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Phase Transitions in Finite Nuclei and the Integer Nucleon Number Problem
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The study of spherical-deformed ground-state phase transitions in finite nuclei as a function of
N and Z is hindered by the discrete values of the nucleon number. A resolution of the integer
nucleon number problem and evidence relating to phase transitions in finite nuclei are discussed from
the experimental point of view and interpreted within the framework of the interacting boson model.
[S0031-9007(99)09401-6]
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It has been known for decades that nuclear propertiedoes correlate extremely well the structural changes across
change, often dramatically, as a function 8f and Z.  large regions of nuclei such as the= 150 region [3—5].
However, the possibility of true nuclephasetransitions  Finally, a theoretical analysis with the interacting boson
and phasecoexistence, in the sense of conventional conimodel (IBM) [6] shows why sharp transition regions are
densed matter systems, has generally been discountaddeed an expected feature of structural evolution.

The reason has to do with the finite nature of atomic nuclei We noted in Fig. 1 that the data from a single element do
and the fact that they contain integer numbers of nucleonsiot allow a discussion of phase transitional behavior. The
In order to discuss the concept of phase transitions [1] ondata for collective nuclei in an entire regiof0(< Z =
needs to identify aontrol parameter as well as arder  66), shown in Fig. 1b, only exacerbate the problem. The
parameter. If the fluctuations in the order parameter arabscissa values remain discrete, but now another prerequi-
small, that is, if the data follow a compact trajectory as asite for a phase transition disappears, namely, the absence
function of the control parameter, a phase transition woulaf fluctuations. The scattering of the data obliterates any
be signaled by a critical point where the order parameteevidence of sharply discontinuous behavior.

is discontinuous. How can we get around this situation in finite nuclei?

Here we are interested in structural changes in nucleh possible answer is to choose a qualitatively different
as a function ofN and Z. The finite nature of nuclei quantity to play the role of a control parameter, one that
means that any nuclear phase transition cannot be abruj. at least potentially continuous. Of course, even if the
The fact that nuclei contaimteger numbers of nucleons abscissa points become continuously distributed, we need
means that their properties changjscretelywith N and  to produce an approach in which the fluctuations in the data
Z. This is shown in Fig. 1a where a typical collective are small. To do so, consider Figs. 2a—2c. In this figure,
observable is plotted against a neutron number for théhe sameE(4;) data as in Fig. 1 are plotted, not against
even-even SmZA = 62) isotopes. Clearly, an interesting N, Z, or A, but against another collective observable, the
(and well known) change in structure is occurringvat-  energy,E(2]), of the first2* state which, in principle, can
90, but the abscissa values are, by definition, discreteéhave any value. The top left panel, with clearly separated
Therefore, regardless of what the data do, the integedata points, is no better for discussing phase transitional
nucleon number requires that, at best, one can connebthavior than is Fig. 1a.
only adjacent points by straight line segments and one can
define onlydifferencesn properties, not derivatives.

