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Chiral Two-Pion Exchange and Proton-Proton Partial-Wave Analysis
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The chiral two-pion exchange component of the long-rangepp interaction is studied in an energy-
dependent partial-wave analysis. We demonstrate its presence and importance and determine the chi
parametersci (i ­ 1, 3, 4). The values agree well with those obtained from pion-nucleon amplitudes.
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The longest-range part of the strong nucleon-nucle
(NN) interaction is the well-established one-pion exchang
(OPE) force [1,2]. Next in range is the two-pion exchang
(TPE) force, the formulation of which has been a long
standing problem [3], both in field theory [4,5] and in dis
persion theory [6]. In recent years, it has been argu
that the key to the solution is the chiral symmetry of QCD
[7–9], and that the long-range parts of the TPE potent
can be derived model independently by a systematic e
pansion of the effective chiral Lagrangian [8]. In this Let
ter, we will study this long-range chiral TPE force in the
proton-proton (pp) interaction and show unambiguously
its presence and its importance.

In the energy-dependent Nijmegen partial-wave ana
ses (PWA’s) of theNN andNN scattering data [10–13],
the long-range forces are taken into account exactly a
the short-range forces are parametrized analytically. T
partial-wave scattering amplitudes are analytic function
of the energy. The nearby left-hand singularities in th
complex-energy plane are due to the long-range forc
these cause the rapid energy dependence of the phys
NN scattering amplitudes. The shorter-range forces a
responsible for the far-away singularities, which give i
the physical region only slow energy variations of the am
plitudes. This method of PWA can serve as a sensiti
tool to investigate precisely these long-range interaction
It has been used successfully in studies of electromagne
interactions [14] and of the OPE potential [2,15–17]. Her
this tool will again be employed, now to study the long
range chiral TPE component of thepp force.

The methods of the Nijmegen PWA’s are described
detail in Refs. [10–13]. The long-range potentials, in
cluding the full electromagnetic interaction (relativistic
Coulomb, magnetic-moment interaction, and vacuum p
larization) and the longest-range strong interactions a
used in the relativistic Schrödinger equation which
solved with a boundary condition (BC) at somer ­ b.
This BC is parametrized as an analytic function of en
ergy for the various partial waves. The BC parameter
representing short-range physics, and the free parame
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in the long-range forces (e.g., the pion-nucleon coupli
constant) are determined from a fit to the data. In t
“standard” Nijmegen PWA’s of Refs. [11,12] the bound
ary is put atb ­ 1.4 fm, and the long-range strong po
tential outside of 1.4 fm is taken as the OPE potent
supplemented by the non-OPE forces of the Nijmeg
soft-core potential Nijm78 [18]. These heavy-boson e
changes were included because OPE alone did not al
for an optimal description of the data. In this standardpp
PWA, we obtain with 19 BC parametersx2

min ­ 1968.7
and f2

ppp0 ­ 0.0756s4d, where the error is statistical, on
the Nijmegen 1998pp database below 350 MeV, in which
1951pp scattering data are included [19]. This result wi
serve here as a benchmark.

Let us demonstrate our method first with some parts
the electromagnetic interaction. When one omits in t
standard 1998pp PWA the magnetic-moment interaction
both from the potential and in constructing the scatterin
amplitude, thex2

min increases by 390.0 tox2
min ­ 2358.7.

This is therefore a 19.7 standard deviation (s.d.) effe
Omitting vacuum polarization leads tox

2
min ­ 2181.3, i.e.,

a rise in x
2
min of 212.6, which corresponds to 14.6 s.d

These numbers demonstrate that one can use this me
of energy-dependent PWA to show the presence and
importance of these specific well-known parts of the lon
rangepp interaction.

A very important part of the energy dependence
the NN phase shifts comes from OPE. In the Nijmege
energy-dependent PWA’s the different pion-nucleo
coupling constants could be determined accurately a
reliably [2,15,16]. In Ref. [16], we recommended fo
the charge-independent coupling constant the va
f2

NNp ­ 0.0750s9d, where the error includes statis
tical as well as systematic effects. As a systema
check, the masses of the exchanged pions were de
mined, with excellent results:mp0 ­ 135.6s1.0d MeV and
mp1 ­ 139.6s1.3d MeV. In this way, the presence of OPE
in the NN force was shown with an enormous statistic
significance. A more subtle effect is the energy depe
dence of the OPE potential due to the minimal-relativi
© 1999 The American Physical Society
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factorMyE, whereM is the proton mass andE the proton
center-of-mass energy. Omitting this factor from th
OPE potential results inx2

min ­ 1977.2. This is a rise of
8.5 in x

2
min, or an almost 3 s.d. effect. Recently, also th

electromagnetic corrections to the OPE potential innp
scattering were investigated [17].

