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Mean Field Dynamics in Non-Abelian Plasmas from Classical Transport Theory
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Based on classical transport theory, we present a general set of covariant equations describing
the dynamics of mean fields and their statistical fluctuations in a non-Abelian plasma in or out
of equilibrium. A procedure to obtain the collision integrals for the Boltzmann equation from the
microscopic theory is described. As an application, we study a hot non-Abelian plasma close to
equilibrium, where the fluctuations are integrated out explicitly. For soft fields, and at logarithmic
accuracy, we obtain Bodeker's effective theory. [S0031-9007(99)09394-1]
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The dynamics of mean fields in non-Abelian plasmasequations can be seen as the generalization to non-Abelian
is at the basis for an understanding of many properties gblasmas.
the early universe. This concerns the quark-gluon plasma The starting point is to consider gluons (or electrons,
which is believed to be formed at high temperature andfjuarks) as charged point particles moving on a world
or large chemical potential, or the plasma formed in thdine according to their classical equations of motion.
symmetric phase of the electroweak theory. The energ¥hey interact via a classical chromoelectromagnetic field.
densities required to form a quark-gluon plasma might béVe consider a system of these particles carrying a non-
reached in the coming generation of heavy ion collidersAbelian color chargg“, where the color index runs from
A theoretical framework to describe the dynamics ina = 1to N> — 1 for a SUN) gauge group.
non-Abelian plasmas in or out of equilibrium is thus Within a microscopic description, the trajectories in
mandatory (see [1] for an early review). phase space, and therefore the one-particle phase space
The dynamics of soft fields with momenta abgaf is  density f(x, p, Q), are known exactly. The classical tra-
dominated by nonperturbative phenomena, even for smajéctoriesx(7), p(7), andQ(7) are solutions of the Wong
gauge coupling <« 1 and close to equilibrium [2]. Here, equations [9]:

some progress has been achieved recently by Bodeker [3], dxt dp* W
who derived an effective theory for the soft modes after mo- = p¥, mo- = 8QFi"py,
integrating out the perturbative physical scaleandgT . (1)
from the field theory. o _ abe 4 #
. , o m gpuf AL Qe .
In this Letter, we study mean field dynamics in the dt

context of classical transport theory [4]. In the close-to-Here, Aj, denotes the microscopic vector gauge field,
equilibrium plasma, classical transport theory is known torg [A] = 9,45 — 9,A5 + gfabCAbA‘ is the corre-

describe correctly the physics around the scgle [5], spondlng microscopic “field strength an®c are the
in full agreement with the results obtained from quantumstructure constants of SNV). We setc = i = kg = 1,

field theory [6]. We will show how also the physics at and work in natural units. Effects of spin will be

scalesg?T, and at logarithmic accuracy, can be under-neg|ected,

stood in the same kinetic language. Our ultimate goal The microscopic phase space density obeys Liouville’s

ibS profv!ding a.well—degilned prefc&i.ption to ':creat _t’lj}bn_um-theoremdf /dT = 0[5]. We can write it using (1) as [4]
er of interesting problems including out-of-equilibrium _ sabe 4b _ a

phenomena. Here, we present the main results of our PHLow = 8/ A Q‘aQ §QaFy,0p1f =0, (23)

analysis. This includes the derivation of a general set ofvith 9. = 9/9p* and 99 = = 9/0Q“. This equation is

dynamical equations for the mean fields and their fluctuagauge invariant, withf transforming as a scalar [5], and

tions, and a prescription for obtaining collision integralsis completed with the Yang-Mills equation,

for Boltzmann equations. An explicit application for hot D, F* (x) = J”(x). (2b)

non-Abelian plasmas close to equilibrium is given as well.

