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Phase Transitions in Finite Nuclei and the Integer Nucleon Number Problem
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The study of spherical-deformed ground-state phase transitions in finite nuclei as a function
N and Z is hindered by the discrete values of the nucleon number. A resolution of the integ
nucleon number problem and evidence relating to phase transitions in finite nuclei are discussed
the experimental point of view and interpreted within the framework of the interacting boson mod
[S0031-9007(99)09401-6]
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It has been known for decades that nuclear propert
change, often dramatically, as a function ofN and Z.
However, the possibility of true nuclearphasetransitions
andphasecoexistence, in the sense of conventional co
densed matter systems, has generally been discoun
The reason has to do with the finite nature of atomic nuc
and the fact that they contain integer numbers of nucleo
In order to discuss the concept of phase transitions [1] o
needs to identify acontrol parameter as well as anorder
parameter. If the fluctuations in the order parameter a
small, that is, if the data follow a compact trajectory as
function of the control parameter, a phase transition wou
be signaled by a critical point where the order paramet
is discontinuous.

Here we are interested in structural changes in nuc
as a function ofN and Z. The finite nature of nuclei
means that any nuclear phase transition cannot be abr
The fact that nuclei containintegernumbers of nucleons
means that their properties changediscretelywith N and
Z. This is shown in Fig. 1a where a typical collective
observable is plotted against a neutron number for t
even-even Sm (Z ­ 62) isotopes. Clearly, an interesting
(and well known) change in structure is occurring atN ,
90, but the abscissa values are, by definition, discre
Therefore, regardless of what the data do, the integ
nucleon number requires that, at best, one can conn
only adjacent points by straight line segments and one c
define onlydifferencesin properties, not derivatives.

It is the purpose of this Letter to discuss phase transitio
in finite nuclei as a function ofN andZ and to suggest a
resolution of the integer nucleon number problem. Whe
one considers low energy nuclear structure, nuclear mod
offer the flexibility of having one or more continuous
parameters that can serve as control parameters, allow
the study of critical phenomena. The situation in actu
nuclei is different. In contrast to phase transitions in
specific nucleus, where excitation energy (or temperatu
can be introduced as a control parameter, in the evoluti
of nuclear structure at low energy we have seen thatN
andZ are not useful as control parameters. However, w
will suggest an empirical quantity which is continuous an
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does correlate extremely well the structural changes acro
large regions of nuclei such as theA ­ 150 region [3–5].
Finally, a theoretical analysis with the interacting boso
model (IBM) [6] shows why sharp transition regions are
indeed an expected feature of structural evolution.

We noted in Fig. 1 that the data from a single element d
not allow a discussion of phase transitional behavior. Th
data for collective nuclei in an entire region (50 , Z #

66), shown in Fig. 1b, only exacerbate the problem. Th
abscissa values remain discrete, but now another prereq
site for a phase transition disappears, namely, the abse
of fluctuations. The scattering of the data obliterates an
evidence of sharply discontinuous behavior.

How can we get around this situation in finite nuclei?
A possible answer is to choose a qualitatively differen
quantity to play the role of a control parameter, one tha
is at least potentially continuous. Of course, even if th
abscissa points become continuously distributed, we ne
to produce an approach in which the fluctuations in the da
are small. To do so, consider Figs. 2a–2c. In this figur
the sameEs41

1 d data as in Fig. 1 are plotted, not agains
N, Z, or A, but against another collective observable, th
energy,Es21

1 d, of the first21 state which, in principle, can
have any value. The top left panel, with clearly separate
data points, is no better for discussing phase transition
behavior than is Fig. 1a.

FIG. 1. Es41
1 d against neutron number for collective nuclei

[nuclei for which R4y2 ; Es41
1 dyEs21

1 d . 2.05]. (a) Sm;
(b) the50 , Z # 66 region. Data from Ref. [2].
© 1999 The American Physical Society
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FIG. 2. Es41
1 d againstEs21

1 d. Panels (a)–(c) show the sam
data as Fig. 1 for sequentially more elements. Panel (d) is
expanded view of the rotor region, showing the data points w
Es21

1 d , Ecs21
1 d.

However, when the data for additional elements a
added (Figs. 2b and 2c) we see a behavior that is qu
tatively different from Fig. 1. The distribution of points
as a function ofEs21

1 d successively fills in, yielding in
Fig. 2c a nearly continuous distribution. Next, we no
that Es21

1 d clearly correlates nuclear equilibrium prope
ties extraordinarily well. The data for different elemen
lie along essentiallyidenticalpaths and thus the ensembl
of data also lies along asingle compactcurve, with very
small fluctuations. This thereby enables a discussion of
trajectory and a potential interpretation in terms of pha
transitions. Of course, other observables that reflect
equilibrium configuration could have been chosen.Es21

1 d
is preferred, however, since it is well known in many nu
clei and is easy to measure in new nuclei.