Itis the purpose of this Letter to discuss phase transitions : : : : :
in finite nuclei as a function oV andZ and to suggest a o 27762 | b) 50<Zs66
resolution of the integer nucleon number problem. Whene x ¥
one considers low energy nuclear structure, nuclear model;éi
offer the flexibility of having one or more continuous -~ <X
parameters that can serve as control parameters, allowing’ gl x . J -
the study of critical phenomena. The situation in actual ™ x . X 5 x
nuclei is different. In contrast to phase transitions in a B
specific nucleus, where excitation energy (or temperature) %o 70 80 so 10060 70 80 _ 90 100
can be introduced as a control parameter, in the evolution N
of nuclear structure at low energy we have seen Mat fig 1. fg(4) against neutron number for collective nuclei
andZ are not useful as control parameters. However, Wenuclei for which Ry, = E(4{)/EQ{) > 2.05]. (a) Sm;
will suggest an empirical quantity which is continuous and(b) the50 < Z = 66 region. Data from Ref. [2].
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' ' Fig. 2c as a way of resolving the finite nucleon number
o @ E5 b) 12606264 ] problem and identifying phase transitional behavior. Of
" o course, as we stressed earlier, since nuclei are finite sys-
tems, the phase transition is naturally smoothed out over a
ir x ' 1 narrow region o] energies.
- x Our next point is to relate this phase transitional behav-
% # ior to the recent evidence [4,5] for phaseexistencen
01 %) so<zse6 s ‘ ‘ 152Sm. Theoretical analysis [4] é>Sm points to two co-
2t { 771 a) s0<z<66 existing phases, a deformed ground band and a spherical
3.33 P R0 rot. 335 anharmonic vibrator built on thei level. Phase coexis-
ot 04 ] tence must occur at the critical point and so it is reassuring
1 : that £(2)) in '52Sm (122 keV) coincides with the change
\ 02¢ \ 1 in slope from 2.00 to 3.33 in Fig. 2c.
l A A A j Thus, two different perspectives—phase coexistence in
%"’Ec(z:) 05 o %o o1 . o2 1525m and the relation of yrast energies acrossrégion
B(2) (MeV) Ee(2) of nuclei—give evidence for a phase transition from
1 spherical to deformed structures, nefr= 150. Note
FIG. 2. E(4]) againstE(2{). Panels (a)—(c) show the same that, while phaseoexistenceccurs in a specific nucleus
data as Fig. 1 for sequentially more elements. Panel (d) is a(f32Sm), the phaseansitiondoes not characterize a single
expgnded view of the rotor region, showing the data points W'”hucleus, or the isotopes of an element, but is a property of,
EQ) < E.27). and only definable in terms of, an entire region. We stress
here that this type of phase transition and phase coexistence
However, when the data for additional elements ards different from the shape coexistence picture known in
added (Figs. 2b and 2c) we see a behavior that is qualbther regions [11,12]. Here the structural changes develop
tatively different from Fig. 1. The distribution of points within the context of a single shell and do not involve an
as a function ofE(2]") successively fills in, yielding in intruder state mechanism.
Fig. 2c a nearly continuous distribution. Next, we note Other observables, such as two nucleon separation ener-
that E(2;) clearly correlates nuclear equilibrium proper- gies,S,,, reflect these rapid structural changes. In Fig. 3a
ties extraordinarily well. The data for different elementswe show the empirical values 6%, for the50 < Z = 66
lie along essentiallydentical paths and thus the ensemble nuclei (for all collective nuclei—those witRy/, > 2.05).
of data also lies along single compacturve, with very  The S,, values have a well known, essentially parallel,
small fluctuations. This thereby enables a discussion of thehift in values for each successiZe To compare val-
trajectory and a potential interpretation in terms of phaseles for different elements, we therefore shift the separation
transitions. Of course, other observables that reflect thenergies for eacl by a constant amount chosen to give
equilibrium configuration could have been choséf(2{)  equals,, values atN = 88 for the N > 82 shell and at
is preferred, however, since it is well known in many nu-N = 76 for the N < 82 shell.
clei and is easy to measure in new nuclei. For N > 82, the results forS,, in Fig. 3a are as strik-
Observables such @&2;), E(4]), separation energies, ing as for thet;” energies. The behavior is compact, with
and other measures of structure cannot, rigorously speakmall fluctuations and a sharp break in trajectory. This
ing, be considered as control parameters since they are nateak occurs at a slightly lowex energy than the slope
independently variable as is the temperature in a condensetiange in Fig. 2c. Apparentl§,, displays a different de-
matter system. Nevertheleg2), de facto, plays a simi- pendence on the shape of the potential than low spin yrast
lar role to a control parameter, and Fig. 2c suggests evievels (which are most sensitive to the details of the poten-
dence for phase transitional behavior as seen by the nearigl near its minimum). For the lighter shel, < 82, there
discontinuous change in slope (order parameter) from 2.08re greater fluctuations and a gradual structural change but
to 3.33 at a specific value @ (2;) denotedE.(2;). The no evidence for a sharp phase transition.
expanded view of the rotor region in Fig. 2d clearly shows In Fig. 3b we showB(E2 : 2] — 0;) values against
the different slope for these nuclei. In this mass region the,,. The kink shows thak(4]) is not a unique measure
change in slope occurs &t(2;) ~ 120 keV. of the structural transitiorB(E2) values provide additional
Figure 2c itself is not new. We discussed thét)-  evidence for it.
E®2{) and related correlations in Ref. [7] and even The question arisewhy nuclei should behave in this
broached the subject of phase transitional behavior. Theiay. As we have noted, it is easier to look at phase
correlation in Fig. 2c has been discussed theoretically [8{ransitional behavior in a model since the parameters are
in the context of thel/N expansion for the IBM and inherently continuous. We consider the IBM here but
extended [9,10] empirically to observables for intrinsic similar results characterize the geometric collective model
excitations and to odd and odd-odd nuclei. Whatis new (GCM) [15]. We use the IBM Hamiltonian [16,1#H =
here is the explicit discussion of thErocessof reaching eng — kQ - Q, where Q = (std + dfs) + y(dtd)>.
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FIG. 3. (a) Separation energies, as a function ofE(2]).
S,, data from Ref. [13]. (b)B(E2:2{ — 0{) values as a
function of S»,. B(E2) data from Ref. [14].

