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The topological nature of the quantized Hall plateau has a number of remarkable consequences
the quantum Hall ferromagnet (QHF), it leads to the identification of the topological charge density
spin distortion with the associated electrical charge density. Spin waves may couple to a scalar dis
potential via their topological density. This interaction is very similar to minimal coupling of quantu
particles to a random flux. It leads to the localization of spin waves in the QHF. We derive a lo
energy description of the system in terms of a nonlinear sigma-model of unitary supermatrices. A
sible experimental signature of these effects in photoemission is suggested. [S0031-9007(99)094
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The ground state of a two-dimensional electron g
(2DEG) at exact filling of a single Landau level (filling
fractionn ­ 1) is strongly ferromagnetic. The propertie
of this quantum Hall ferromagnet (QHF) are profoundl
affected by the topological nature of the quantized Ha
plateau. In a quantum Hall state, there is a commensu
tion between the magnetic flux through the 2DEG and t
electrical charge density. This leads to the identificatio
of the topological charge density of a spin distortion wit
an associated electrical charge density [1]. This ident
may be understood as follows: the Berry phase induced
adiabatic transport through a spin distortion may be rep
duced by the Aharonov-Bohm phase induced by a fictitio
magnetic flux, proportional to the topological density o
the spin distortion. In this way, commensuration betwe
flux and charge in the QH state implies commensuration
electrical and topological charge densities. This is the d
tinguishing feature of the QHF. As a consequence, the e
mentary excitations formed as the filling fraction is move
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slightly away fromn ­ 1 are electrically and topologically
charged objects known as Skyrmions [1,2]. In addition
spin waves may couple to a scalar disorder potential v
their topological density [3]. This disorder interaction is
very similar to minimal coupling of quantum particles to
a random flux. The spin wave system provides a nov
realization of this intently studied problem [4]. Quantum
particles localize in a random flux and one may expect th
disorder potential to have a similar effect upon spin wave
In this Letter, we investigate this localization of spin wave
by weak disorder. We use supersymmetry [5] to constru
a low-energy description of the spin wave system in term
of a nonlinear sigma model of unitary supermatrices. A
states of this model are localized in two dimensions [6
This demonstrates explicitly the localization of spin wave
in the QHF. A possible experimental signature of thes
effects in photoluminescence is suggested.

Our starting point is the continuum field theory of the
QHF, proposed by Sondhiet al. [1];
S ­
Z

d2x dt

µ
r̄Afng ? ≠tn 1

rs

2
s=nd2 1 r̄gBnz

∂
1

Z
d2x dt UsxdJosxd 1

Z
dt V fJ0sxdg , (1)
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where nsxd is an O(3)-vector order parameter of uni
length, describing the local polarization of the quantum
Hall system. The first line of Eq. (1) is the usual contin
uum field theory of a ferromagnet. It consists of the Berr
phase, spin stiffness, and Zeeman energy, respective
Afng is the vector potential of a unit monopole in spin
space,r̄ is the electron density (r̄ ­ 1y2pl2

B, wherelB

is the magnetic length),rs is the spin stiffness, andg is
the Zeeman coupling, into which we have absorbed th
electron spin and the Bohr magneton for ease of notatio
The second line contains terms arising due to the ident
of electrical and topological charge densities in the QHF
Usxd is a scalar disorder potential andV fJ0g is the
Coulomb self-energy of a charge distributionJ0sxd. All
of the new physics is due to these terms.
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In the absence of disorder, the ground state field co
figuration of Eq. (1) is ferromagnetic. The long wave
length spin waves are those of the familiar Heisenbe
ferromagnet. One may imagine that weak disorder w
induce small fluctuations in the ground state charge dis
bution [and, therefore, in the spin polarization via Eq. (2
Such fluctuations would lead to a spatial variation of th
spin-stiffness. This picture is incorrect. The QH state
incompressible and there is a gap to all static distortions
the charge density. The gap is the quasiparticle/Skyrm
energy. A scalar disorder potential induces no distortion
the charge density or spin distribution if its fluctuations a
bounded by the Skyrmion energy. This incompressibili
may be shown directly from Eq. (1) using a Bogomoln
bound argument [7]. This property of the QHF is rath
fortunate. It allows one to perform a spin wave expansi
about the ferromagnetic ground state and to use pertur
tion theory in the disorder potential.
© 1999 The American Physical Society
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We wish to expand Eq. (1) in small fluctuations
l ­ sl1, l2, 0d, about the ferromagnetic ground state
n̄ ­ s0, 0, 1d; n ­ sl1, l2,

p
1 2 jlj2d. The effective ac-

tion, expanded to quadratic order in these fluctuations,
given by

S ­
1
2

Z
d2x dt l̄

µ
r̄

2
≠t 2 rs=2 2 r̄gB

∂
l

2 i
Z

d2x dt
en

8p
Usxdeij≠i l̄≠jl . (3)