Observables such asEs21
1 d, Es41

1 d, separation energies
and other measures of structure cannot, rigorously spe
ing, be considered as control parameters since they are
independently variable as is the temperature in a conden
matter system. Nevertheless,Es21

1 d, de facto, plays a simi-
lar role to a control parameter, and Fig. 2c suggests e
dence for phase transitional behavior as seen by the ne
discontinuous change in slope (order parameter) from 2
to 3.33 at a specific value ofEs21

1 d denotedEcs21
1 d. The

expanded view of the rotor region in Fig. 2d clearly show
the different slope for these nuclei. In this mass region t
change in slope occurs atEcs21

1 d , 120 keV.
Figure 2c itself is not new. We discussed theEs41

1 d-
Es21

1 d and related correlations in Ref. [7] and eve
broached the subject of phase transitional behavior. T
correlation in Fig. 2c has been discussed theoretically
in the context of the1yN expansion for the IBM and
extended [9,10] empirically to observables for intrins
excitations and to oddA and odd-odd nuclei. What is new
here is the explicit discussion of theprocessof reaching
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Fig. 2c as a way of resolving the finite nucleon numb
problem and identifying phase transitional behavior. O
course, as we stressed earlier, since nuclei are finite s
tems, the phase transition is naturally smoothed out ove
narrow region of21

1 energies.
Our next point is to relate this phase transitional beha

ior to the recent evidence [4,5] for phasecoexistencein
152Sm. Theoretical analysis [4] of152Sm points to two co-
existing phases, a deformed ground band and a spher
anharmonic vibrator built on the01

2 level. Phase coexis-
tence must occur at the critical point and so it is reassur
thatEs21

1 d in 152Sm (122 keV) coincides with the chang
in slope from 2.00 to 3.33 in Fig. 2c.

Thus, two different perspectives—phase coexistence
152Sm and the relation of yrast energies across theregion
of nuclei—give evidence for a phase transition fro
spherical to deformed structures, nearA ­ 150. Note
that, while phasecoexistenceoccurs in a specific nucleus
(152Sm), the phasetransitiondoes not characterize a singl
nucleus, or the isotopes of an element, but is a property
and only definable in terms of, an entire region. We stre
here that this type of phase transition and phase coexiste
is different from the shape coexistence picture known
other regions [11,12]. Here the structural changes deve
within the context of a single shell and do not involve a
intruder state mechanism.

Other observables, such as two nucleon separation e
gies,S2n, reflect these rapid structural changes. In Fig.
we show the empirical values ofS2n for the50 , Z # 66
nuclei (for all collective nuclei—those withR4y2 . 2.05).
The S2n values have a well known, essentially paralle
shift in values for each successiveZ. To compare val-
ues for different elements, we therefore shift the separat
energies for eachZ by a constant amount chosen to giv
equalS2n values atN ­ 88 for the N . 82 shell and at
N ­ 76 for theN , 82 shell.

For N . 82, the results forS2n in Fig. 3a are as strik-
ing as for the41

1 energies. The behavior is compact, wit
small fluctuations and a sharp break in trajectory. Th
break occurs at a slightly lower21

1 energy than the slope
change in Fig. 2c. Apparently,S2n displays a different de-
pendence on the shape of the potential than low spin yr
levels (which are most sensitive to the details of the pote
tial near its minimum). For the lighter shell,N , 82, there
are greater fluctuations and a gradual structural change
no evidence for a sharp phase transition.

In Fig. 3b we showBsE2 : 21
1 ! 01

1 d values against
S2n. The kink shows thatEs41

1 d is not a unique measure
of the structural transition:BsE2d values provide additional
evidence for it.

The question ariseswhy nuclei should behave in this
way. As we have noted, it is easier to look at pha
transitional behavior in a model since the parameters
inherently continuous. We consider the IBM here b
similar results characterize the geometric collective mod
(GCM) [15]. We use the IBM Hamiltonian [16,17]H ­
end 2 kQ ? Q, where Q ­ ssyd̃ 1 dysd 1 xsdyd̃d2.
5001
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FIG. 3. (a) Separation energiesS2n as a function ofEs21
1 d.

S2n data from Ref. [13]. (b)BsE2 : 21
1 ! 01

1 d values as a
function of S2n. BsE2d data from Ref. [14].

