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New Type of Shape Instability of Hot Nuclei and Nuclear Fragmentation

J. Tõke and W. U. Schröder
Department of Chemistry and Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York

(Received 23 October 1998)

A novel mechanism of nuclear fragmentation is proposed. Assuming microcanonical equilibrium, it
is shown that a strong enhancement of the accessible volume of the phase space due to the diffuseness
of nuclear surface leads to dynamical instabilities of hot nuclei and to a fragmentation. Equations are
derived for the transition temperatureTT for which the thermodynamical surface tension vanishes, as
well as for the thermodynamical fissility parameterxtd . [S0031-9007(99)09391-6]

PACS numbers: 25.70.Pq, 24.10.Pa
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The understanding of properties and the behavior of h
nuclear matter, apart from its general scientific merit, is
key importance in studies of nuclear multifragmentatio
[1–3]. The latter studies have produced experimental e
dence that, under stress generated by heavy-ion collisio
nuclei fragment into multiple pieces—intermediate-mas
fragments. At the same time, theoretical effort has be
undertaken to establish the nature of the stress necess
or sufficient for the loss of (shape) stability of finite nu
clei. While theoretical modeling of thermostatic proper
ties of finite nuclear matter [4] has led to the realizatio
that above a certain critical temperature,Tcr , nuclear mat-
ter cannot exist in its basic liquid phase, most models
nuclear multifragmentation [5–10] rely on the presence
some dynamical stimulus in addition to a purely therm
one. This is so because the predicted magnitude ofTcr
appears to be significantly higher than the experimenta
determined temperatures of multifragmenting system
For example, calculations assuming Skyrme interactio
predict Tcr in the range of 13–20 MeV for infinite mat-
ter. While for finite systems theoretical values ofTcr are
significantly lower than those for infinite matter, they ar
still substantially higher than the experimentally observe
“multifragmentation temperatures” of 4–5 MeV.

The present paper points out the existence of an effe
that could lead to the loss of macroscopic stability o
finite nuclei at excitation energies of a few MeV pe
nucleon even in the absence of dynamical (compression
inertial) stimuli. Its findings derive from a realization of
the importance of surface effects in thermodynamics
hot nuclei.

To demonstrate the essence of the new mechanism
schematic model is adopted in which an excited nucle
system is allowed to assume one of only two macroscop
configurations (phases), that of a spherical mononucle
and that of a dinuclear configuration of two identica
touching spheres. It is further assumed that the system
in microcanonical equilibrium, i.e., all microstates belong
ing to the allowed macroscopic configurations are pop
lated with equal probabilities. Additionally, to simplify
the calculations, it is assumed that the two constituents
the dinuclear configuration have approximately equal e
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citation energies

Ep
1 ­ Ep

2 ­
1
2

sEp
tot 2 Epotd , (1)

whereEp
tot is the total excitation energy of the system and

Epot is the potential energy of the dinuclear configuration
relative to the ground state of the mononuclear configu
ration (Epot ­ 0). The quantityEpot can be calculated
based on the ground-state binding energies of the sphe
cal nuclei involved in both types of configurations and on
the Coulomb repulsion energy of the dinuclear complex.

The role of the nuclear surface is described in th
present model by the nuclear mass tables, by the liqui
drop mass formula, and by the surface term in th
Fermi-gas model expression [11–13] for the level densit
parametera. It is the latter term that leads to the effects
discussed:

E ­ EV 1 ES 1 ECsshaped

­ eV A 1 eSA2y3F2 1 ECsshaped and (2)

a ­ aV 1 aS ­ aV A 1 aSA2y3F2 , (3)

where A is the atomic number,ECsshaped is the shape-
dependent Coulomb energy, andF2 is the surface area in
units of its value for the spherical shape.

In microcanonical equilibrium, macroscopic states o
the system are populated according to weight factors th
can be expressed asWk ~ eSk , whereSk is the entropy of
the system in thekth macroscopic configuration. Within
the Fermi-gas model, the entropy for the two allowed
configurations can be approximated as

Sm ­ 2
p

amEp and (4)

Sd ­ 4
q

adsEp 2 Epotdy2 , (5)

where subscriptsm and d identify the mono- and di-
nuclear configurations, respectively, and the level densi
parameters are calculated from Eq. (3) for the mass num
ber A (mononuclear) and for the mass numberAy2 (di-
nuclear). In Eq. (5), the small contribution to the entropy
from the degrees of freedom of relative motion of the con
stituents of the dinuclear complex has been neglected.
© 1999 The American Physical Society
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The results of schematic calculations for a hypo
thetical nucleus witha ­ 200 and Z ­ 80 are shown
in Fig. 1. In these calculations, a potential energy o
Epot ­ 62 MeV was assumed, based on the nuclear ma
tables and the Coulomb interaction of two point nu
clei of chargesZy2, separated by a distance ofd ­
2.6sAy2d1y3 fm. Note that the assumed potential energ
is significantly higher than the actual saddle energy f
this system. The use of such a high value ofEpot in
the schematic calculations allows one to better illustra
the large magnitude of the discovered effect. For th
level density parametera, the parametrization of Tõke and
Swiatecki [11] was employed withaV ­ 0.068 MeV21