We leave for a longer publication a more extensive dlsIn the adjoint, the c}())vahrlant derivative is given by

cussion and further details on the computations [7]. Dif[A] = 0,6% + gfa ‘Ay- In a self-consistent pic-
We begin with the derivation of a set of equationsture, the currentla (x) is "due to the particles them-

that describe both the dynamics of fluctuations and of th&elves, thus

mean fields in a non-Abelian plasma. We follow the same win L
philosophy and methods which have been used longly in 7a () =g Z dPdQ p*Q.f(x,p.0). (2¢)
kinetic theory to study Abelian plasmas (see [8]). Our b as®
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(Throughout, we shall omit a species or helicity index on F, = FZV + fuvs (4a)
f, and the sum over species and helicities will, in the PR = a abe b ¢
sequel, not be given explicitly.) Physical constraints are fuv = (Dpay = Dyay)® + gfaga,,  (4b)
enforced through the phase space volume eleniént=  with D = D[A] andF = F[A]. Note that the mean field
d*p20(po)6(p* — m*)/(2m)*, while dQ contains §  strength(F4,) = F4,6 + gf*(a’a’) due to the non-
functions imposing the group Casimirs (see [5] for theirAbelian nature of the theory.
definition). The covariant conservation of the current (2c) Let us take a statistical average of (2) to find the kinetic
is shown using (2a) [5]. equations for the mean values,
If the system under study contains a large number wn Fa AN T o

of particles, it is impossible to follow their individual P*Dy ) ‘?Q“F“Va”)f <_77> T8 (°a)
trajectories in phase space. Thys,can no longer be D, F*" + (Jfue) = J". (5b)
considered a deterministic quantity and one has to switc

d ty Pn (5a) we usedd, — gf“bCQCAZGg]f = D,f. The

to a statistical description, taking statistical averages ; '
of all microscopic quantities. We write functlonsn, §_, and Jy,. are of second and higher order
in the fluctuations and read

AZ=AZ+aZ, f=f+6f,

_ 3) n = 80up*d,f,0f, (6a)
J(ﬁL = JZL + 5-’5’ é‘: = gp#fabCQc(aaQazéf + gaZa,ljaZf), (6b)
where the quantities with a bar denote the mean values, I = gf"b"(l_)fda;,,ﬂaz + Saqp uf M) . (6¢)

e.g., f = (f) and A = (A), while the mean values of _ _ _
fluctuations vanish(é f) = 0 and{a) = 0. We also split The . corresponding _equations for the fluctua'glons are
| obtained by subtracting (5) from (2). The result is

pM[D,u - gQaFZ,Va;]af - gpﬂah,ufabCQcagf - gQu[D,uaV - Dva,u]ap#agf =n+&- <77 + ér)’ (73-)
[D*a* — DM(D,a")1* + 2gf " F " ac, + Jtiee — Utine) = 8J“H. (7b)

A number of comments are in order: | background of mean fields. In general, this is a difficult
(i) Equations (5) and (7) are exact; no approximationgask, in particular, due to the nonlinear terms in (7).
have been made. In particular, they are also valid in outThe (explicit) solution is then inserted into (6). The
of-equilibrium situations. back coupling of the fluctuations to the mean fields is
(i) Equations (5) and (7) are consistent with gaugefinally obtained after taking the statistical average of the
invariance. They are covariant under the mean gaugkinctions (6), and yields the effective collision integrals
field symmetrys A% = (D,e)* andb.ay = gf**“abe’,  and the induced current in (5).
in analogy to the background field formalism [10]. This (vi) The set of equations (5) and (7) reproduces the
establishes the compatibility of the statistical average wittknown set of kinematic equations for Abelian plasmas in
the gauge transformations of the mean field. We postponghe corresponding limit [8], in which only the collision
a careful and detailed discussion to [7]. integral{») survives. The Abelian counterpart @f) can
(iii) The microscopic current conservation implies be expressed as the Balescu-Lenard collision integral [8].
= b o e One can then prove in a rigorous way the correspondence
Dyl ®)a + 8favela, 877y = 0. (8) between fluctuations and collisions in the Abelian plasmas
This is automatically consistent with (5b), providécind  mentioned above. (An analogous derivation of collision
6J are solutions of (5) and (7). (A similar equation holdsintegrals for Wigner functions can be found in [11]; see
for the fluctuation fields.) Note that the validity of (8) also [12].)
turns into a nontrivial consistency check for approximate (vii) Neglecting all fluctuations reduces (5) to the well-
solutions. known (non-Abelian) Vlasov equations.
(iv) The functions(n) and (¢) can be considered as This terminates the derivation and discussion of the
the effective collision integrals of the Boltzmann equationbasic set of equations.
(5a). In our formalism, the collision integrals arise as To put the method to work, we will specialize our analy-
correlators of statistical fluctuations. The fluctuations ofsis to hot non-Abelian plasmas close to equilibrium, with
the gauge fields cause random changes in the motion dfie gauge coupling < 1. This allows us to perform sev-
particles, and, thus, they can be viewed as having the sanaegal approximations. We will consider small fluctuations,
effects as collisions. This can be seen as a derivation afeglecting in (6a) and (6c) the terms cubic in the fluctua-
collision integrals from the microscopic theory. Note alsotions. This is interpreted as neglecting effective three body
that the current induced by the fluctuations of the gaugeollisions versus binary ones. In the same spirit, we em-
field (Jriue) is @ purely non-Abelian effect. ploy the second-moment approximation for the dynam-
(v) A general procedure for integrating out the fluctua-ics of the fluctuations [8], setting = (%), £ = (£), and
tions amounts to first solving their dynamics (7) in the Jiwe = (Jrie) in (7). This linearizes the dynamics of the
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fluctuations and can be interpreted as neglecting the irfFhe measure/P only integrates over the radial compo-
fluence of collisions on the dynamics of the fluctuations.nents,dP = dPdQ /4w, and v* = (1,v) with v = 1.
Finally, the term containing the mean field strength in (7a)The current (2c) is obtained performing the remaining an-
is negligible compared tO the remaining terms and will begle integration/(x) = f%](x’ v). From now one, we
omitted, as long ag|Fa"|/mp < T, wheremp is the  will omit the arguments of the current densiff, unless
Debye mass [8]. . necessary to avoid confusion.