The Hamiltonian has parameterse, k, x and the boson
number NB. IBM calculations ofEs41

1 d versusEs21
1 d

reproduce Fig. 2c: they follow a slope of 2.00 abov
Ecs21

1 d for virtually any choice ofe, x, andNB that gives
R4y2 ­ 2.05 3.15 as long ask is constant [18]. Indeed,
the value ofk determines the intercepte4 [and Ecs21

1 d
as well]. Were the data different from Fig. 2c (e.g.
scattered, or following a slope other than 2.00) the on
way it could be reproduced would be to adjustk for each
nucleus, a clearly unlikely scenario that is inconsiste
with microscopic analyses of IBM parameters [19].

We now study the IBM results through the intrinsic
state formalism [20,21], computing the energy surface

FIG. 4. Classical limit analysis of IBM calculations that
reproduce Fig. 2c. (a) Energy surface as a function ofj [see
Eq. (1)] near the critical point forNB ­ 10 and x ­ 2

p
7y2;

(b) location of the minima,bmin, as a function ofj, for several
values of NB and x; (c) the IBM energyEsbd for the j
values and boson numbers corresponding to the Sm isoto
(see Ref. [22]). The minima occur only forb ­ 0 or large
finite values. There is no gradual evolution ofb from 0 to
saturation levels.
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corresponding to different parameter values. It is conv
nient, for this purpose, to rewrite the Hamiltonian in term
of a control parameterj ­ s1 1 eykd21. The resulting
scaled Hamiltonian has the form

H 0 ­ s1 2 jdnd 2 jQ ? Q . (1)

For x ­ 2
p

7y2, 0 # j # 1 maps the transition from
U(5) to SU(3).

In Fig. 4a we show the IBM energy surface correspond
ing to the classical limit of Eq. (1), forNB ­ 10 andx ­
2

p
7y2, againstj. The figure shows the key point that the

location of the minimum in the energy,bmin, changes sud-
denly at a particularj value, frombmin ­ 0 to a large
value, as indicated by the dark line cutting through th
contour plot. There are virtually noj values for which
intermediatebmin values result. This is consistent with
the calculations in Ref. [4]. The IBM indicates that nucle
change abruptly from near spherical to deformed at a cri
cal valuejcrit. The evolution of the energy surface can
be seen as the competition between two minima, spheri
and deformed, rather than a gradual evolution from sphe
cal to weakly deformed to large deformation. Such a lev
crossing scenario is, in fact, characteristic of a first ord
phase transition.

The qualitative behavior of these results is not sensitiv
to boson numberNB or x. We show this in Fig. 4b, which
gives the values of the location of the lowest minimum o
the energy surface, as a function ofj for a set ofNB and
x values. The curves all show the same behavior:bmin
is zero for smallj, and then rises rapidly to a saturation
value within a very narrow range ofj values (which define
a jcrit for eachNB andx).

Figure 4c shows energy surfaces as a function ofb

for IBM parameters applicable to the Sm isotopes. The
surfaces range from near vibrator shapes for146,148Sm to
softer in 150Sm, to the coexistence nucleus152Sm where
two shallow minima occur, to the prolate deformed nucle
154,156Sm. The actual minimum in the energy surfac
occursonly for bmin , 0 or large positivebmin.

In summary, we have shown that phase transitional cha
acter in finite nuclei can be assessed by proposing a w
to resolve the integer nucleon number problem. We ha
discussed an empirical quantity,Es21

1 d, that is nearly con-
tinuous and in terms of which other quantities, such a
Es41

1 d or S2n, follow simple, compact trajectories with
small fluctuations for large regions of nuclei. These ob
servables have distinct anomalies atEs21

1 d values similar
to that for 152Sm where phase coexistence has been su
gested. Other observables, such asS2n, may also correlate
structural changes. Through a model, such as the IB
(the GCM gives similar results), we have associated th
order parameter with a physical quantity, the deformatio
e-
s

-

e

i
ti-

cal
ri-
el
er

e

f

se

i
e

r-
ay
ve

s

-

g-

M
e
n

bmin, at which the potential has a minimum. In a spherica
deformed transition in the IBM,bmin has two characteristic
values, zero and near-saturation deformation. It appe
that nuclear structural evolution in this mass region e
tails two basic phases (spherical and deformed) rather th
a gradual softening (with valence nucleon number) trad
tionally associated with the onset of deformation in nucle
Although this view is unconventional, the analysis of th
IBM suggests that it may be an important basic feature
structural evolution.
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