The starting point to derive the OPE and TPE potentia
is the effective chiral Lagrangian, the leading order
which is the nonlinear Weinberg model [20],

L s0d ­ 2NfgmD m 1 M 1 gAig5gm $t ? $DmgN , (1)

with the chiral-covariant derivatives [7]
$Dm ­ D21≠m $pyFp ,

D mN ­

√
≠m 1

i
Fp

c0 $t ? $p 3 $Dm

!
N .

(2)

Here, D ­ 1 1 $p2yF2
p , gA ­ 1.2573 is the Gamow-

Teller coupling, andFp ­ 185 MeV is the pion decay
constant; chiral symmetry fixesc0 ; 1. Equation (1)
implies that the planar- and crossed-box TPE diagra
should be calculated with the pseudovector (PV)NNp

Lagrangian. We use the physicalNNp coupling con-
stant f, i.e., we trade in the Goldberger-Treiman valu
gAyFp for

p
4p fyms; the scaling massms serves to

makef dimensionless and is conventionally chosen to
numerically equal to the charged-pion mass,ms ; mp1 .
In addition to the PVNNp interaction, Eq. (1) contains
the Weinberg-Tomozawa (WT)NN2p seagull interaction
[21], resulting in triangle and football TPE diagrams.

In order to derive the TPE potential in subleading orde
three moreNN2p interactions are required [8], viz.

L s1d ­ 2Nf8c1D21m2
p $p2yF2

p 1 4c3
$Dm ? $Dm

1 2c4smn $t ? $Dm 3 $DngN , (3)

leading to additional triangle diagrams. The values
the chiral parameters (“low-energy constants”)ci (i ­
1, 3, 4) of order s1yMd are not fixed by chiral symmetry;
the ci ’s represent “integrated-out” hadrons, such as t
heavier mesons like thé and % , and the N and D

isobars. The definition Eq. (3) of theseci ’s [22] agrees
with the convention used in heavy-baryonxPT [23,24]; an
additionalc2 term does not contribute to theNN force in
this order. Thec1 term violates chiral symmetry explicitly.
A systematic expansion of Eqs. (1) and (3) to orders1yMd
gives the relevant part of the chiral Lagrangian [25].

The OPE and TPE potentials derived from this La
grangian contain central, spin-spin, tensor, and spin-or
terms, viz.

V ­ VC 1 VSs1 ? s2 1 VT S12 1 VSOL ? S , (4)

where S12 ­ 3s1 ? brs2 ? br 2 s1 ? s2. With i ­ C, S,
T , SO, j ­ mpyms, andx ­ mpr, we can write

Visrd ­ f2nj2nsMyEd fyisxd 1 wisxd $t1 ? $t2gmp , (5)

wheren ­ 1 for OPE andn ­ 2 for TPE.
The long-range OPE potential contains an isovect

spin-spin partwS and an isovector tensor partwT ,
e

e
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wSsxd ­ e2xy3x ,

wT sxd ­ s1 1 x 1 x2y3de2xyx3.
(6)

For the pp case, the neutral-pion massmp0 is used in
OPE. The couplingf2

p ­ f2
ppp0 is a free parameter.

For TPE, the dimensionless isoscalar functionsyi are
written as the sum of the leading-order termsyi,1 and the
subleading-order termsyi,2,

yisxd ­ s2ypdyi,1sxd 1 smpyMdyi,2sxd , (7)

and similarly for the isovector functionswi. In the TPE po-
tential, we use the average pion massmp ­ 138.04 MeV
and the fixed charge-independent coupling constant
f2 ­ f2

NNp ­ 0.0750. Care must be taken to obtain the
appropriate form for the use of Eq. (5) in the relativistic
Schrödinger equation. Other forms of the OPE potenti
or other two-body equations will, in general, give differen
TPE potentials [5,26].