_ We study the mean distribution functigt(x, p, Q) = After multiplying (5a) by gQ.p”/po, summing over
F4(po) + gfV(x,p,Q). In the strictly classical ap- the two helicities, and integrating ove@dQ, we obtain
proach, the relativistic Maxwell distribution at equilib- for the mean current density at leading ordegin

rium is used for any species of particles. Here, we vED, JP + mivPvPF e = (nP) + (£7), (10a)
consider only massless particles in the adjoint, with

[dQ 0.0, = N8yp. For particles in the fundamental, D, F"*” +2<nyluc> =17, - (0p)
one has/ dQ 0,0, = 484, instead. Solving (5) for van- Wwith the Debye massnp = —2¢°N [dP df*(p)/dp,
ishing fluctuations in thIS approximation gives the infinite and .
set of non-Abelian hard thermal loops [5,6]. b _ [ AP | = , _ mp  \bsH

We now include small statistical fluctuatiofg around Na g Po (Dpa D”ay)”8Jap(x, p)

f and rewrite the approximations to (5) and (7) in terms PP B "
of current densities and their fluctuations. Consider the — — (Dyay — Doaﬂ)bcsfab(x,l?) ,
current densities po

(11a)

I ay (X, P) = 8P fdQ Qu, - Qa, f(x,p, Q). (98)  £F = —gfupv*ald JOP, (11b)
Jh = gfdbC{DZdall;af + 6“daZ(D“ap — DPa*)°}.

Taev) = [ aP g, (). (9b) (110)

| For the fluctuations, we find

[U#D,u,ajp]a = _m%UpU'U’[D;LaO - Doau]a - gfabcv'uaf,vjc’p’ (12a)

[UMDM(SJp]ab = gv'ua:,’z(fmac(sbd + fmbdé\ac)jc{;ls (12b)

[D*a* — D*(Da)ly + 28fabeFy ac = 8JL. (12¢)

We solve the equations for the fluctuations (12) Wi|th
an initial boundary condition foé f, anda,(t = 0) = 0. in the gaugek - a = 0. The function Il (k) is the
Exact solutions to (12a) and (12b) can be obtained [7]. Théransverse polarization tensor of the plasm{,,(k)
current fluctuatiors J, reads, forxg = ¢ =0, 8;; — kik;/k? is the transverse projector, ang =

8 JP (x,v) = Uap(x,x,)8 JL (x1,v) — f dr Ugp(x, x,) Pg»aj. Retarded boundary conditions are assumed above,
0 with the prescriptiorkg — ko + i0*.
X {gfbdcvﬂaﬁ(xf)jf(xﬂv) With the above, we can express all fluctuations in
Yo - b terms of initial conditions and the mean fields. Following
+ mpvPv*(Dyao — Doay)’ (x7)}. [8] the statistical average over initial conditions can be
(13)  deduced [7] and finally expressed (for each species or
We introducedr, = x — v7 and the parallel transporter helicity index) as
Uup, obeymgv“Dx Uap(x,y)ly=x, = 0. In order to solve
(12c) fora,, we make a double expansion in bottand (8 fkpodfwpo) = 2m)°8V(k + k) [8¥(p — p/)