The Hamiltonian has paramete¢s «, y and the boson
number Nz. IBM calculations of E(4,) versusE(2])
reproduce Fig. 2c: they follow a slope of 2.00 above
E.(27) for virtually any choice ofe, y, andNy that gives
R4/» = 2.05-3.15 as long as« is constant [18]. Indeed,
the value ofx determines the intercepy [and E.(2])
as welll. Were the data different from Fig. 2c (e.g.,
scattered, or following a slope other than 2.00) the only
way it could be reproduced would be to adjustor each
nucleus, a clearly unlikely scenario that is inconsistent
with microscopic analyses of IBM parameters [19].

We now study the IBM results through the intrinsic
state formalism [20,21], computing the energy surfaces

FIG. 4. Classical limit analysis of IBM calculations that
reproduce Fig. 2c. (a) Energy surface as a functiog ¢ee

Eq. (1)] near the critical point foNz = 10 and y = —+/7/2;

(b) location of the minimaB.i,, as a function of, for several
values of Ny and y; (c) the IBM energyE(B) for the ¢
values and boson numbers corresponding to the Sm isotopes
(see Ref. [22]). The minima occur only fg8 = 0 or large
finite values. There is no gradual evolution gf from 0 to
saturation levels.
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corresponding to different parameter values. It is convefy,,, at which the potential has a minimum. In a spherical-
nient, for this purpose, to rewrite the Hamiltonian in termsdeformed transition in the IBM3;» has two characteristic
of a control paramete = (1 + €/«)~'. The resulting values, zero and near-saturation deformation. It appears
scaled Hamiltonian has the form that nuclear structural evolution in this mass region en-
;o tails two basic phases (spherical and deformed) rather than
H == &na=¢0-0Q. @D a gradual softening (with valence nucleon number) tradi-
For y = —+/7/2, 0 = ¢ = 1 maps the transition from tionally associated with the onset of deformation in nuclei.
U(5) to SU(3). Although this view is unconventional, the analysis of the
In Fig. 4a we show the IBM energy surface correspondiBM suggests that it may be an important basic feature of
ing to the classical limit of Eq. (1), favy = 10andy =  structural evolution.
—+/7/2, against. The figure shows the key point thatthe ~We thank F. lachello, S. Kuyucak, V. J. Emery, S. Sha-
location of the minimum in the energ@umi,, changes sud- piro, J. Axe, and M. Straayer for useful discussions of
denly at a particulag value, from B, = 0 to a large  phase transitions. The work was supported by DOE Con-
value, as indicated by the dark line cutting through thetracts No. DE-FG02-91ER-40609, No. DE-FG02-91ER-
contour plot. There are virtually ng values for which 40608, and No. DE-FG02-88ER-40417.
intermediateB.,;, values result. This is consistent with
the calculations in Ref. [4]. The IBM indicates that nuclei
change abruptly from near spherical to deformed at a criti-
cal valueé.;. The evolution of the energy surface can [1] H. Eugene Stanleyintroduction to Phase Transitions and
be seen as the competition between two minima, spherical  Critical Phenomena(Oxford University Press, Oxford,
and deformed, rather than a gradual evolution from spheri-  1971).
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