We use the complex notation,l ­ l1 1 il2, l̄ ­ l1 2 il2.
The first line of Eq. (3) is the usual Schrödinger effectiv
action for spin waves in a continuum ferromagnet. Th
second line is due to the identity of charge and topolog
cal charge embodied in Eq. (2). It describes the intera
tion of spin waves with a scalar disorder potential. Spi
wave interactions, both via the Coulomb potential and du
to higher orders in the spin wave expansion, have be
ignored. The grounds upon which one may do this a
discussed in the penultimate paragraph. Throughout t
bulk of the calculations presented in this paper, we will ig
nore the Zeeman term in Eq. (3). It is a simple matter
reintroduce it at the end of our calculations. To see the r
lationship of Eq. (3) to the effective action for Schrödinge
particles in a random flux [4], one should integrate the in
teraction term by parts. The result looks like minimal cou
pling to a vector potential,Ai ­ 2seny16pdeij≠jUsxd,
aside from the absence of anjAj2 term. In the remain-
der of this Letter, we use the supersymmetry technique
Efetov [5] in order to consider the possibility of spin wave
localization in the QHF.

The correlations in the disorder potentialfelt by the
two-dimensional electron gas in GaAs heterostructures a
conveniently modeled as follows [8]:

kkUqUq0ll ­ s2pd2dsq 1 q0dg0 e22jqjd

jqj2
. (4)

d is the width of the insulating spacer layer separating th
electrons from the ionized donor impurities.g0 is a mea-
sure of the disorder strength and is related to the area d
sity of donor impurities,nd; g0 ­ se

p
ndy2ed2sny8pd2.

Notice that the disorder has long range correlations. T
simplify our explicit calculation, we assume a Gaussia
d-function correlated distribution for the disorder poten
tial: kkUqUq0ll ­ s2pd2gdsq 1 q0d. In this case, the dis-
order strength is independent of the wave vector. W
return to the more realistic correlations of Eq. (4) later.

The self-energy,calculated in the self-consistent Born
approximation, is

In this diagram, full lines represent spin wave propagator
crossbars indicate spatial derivatives of these propagat
and the dotted lines represent disorder correlations. T
,
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thick line represents a full spin wave propagator includi
the self-energy;G21 ­ G21

0 1 S. The real part of the
self-energy may be absorbed into a renormalization of
spin wave stiffness. The imaginary part is given by

ImSRsp, vd ­g Im
Z d2q

s2pd2 sp 3 qd2GRsq, vd

­
g

8r2
s

µ
r̄v

2

∂
jpj2. (6)

The second line of the above gives the solution to low
order in the disorder strength. The disorder averaged s
wave Green’s function is then

kGRsp, vdl ­

µ
rsjpj2 2

r̄v

2
1 i

r̄

2tv

∂21

, (7)

where tv ­ 4r̄r3
s sr̄vy2d22yg. In writing down this

expression, we have replacedjpj2 in Eq. (6) by its
on-shell value,r̄vy2rs. This is justified by Taylor
expansion in powers ofgr̄vy16r3

s . gyr2
s ø 1 for weak

disorder and̄rvy16rs ø 1 at frequencies much less tha
the Skyrmion energy.

The most important point to notice here is that th
scattering time diverges as the frequency goes to ze
The charge density of a superposition of spin wav
is proportional to the second power of the momentu
Therefore, despite the disorder strength being the sa
for all momenta it has less effect upon low momen
The reduction in charge density at low momenta a
leads to a divergent lifetime in the case of the realis
disorder correlations of Eq. (4). This divergence is le
rapid; t0

v ­ 8r2
s yg0v. The divergence of the scatterin

time has some important calculational consequences.
spectral weight is concentrated in a small energy ran
1y2tv ø r̄vy2 of the bare pole at̄rvy2 ­ rsjqj2 as
required for self-consistency of the perturbative expansi
This should be compared to the case of electrons scatte
from a random scalar potential [5], where the bare po
of the Green’s function is near to the Fermi energy,EF ,
and the scattering rate,1yt, is constant. The validity
of the perturbative expansion for electrons depends u
the smallness of the parameter1ytEF . In the present
case, the extra derivatives in the interaction vertex lead
the existence of a small expansion parameter without
existence of a Fermi surface.