The leading-order static potential TPE(l.o.) contain
isoscalar spin-spin and tensor terms,yS,1 and yT ,1 re-
spectively, and an isovector central componentwC,1. The
long-range parts are

yS,1sxd ­ 12K0s2xdyx3 1 s12 1 8x2dK1s2xdyx4,

yT ,1sxd ­ 212K0s2xdyx3 2 s15 1 4x2dK1s2xdyx4,

wC,1sxd ­ sc̃2
0 1 10c̃0 2 23 2 4x2dK0s2xdyx3 (8)

1 fc̃2
0 1 10c̃0 2 23 1 s4c̃0 2 12dx2g

3 K1s2xdyx4,

where the modified Bessel functions have asymptot
behavior Kns2xd ,

p
py4x e22x. This TPE(l.o.) is the

Taketani-Machida-Ohnuma potential [27], supplemente
by the diagrams with the WT seagulls [26,28]. In the WT
terms we extracted, for ease of presentation, an over
factor f4, cf. Eq. (5), and defined̃c0 ­ c0yg̃2

A, where
g̃A ­ Fp

p
4p fyms.

The subleading-order potential TPE(s.o.) contains no
static terms from Eq. (1) and the leading-order terms from
Eq. (3). The long-range parts read

yi,2sxd ­
6X

p­1

ape22xyxp , (9)

and similarly forwi,2, with the coefficientsap as collected
in Table I. Also here a factorf4 was extracted and the
result was rewritten in terms ofc̃0 andc̃i ­ ciMyg̃2

A. Our
results for TPE(s.o.) agree with Ref. [29].

Remarkably, a large part of the correct TPE poten
tial was already obtained by Sugawara and Okubo [3
in “prechiral days,” by using PV coupling and two phe-
nomenologicalNN2p interactions: the WT term of Eq. (1)
and thec1 part of Eq. (3). They also pointed out that PV
coupling gives a rather strong attractive isoscalar spin-orb
force in subleading order. However, the important add
tionally required chiralc3 andc4 terms were missing; these
were for theNN case first given in Ref. [8].

We now come to the results of the TPE studies, i
which we again use the 1998 database below 350 Me
4993
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TABLE I. Coefficients of the subleading-order potential TPE(s.o.) of Eq. (9), for the central, spin-spin, tensor, and spin
terms, both isoscalar and isovector. We definedc̃0 ­ c0yg̃2

A, c̃i ­ ciMyg̃2
A for i ­ 1, 3, 4, andc̃04 ­ c̃0 1 4c̃4.

ap

i p ­ 1 p ­ 2 p ­ 3 p ­ 4 p ­ 5 p ­ 6

y C 3y4 9 1 48c̃1 1 24c̃3 27 1 96c̃1 1 96c̃3 99y2 1 48c̃1 1 240c̃3 54 1 288c̃3 27 1 144c̃3

S 23 29 233y2 218 29
T 3y2 27y4 15 18 9

SO 212 236 248 224
w C 3y2 4 2 2c̃0 14 2 8c̃0 31 2 20c̃0 36 2 24c̃0 18 2 12c̃0

S 22y3 214y3 1 8c̃04y3 231y3 1 20c̃04y3 212 1 8c̃04 26 1 4c̃04

T 1y3 17y6 2 4c̃04y3 26y3 2 16c̃04y3 12 2 8c̃04 6 2 4c̃04

SO 8 2 8c̃0 16 2 16c̃0 8 2 8c̃0
er
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with 1951 data [19]. The main results of the variou
PWA’s are summarized in Table II. We start conser
vatively with the boundary atb ­ 1.8 fm, since beyond
1.8 fm only OPE and TPE are expected to contribute si
nificantly. When only OPE is included as strong force
x

2
min ­ 1956.6 is reached at the cost of 29 BC parame

ters. We want to investigate if the fit can be eve
further improved when TPE is added. When only th
TPE(l.o.) potential of Eq. (8) is used, we obtainx

2
min ­

1965.9 with 26 BC parameters. But we can do better. Th
complete TPE potential,xTPE ­ TPEsl.o.d 1 TPEss.o.d,
contains threea priori unknown constants: the chiral pa-
rametersci (i ­ 1, 3, 4) from Eq. (3). In the fits we obtain
c1 ­ 24.4s3.4dyGeV. The values ofc1 and c3, appear-
ing both only in the isoscalar central potential, cf. Table
are strongly correlated. The correlations between the p
rameters can be summarized concisely by

c3 ­ f25.08 2 0.62sc1 1 0.76d

1 40s f2
p 2 0.0755dgyGeV,

c4 ­ f14.70 1 0.01sc1 1 0.76d

1 250s f2
p 2 0.0755dgyGeV.

