Q;; ~ 9;49;¢. Letus existence of an SU(2) global symmetry [broken to U(1)
define 9, = %eijQij, Q1 = 011, and Q. = 0y, so  with the inclusion of the Zeeman coupling]. The Zeeman
that Q;; = €;;Q, + diagQ.1,Q.2). At the saddle point coupling is included by replacin® by ) — ¢gB. There

0, = VAV and Q. = 0. Expanding the free energy are no spin wave states below the Zeeman gap and the
functional, Eqg. (8), to quadratic order in fluctuations oflocalization length diverges as the frequency approaches
Q;; about the saddle point, we find a typical diffusive this,q = 0, limit. Our task now is to determine whether
effective action for the fluctuations§Q,, of Q, about this localization can be seen in experimental systems.
the saddle point. The only nonzero contributions to thisRealistic correlations in the disorder potential, given by
action come from components ¢f that are off diagonal Eq. (4), lead to a modification of the parameters in the
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sigma model. The scattering time is given by [3] There are additional grounds upon which Coulomb in-
. 4pp2 (pON! teractions may be neglected relative to disorder interac-
o= (T) , (11)  tions [10]. At sufficiently high temperature, one must in-

_ o clude nonlinear interactions, but may ignore Coulomb in-
which again diverges af) — 0 such that1l/rq <  teractions. This regime is beyond the scope of this Letter.
p€1/2. When considering transport phenomena, the ther- Experimental determination of the diffusion coefficient
mal lifetime given by Eq. (11) is renormalized by vertex and |ocalization length may be possible using space/time-
corrections [3]. Scattering through an anglés weighted  resplved photoluminescence. In the QHF, magnetoexci-
by a geometrical factor sifi and the resulting transport tons and spin waves are identical [11]. If, in addition,
scattering time is a factor of 2 larger than the thermal scatihe subband wave function of valence holes is centered
tering time. Subsequent calculations follow through asn the same position as the wave function of electrons in
before, with a few additional complications. Finally, one the two-dimensional electron gas, then excitons have the
obtains the same supersymmetric sigma model, Eq. (9ame Hamiltonian as magnetoexcitons [12]. Localization
with and diffusion of excitons in other systems have been mea-
16p3 sured using photoemission spectroscopy [13]. The same
W (12) techniques may be applicable here.
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