andaS ­ 0.274 MeV21.
As seen in the top panel of Fig. 1, at low total exci

tation energies, the system achieves the highest entro
when it assumes the mononuclear configuration. In oth
words, the accessible volume of the phase space is lar
for the mononuclear than for the dinuclear configuratio
However, the accessible phase space volume is enhan
due to the surface diffuseness of the nuclear matter d
tribution [reflected in the surface term in Eq. (2)]. This
accessible volume grows faster with increasing total e
citation energy for the dinuclear than for the mononu

FIG. 1. Entropy per nucleon (top), normalized microcanonic
population probability (middle), and temperature (bottom) a
plotted vs total excitation energy per nucleon. Two competin
geometries of a nuclear system ofA ­ 200, Z ­ 80 are illus-
trated, a mononuclear (single circle) and a dinuclear (touchi
circles) configuration. The solid line in the bottom panel repre
sents the weighted average temperature of the system, while
dotted and dashed lines illustrate the temperatures for the p
mononuclear and dinuclear configurations, respectively. S
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clear configuration. Eventually, at an excitation ener
of EpyA ø 3.3 MeV, the two allowed configurations fill
equal phase space volumes, i.e., correspond to equa
tropies. Above this “crossover energy” the system ha
higher entropy in the dinuclear state. Obviously, driv
by Coulomb repulsion, the latter configuration will deca
dynamically.

The middle panel of Fig. 1 illustrates the dependenc
of the normalized microcanonical weight factorsWmc for
the mononuclear and the dinuclear configuration on
total excitation energy. A second-order phase transit
from the mononuclear to the dinuclear phase is seen
occur in the smooth, gradual manner characteristic
small systems. This figure demonstrates that the pres
schematic system cannot survive in a microcanonica
equilibrated mononuclear configuration when excited
energies in excess of4 MeVynucleon.

The bottom panel in Fig. 1 illustrates the predicte
relation (solid line) between average temperature a
total excitation energy of the system, i.e., the “calor
curve” for the system. The average temperature
defined asT ­ WmTm 1 WdTd, whereWm, Wd, Tm, and
Td are the microcanonical weight factors and avera
system temperatures for the mononuclear and dinuc
configurations, respectively. The latter temperatures
calculated from the Fermi-gas model relationshipEp 2

Epot ­ aT2. For comparison, the temperaturesTm and
Td are also shown. As expected for a microcanonic
system, the temperature is not a sharply defined quan
For any excitation energy, the two-phase system assu
two different temperatures, with probabilities given by th
weight functions depicted in the middle panel in Fig.
In the caloric curve, the mononuclear-to-dinuclear pha
transition shows up as a quasiplateau aroundEpyA ø
3.3 MeV. This quasiplateau should not be confused w
a plateau expected for a first-order phase transition s
as, e.g., liquid-to-gas transition.

A very similar behavior is obtained when a canonic
rather than a microcanonical equilibrium is considered
the present system. In that case, the transition from
mononuclear to the dinuclear phase is expected to oc
at T ø 5 MeV [14]. While a microcanonical description
appears better suited [6] for isolated nuclear systems t
a canonical one, the present schematic model does
reveal any qualitative or major quantitative differences
the behavior of the system in these two approximations

It is remarkable that already an excitation ener
of the order of 4 MeVynucleon, corresponding to an
average temperature of less than 6 MeV, is sufficie
for the system to overcome a potential barrier of ov
60 MeV. This should not be surprising when on
realizes that the mechanism that allows the system
the present case to overcome a large potential barrie
fundamentally the same as that causing thermal expan
of nuclear matter. For example, in a schematic mo
such as the expanding emitting source model (EESM
5009
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[7] the thermal pressure that causes the system to exp
arises as a result of a strong dependence of the le
density parametera on the nuclear matter densityr,
a ­ aosryrod22y3, wherero is the ground-state nuclear
matter density. In the EESM [7], this thermal pressu
is equivalent to potential energies in the compression
degree of freedom of hundreds of MeV, already fo
temperatures below 10 MeV. Hence, in both case
a shape-instability (considered in the present schema
model) and a density-instability (considered in the EES
[7]), it is the dependence of the level density parametera
on the “driven” observable (shape andr, respectively)
that generates large effective thermodynamical drivin
forces and the associated destabilizing potential energ
In both cases, the latter energies are significantly larg
than the temperature of the system.

The abover dependence of the level density paramet
a is not included in the present schematic model,
order to isolate the destabilizing surface effects fro
other shape-destabilizing effects. In a more comple
model, where both shape and density dependencies of
level density parameter are considered, the loss of sh
stability is expected to occur for even lower excitation
than indicated in Fig. 1. This is so because a se
similar [7] radial expansion leads to both a reduction
the surface energy coefficienteS and an enhancement o
the surface term in the expression [Eq. (3)] for the lev
density parameter.