Supersymmetry.—We now develop a low-energy
theory for the interaction of spin waves with a wea
disorder potential, using supersymmetric techniques. T
main subtleties of the current problem are in the handl
of the geometrical factors in the interaction. We ref
the reader to the literature [5] for details of the supersy
metry itself. As noted previously, this problem is ver
similar to that of noninteracting particles in a rando
flux. An alternative derivation of the results present
here may be made using the techniques of Ref. [4].

We wish to determine the disorder averages of dyna
cal quantities involvingkGAGRl and, therefore, introduce
5105
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a four-component superfield,c ­ slAlRxAxRd, in the
usual way [5]. The superscripts,AyR, label advanced
and retarded sectors, the fieldsx are anticommuting. The
presence of the commuting and anticommuting fields inc
5106
removes the need to write the partition function explicitl
in the denominator of correlation functions and allows th
disorder average to be performed immediately. The
sulting Lagrangian for the superfield,c, is
ss than
le
L ­
Z ∑

2ic̄

µ
2rs=2 2

r̄

2
ẽ

∂
c 1 gseij≠ic̄≠jcd2

∏
d2r ,

where ẽ ­ sV 1 vy2d1 1 svy2 1 iddL and L is the diagonal supermatrix with elements1y2 in the advanced/
retarded sectors. As is usual in the derivation of the supersymmetric sigma model, we assume thatv ø V. Disorder
averaging may induce cross correlations between the Green’s functions only if the difference in frequencies is le
the scattering ratērvy2 # 1y2tV , 1y2tV1v ø r̄Vy2, therefore this approximation is justified. Next, we decoup
the quartic interaction, introduced by the disorder average, with a supermatrix field,Qij , wherei, j [ hx, yj and each
element of the2 3 2 matrix Qij is a4 3 4 supermatrix:

Lintfc , Qijg ­
Z d2r

2tV

Str

∑µ
r̄V

2rs

∂
21

eki≠kc̄Qij≠jc 1
1

32rs
Q2

ij

∏
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The supertrace, Str, is as defined in Ref. [5] and summ
tion over repeated spatial indices is implied. Integratin
out the superfield,c, we obtain the following free energy
functional forQij:

FfQijg ­
Z

Str

∑
2

1
2

slnG21d 1
r̄

64tVrs
Q2

ij

∏
d2r ,

(8)

whereGsr, r0, Qd is the supermatrix Green’s function of
the fieldc and satisfies the equationµ

2rs=2 2
r̄

2
ẽ 1 i

rs

tVV
ekifQij≠j≠k 1 ≠kQij≠jg

∂
3 Gsr, r0, Qd ­ idsr 2 r0d .

The saddle point equation forQij is

Qij ­
16r2

s

r̄V

Z d2p
s2pd2 ekipkpjGsp, Qijd .

This is precisely the self-consistent Born equation th
was solved previously to find ImS. The solution is

Qij ­ eijVLV̄ ,

where V is an arbitrary, unitary supermatrix such tha
VV̄ ­ 1. The diagonal terms ofQij are zero at the saddle
point and, therefore, correspond to massive modes. T
off-diagonal components, however, sit in a Mexica
hat potential and have massive longitudinal fluctuation
and massless transverse fluctuations. At the sad
point, Qij , eki≠kc̄≠jc. The diagonal elements ofQij

describe charge density fluctuations,Qii , eij≠ic̄≠jc

[see Eq. (3)] and the off-diagonal elements describ
exchange energy fluctuations,eijQij , ≠ic̄≠ic. Let us
define Qs ­

1
2 eijQij, Qc1 ­ Q11, and Qc2 ­ Q22, so

that Qij ­ eijQs 1 diagsQc1, Qc2d. At the saddle point
Qs ­ VLV̄ and Qc ­ 0. Expanding the free energy
functional, Eq. (8), to quadratic order in fluctuations o
Qij about the saddle point, we find a typical diffusive
effective action for the fluctuations,dQs, of Qs about
the saddle point. The only nonzero contributions to th
action come from components ofQ that are off diagonal
a-
g
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in the advanced/retarded sector. Henceforth, we useQ
to denote implicitly supermatrices with only these com
ponents nonzero. The corresponding actions fordQc1
and dQc2 contain massive propagators. It is importan
that one should not simply ignore these massive mode
They may lead to a renormalization of the diffusion
constant for the massless modes [4,9]. Here, we find th
this is not the case. The cross terms betweendQs and
dQc1ydQc2 are proportional tojqj2. Integrating out the
massive modes induces ajqj4 term in thedQs propagator,
which we neglect at small momentum. Keeping only
fluctuations ofQs over the saddle point manifold, we
arrive at the sigma model