J, usingU,, = 84p + O(gA). We denote byu™ the X 80 — OV F(p) + mppoor].
term containing a total of powers in the mean fields
and/or J. (15)

For our purposes, it will be sufficient to consider the The function 8(Q — Q') is, apart from a (representa-
zeroth order term id, and the zeroth and first order terms tion dependent) normalization constantya — N dimen-
in J. Using the one-sided Fourier transform [8], we find sionalé function over the proper set of Darboux variables

7(0) dQy, 8 Jl.(t = 0,k,v) related to the color charges [5]. The second term in (15)
aia+ (k) = kz + Iy f —ik - v ’ is the Fourier transform of a smooth function that vanishes
(14a) at large distances. The _al:)ove_z statistical average is all we
¥ a0, 1 need to evaluate the collision integrals.
,Tgll(k) ——8Jabe PT(k)f For the remaining part, we will concentrate on the
—k2 + 1y —ik - dynamics of mean fields with typical momenta around

4q bO)( N\ Fern gmp. When computing the related collision integrals, we
f o) vFa, " (q) Ji(k = q.v), (14b) (il find logarithmic divergences, cut off in the infrared
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by the inverse collision time. We employ the leading This terminates the explicit derivation, in the leading

logarithmic approximation, assuming(lfg) > 1 while
neglecting all subleading (though finite) terms.

logarithmic approximation, of the collision integral and
the dynamical equations for the soft fields from classical

We find that the induced curreft\..) vanishes, as do transport theory.

the fluctuation integralén @) and(¢£©). The vanishing

In summary, we have given a prescription to derive

of (n©) is consistent with the fact that in the Abelian mean gauge field equations from classical transport the-

limit the counterpart of»n) vanishes at equilibrium [8].

ory. This includes a recipe to obtain effective (classical or

In the same spirit, we evaluate the collision integralsquantum) collision integrals from the microscopic theory.

containing oneJ field. Consider

€Ny = gfabcvﬂ[—<a2?b<x)6jg?2<x,v)> + gfeacv”

< [ Tyt v waliGen ), @6
which simplifies, at logarithmic accuracy, to

gz
(Epulx.v)) = = — NTIn(1/g)

X vpf d‘f}:/ I(v,v)J0x,v"), (17)
N VR S U 4
I(v,v))=6%(v — V) e (18)

The approach is in accordance with gauge invariance. In
a close-to-equilibrium plasma and for small gauge cou-
pling, we reproduce Bédeker's effective theory.

The last part of our analysis can straightforwardly be
generalized in order to obtain explicit expressions for the
collision integrals not only for the soft momentum region.
Another interesting open problem is using the same
methods for out-of-equilibrium situations. Based on the
evaluation of collision integrals for Abelian plasmas out
of equilibrium [8], we should find the Coulomb logarithm
changing drastically the mean non-Abelian gauge field
equations.

It remains remarkable that classical transport theory is
efficient enough as to describe not only the non-Abelian
dynamics of semihard modes with momenta aroyfid
but as well the nonperturbative dynamics of soft gluons at

The above expression has been obtained first in [3]leading logarithmic order. This establishes a link even
and reproduces the collision integral considered in théeyond the one-loop level between our approach and

Boltzmann equation of [13].

a complete quantum field theoretical treatment, whose

We verified that the leading logarithmic solution is con- deeper structure is waiting to be uncovered [15].
sistent with gauge invariance. Evaluating the correlator

in (8) yieldsD,J* = 0, in accordance with (10b) in the

present approximation. _
Following Bddeker, one can now estimafé from
(10a) to obtain for (10b)

2
4d7mp

T 3N2TIn(1/g)
(19)

The coefficient represents

(DMF'“")(, =oE + v, o

This is the result of [3].

the color conductivity and has been discussed in [13,14].
The white noiser has its origin in the fluctuations of the

transverse part af© [3,7]. We obtain to leading order
Wi )vp(y) = 2T0878,8%(x — y),  (20)
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