To gain a better understanding of the discovered surfa
effect and its role in generating a shape instability of fi
nite nuclei, thermodynamical surface tension and therm
dynamical fissility are discussed below. The derivatio
of the respective equations is based on the observat
that a thermodynamical driving forceFb for a coordinate
b is generally given by the gradient of the total energ
with respect tob, taken at fixed value of the entropyS.
Accordingly, one writes for the thermodynamical surfac
tensionLtd

Ltd ­
≠Ep

≠s

Ç
S­const

, (6)

wheres is the surface area.
The conditional partial derivative on the right-hand sid

of Eq. (6) can be calculated by noting that the conditio
S ­ const implies

DS2 ­ 4a0Ep 2 4

µ
a0 1

1
4pr2 aSDs

∂
3

µ
Ep 1 DEp 2

1
4pr2 eSDs

∂
­ 0 , (7)

where a0 is the ground-state value of the level densit
parameter,eS and aS are defined via Eqs. (2) and (3)
respectively, andr is the radius parameter.

By taking the limit of DEp 2 .0 and Ds 2 .0,
while omitting the terms that are quadratic in these tw
small quantities, one obtains from Eq. (7)
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Ltd ­
1

4pr2

µ
eS 2

aS

a0 Ep

∂
­

1
4pr2 seS 2 aST2d ,

(8)

where the Fermi-gas model relationship between tempe
ture T and excitation energyEp, Ep ­ a0T2, is
utilized.

As seen from Eq. (8), the thermodynamical surface te
sion Ltd decreases monotonically with increasing exc
tation energy, from its liquid-drop ground-state value o
Lld ­ eSy4pr2 to zero at a certain transition tempera
tureTT :

TT ­
r

eS

aS
. (9)

Note that Eq. (9) is analogous to the Fermi-gas mod
expression for the temperatureT ­

p
Epya0. A nu-

merical estimate, usingeS ­ 18 MeV and [11] a ­
0.274 MeV21, yields for the transition temperatureTT ø
8.1 MeV, i.e., a value that is significantly lower than (th
13–20 MeV) predicted by standard nuclear-matter calc
lations for semi-infinite matter [4].

The shape stability of finite nuclei is commonly de
scribed by the fissility parameterxld, rather than by the
surface tension. The fissility parameter accounts also
the disruptive action of Coulomb forces in addition to th
cohesive action of the surface tension. For small elli
soidal deformations characterized by a shape parame
a2, the surface and Coulomb energies,ES and EC , are
given by

ES ­ E0
S

µ
1 1

2
5

a2

∂
, EC ­ E0

C

µ
1 2

1
5

a2

∂
,

(10)
whereE0

S andE0
C are the respective energies at a spheric

shape. In these terms, the fissility parameter is given b

xld ­ 2
≠EC

≠a2

¡
≠ES

≠a2
­

E0
C

2E0
S

. (11)

A thermodynamical generalization of Eq. (11) is obtaine
by replacing the surface energyE0

S ­ 4pr2LldA2y3 by its
thermodynamical counterpart4pr2LtdA2y3:

xtd ­
E0

C

8pr2LtdA2y3 ­ xld

µ
1 2

aS

eS
T2

∂21

. (12)

Consequently, a spherical nucleus becomes unsta
against ellipsoidal distortions when the thermodynamic
fissility approachesxtd ­ 1, i.e., at a limiting temperature
of

Tlim ­ TT

p
1 2 xld . (13)

Here, the quantityTT is the transition temperature intro-
duced in Eq. (9).

For the present system ofA ­ 200, Z ­ 80, Eq. (13)
predictsTlim ø 4.9 MeV, when the liquid drop fissility
parameter is approximated byxld ­ Z2y50A. This
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temperature is consistent with what is seen in the bo
tom panel in Fig. 1 as necessary or sufficient to cau
a transition from the mononuclear to the dinuclea
configuration.

In summary, a new surface effect is described that c
lead to a loss of macroscopic stability of finite nuclei a
ready at very moderate excitation energies and, hen
to fragmentation. In the constructed schematic micr
canonical model of a two-phase system, one observe
second-order phase transition from a mononuclear to
dinuclear configuration. This transition occurs at a tem
perature that is by more than 1 order of magnitude low
than the change in potential energy associated with th
transition. The large magnitude of the discovered effe
calls for a further study of its possible implications. In
particular, it appears desirable to include this effect in th
practical models of nuclear multifragmentation propose
in the literature. It is worth emphasizing that this surfac
effect further decreases the stability of hot finite nuclei.
thus amplifies the known effects of a thermal expansio
or a reduction of the surface energy coefficient at elevat
temperatures.

This work was supported by the U.S. Department o
Energy Grant No. DE-FG02-88ER40414.
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