In order to determine reliable values forc3 and c4, we
use the theoretical estimate [23] forc1 obtained from the
scalar form factorsstd of the proton [31] att ­ 0, viz.

c1 ­ 2fss0dy4m2
p 1 9f2j2y16mpg ; (10)

ss0d is the pion-nucleon sigma term, the value of whic
is uncertain. We take here the plausible “low” value
ss0d ­ 35s5d MeV [32], which is supported by the recent
pN PWA of Ref. [33]. This gives

c1 ­ 2f0.46s7d 1 0.30gyGeV ­ 20.76s7dyGeV; (11)

TABLE II. Results for the PWA’s with different long-range
interactions. #BC is the number of BC parameters.

b ­ 1.4 fm b ­ 1.8 fm
#BC x

2
min #BC x

2
min

Nijm78 19 1968.7 · · · · · ·
OPE 31 2026.2 29 1956.6

OPE1 TPEsl.o.d 28 1984.7 26 1965.9
OPE1 xTPE 23 1934.5 22 1937.8
4994
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the error here is theoretical. Our determination ofc1 is
consistent with this value. Fixingc1 ­ 20.76yGeV, we
find, with 22 BC parameters,x2

min ­ 1937.8 and f2
p ­

0.0755s7d; the resulting values forc3 andc4 are

c3 ­ 25.08s28dyGeV, c4 ­ 14.70s70dyGeV, (12)

where the errors are statistical. The improvement ov
only OPE is reflected, even beyond 1.8 fm, in the 18
lower x

2
min and in the seven fewer BC paramete

required.
The result found forf2

p is in very good agreement
with the value 0.0756(4) determined in the standard 19
pp PWA. Our values for theci ’s can be compared to
the determination from thepN scattering amplitudes in
Ref. [34]. Here,c1 ­ 20.93s9dyGeV was obtained using
Eq. (10), but withss0d ­ 45s8d MeV, along with c3 ­
25.29s25dyGeV andc4 ­ 13.63s10dyGeV. In view of
the uncertainties in thepN amplitudes [33], the good
agreement is a significant success. It underlines, for
first time quantitatively, that the long-rangeNN and the
low-energy pN interactions are governed by the sam
chiral Lagrangian.

In previous studies of the OPE potential, a good syste
atic check has been the determination of the masses of
exchanged pions. In order to check explicitly that we a
now actually looking at the TPE interaction, we determin
the range. This is done by adding the pion massmp in the
potentialxTPE as another free parameter. We first fix th
pion coupling in OPE atf2

p ­ 0.0755 and theci ’s to their
central values given in Eqs. (11) and (12). Then we fit
overall scale factorl for the potentialxTPE, the pion mass
mp , and the BC parameters. The results arel ­ 0.82s16d
andmp ­ 125s10d MeV. Alternatively, we fixc1 and fit
mp together withf2

p, c3, c4, and the BC parameters. Thi
results inmp ­ 128s9d MeV, again in good agreemen
with the average pion massmp ­ 138.04 MeV. The very
goodx

2
min obtained, the good values for theci ’s, and this

correct pion mass constitute convincing proof for the pre
ence of chiral TPE loops in the long-rangepp interaction.

In order to investigate further the importance o
xTPE, we move the boundary inwards tob ­ 1.4 fm.
When only OPE is used as long-range force, it is po
sible to achieve a reasonable fit: at the cost of 31 B
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parametersx2
min ­ 2026.2 is reached. We then add to

OPE the potential TPE(l.o.). With 28 BC parameters
x

2
min ­ 1984.7 is obtained. Compared to only OPE, this

corresponds to a drop inx2
min of 41.5 with three fewer

parameters, a significant improvement. However, th
fit is still not optimal. We next add also the potentia
TPE(s.o.). With fixedc1 ­ 20.76yGeV, this gives with
23 BC parametersx2

min ­ 1934.5, c3 ­ 24.99s21dyGeV,
andc4 ­ 15.62s59dyGeV. This shows that OPE together
with xTPE gives a very goodNN force at least as far
inwards as 1.4 fm.

In conclusion, we have, for the first time, incorporated
and studied chiral TPE in an energy-dependent PW
of the pp scattering data. The main result of this
Letter is that we have shown the presence of chiral TP
loops in the long-rangepp interaction. A significant
improvement over using just OPE is seen. With OPE an
xTPE, an excellent fit to the database becomes possib
even somewhat better than the standard 1998pp PWA.
The chiral parameters agree with those found inpN
scattering. Especially important in obtaining the very
good fit is the isoscalar central attraction from thec3
term, partly a “chiral van der Waals force” due to the
axial polarizability of the nucleon [35]. In all, our results
provide a big success for chiral symmetry. A novel clas
of PWA has been established, with such a theoretical
well-founded and model-independent chiral TPE potenti
included in all partial waves.
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