FfQsg ­
Z d2r

32rs
Str

∑
D0j=Qsj

2 2 2i

µ
r̄v

2

∂
LQs

∏
,

(9)

where D0 is the classical diffusion constant given by
D0 ­ rstVV. This energy functional describes the dif-
fusive propagation of fluctuations in the exchange energ
All states are localized in this model [5,6], with a local-
ization length

j ­ yVtV exp

"
p2D2

0

64r2
s

#
, V23y2 expfV22g , (10)

which is divergent in theV, q ­ 0 limit. We have
used y

2
V ­ sdEydpd2jE­Vy2 ­ 2rsVyr̄. There is a

crossover from an effectively delocalized regime at low
frequency to a localized regime at high frequency. Th
divergence atq ­ 0 is a natural consequence of the
existence of an SU(2) global symmetry [broken to U(1
with the inclusion of the Zeeman coupling]. The Zeema
coupling is included by replacingV by V 2 gB. There
are no spin wave states below the Zeeman gap and
localization length diverges as the frequency approach
this, q ­ 0, limit. Our task now is to determine whether
this localization can be seen in experimental system
Realistic correlations in the disorder potential, given b
Eq. (4), lead to a modification of the parameters in th
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sigma model. The scattering time is given by [3]

t
0
V ­

4r̄r2
s

g0

µ
r̄V

2

∂21

, (11)

which again diverges asV ! 0 such that 1ytV ø
r̄Vy2. When considering transport phenomena, the th
mal lifetime given by Eq. (11) is renormalized by verte
corrections [3]. Scattering through an angleu is weighted
by a geometrical factor sin2u and the resulting transport
scattering time is a factor of 2 larger than the thermal sc
tering time. Subsequent calculations follow through
before, with a few additional complications. Finally, on
obtains the same supersymmetric sigma model, Eq. (
with

D0
0 ­ rst

0
VV ­

16r3
s

g0
. (12)

The diffusion constant is now independent ofV and
the localization length no longer has an exponent
dependence upon frequency, but a power law dependen

j0 ~ lB

µ
V

rs

∂21y2

. (13)

The numerical prefactor in this expression has an exp
nential dependence upon the disorder strength. Estima
assuming a donor density,nd , of the same order as the
electron density,̄r, give prefactors upwards of103. Lo-
calization lengths of a few thousand times the magne
length are perfectly realistic at experimentally accessib
frequencies.

The analysis presented above applies to noninteract
spin waves. However, the constraintjnj2 ­ 1 in Eq. (1)
leads to interactions between spin waves when higher
ders are included in the spin wave expansion (we call the
nonlinear interactions). Coulomb interactions have al
been neglected. One may ignore such interactions for
following reason: the effects of disorder are fundamenta
single-particle effects. Nonlinear and Coulomb intera
tions are multiparticle effects. When the density of sp
waves is very low, multiparticle effects may be neglecte
relative to single particle effects. Since spin waves a
bosonic, thermally activated particles, this is achieved
low temperatures,T ø gB. This is unlike fermionic sys-
tems, where one must consider the effect of interactio
with a Fermi sea of particles. These considerations en
into the field-theoretical formulation via the frequency de
pendence of the interaction vertices. In a perturbative e
pansion, disorder-induced loops are integrated only ov
momentum, since the disorder scattering is elastic. No
linear and Coulomb interactions transfer energy betwe
spin waves. Corresponding loops are integrated over m
mentum and summed over Matsubara frequencies. Th
frequency summations lead to factors of the Bose-Einst
distribution function which are exponentially small at low
temperatures.
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There are additional grounds upon which Coulomb in
teractions may be neglected relative to disorder intera
tions [10]. At sufficiently high temperature, one must in
clude nonlinear interactions, but may ignore Coulomb in
teractions. This regime is beyond the scope of this Lette

Experimental determination of the diffusion coefficien
and localization length may be possible using space/tim
resolved photoluminescence. In the QHF, magnetoex
tons and spin waves are identical [11]. If, in addition
the subband wave function of valence holes is center
in the same position as the wave function of electrons
the two-dimensional electron gas, then excitons have t
same Hamiltonian as magnetoexcitons [12]. Localizatio
and diffusion of excitons in other systems have been me
sured using photoemission spectroscopy [13]. The sam
techniques may be applicable here.
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