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Based on classical transport theory, we present a general set of covariant equations describing
the dynamics of mean fields and their statistical fluctuations in a non-Abelian plasma in or out
of equilibrium. A procedure to obtain the collision integrals for the Boltzmann equation from the
microscopic theory is described. As an application, we study a hot non-Abelian plasma close to
equilibrium, where the fluctuations are integrated out explicitly. For soft fields, and at logarithmic
accuracy, we obtain Bödeker’s effective theory. [S0031-9007(99)09394-1]
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The dynamics of mean fields in non-Abelian plasma
is at the basis for an understanding of many properties
the early universe. This concerns the quark-gluon plas
which is believed to be formed at high temperature an
or large chemical potential, or the plasma formed in th
symmetric phase of the electroweak theory. The ener
densities required to form a quark-gluon plasma might
reached in the coming generation of heavy ion collide
A theoretical framework to describe the dynamics
non-Abelian plasmas in or out of equilibrium is thu
mandatory (see [1] for an early review).

The dynamics of soft fields with momenta aboutg2T is
dominated by nonperturbative phenomena, even for sm
gauge couplingg ø 1 and close to equilibrium [2]. Here,
some progress has been achieved recently by Bödeker
who derived an effective theory for the soft modes aft
integrating out the perturbative physical scalesT andgT
from the field theory.

In this Letter, we study mean field dynamics in th
context of classical transport theory [4]. In the close-t
equilibrium plasma, classical transport theory is known
describe correctly the physics around the scalegT [5],
in full agreement with the results obtained from quantu
field theory [6]. We will show how also the physics a
scalesg2T , and at logarithmic accuracy, can be unde
stood in the same kinetic language. Our ultimate go
is providing a well-defined prescription to treat a num
ber of interesting problems including out-of-equilibrium
phenomena. Here, we present the main results of o
analysis. This includes the derivation of a general set
dynamical equations for the mean fields and their fluctu
tions, and a prescription for obtaining collision integra
for Boltzmann equations. An explicit application for ho
non-Abelian plasmas close to equilibrium is given as we
We leave for a longer publication a more extensive di
cussion and further details on the computations [7].

We begin with the derivation of a set of equation
that describe both the dynamics of fluctuations and of t
mean fields in a non-Abelian plasma. We follow the sam
philosophy and methods which have been used longly
kinetic theory to study Abelian plasmas (see [8]). Ou
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equations can be seen as the generalization to non-Abeli
plasmas.

The starting point is to consider gluons (or electrons
quarks) as charged point particles moving on a worl
line according to their classical equations of motion
They interact via a classical chromoelectromagnetic field
We consider a system of these particles carrying a no
Abelian color chargeQa, where the color index runs from
a ­ 1 to N2 2 1 for a SUsNd gauge group.

Within a microscopic description, the trajectories in
phase space, and therefore the one-particle phase sp
densityfsx, p, Qd, are known exactly. The classical tra-
jectoriesxstd, pstd, andQstd are solutions of the Wong
equations [9]:

m
dxm

dt
­ pm, m

dpm

dt
­ gQaFmn

a pn ,

m
dQa

dt
­ 2gpmfabcA

m
b Qc .

(1)

Here, Aa
m denotes the microscopic vector gauge field

Fa
mnfAg ­ ≠mAa

n 2 ≠nAa
m 1 gfabcAb

mAc
n is the corre-

sponding microscopic field strength, andfabc are the
structure constants of SUsNd. We setc ­ h̄ ­ kB ­ 1,
and work in natural units. Effects of spin will be
neglected.

The microscopic phase space density obeys Liouville’
theoremdfydt ­ 0 [5]. We can write it using (1) as [4]

pmf≠m 2 gfabcAb
mQc≠Q

a 2 gQaFa
mn≠n

pg f ­ 0 , (2a)

with ≠
p
m ; ≠y≠pm and ≠

Q
a ; ≠y≠Qa. This equation is

gauge invariant, withf transforming as a scalar [5], and
is completed with the Yang-Mills equation,

DmFmnsxd ­ Jnsxd . (2b)

In the adjoint, the covariant derivative is given by
Dac

m fAg ­ ≠mdac 1 gfabcAb
m. In a self-consistent pic-

ture, the currentJ
m
a sxd is due to the particles them-

selves, thus

Jm
a sxd ­ g

X
helicities

species

Z
dP dQ pmQafsx, p, Qd . (2c)
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(Throughout, we shall omit a species or helicity index o
f, and the sum over species and helicities will, in th
sequel, not be given explicitly.) Physical constraints a
enforced through the phase space volume elementdP ;
d4p2Qsp0ddsp2 2 m2dys2pd3, while dQ contains d

functions imposing the group Casimirs (see [5] for the
definition). The covariant conservation of the current (2
is shown using (2a) [5].

If the system under study contains a large numb
of particles, it is impossible to follow their individual
trajectories in phase space. Thus,f can no longer be
considered a deterministic quantity and one has to swit
to a statistical description, taking statistical averagesk· · ·l
of all microscopic quantities. We write

Aa
m ­ Āa

m 1 aa
m, f ­ f̄ 1 df ,

Jm
a ­ J̄m

a 1 dJm
a ,

(3)

where the quantities with a bar denote the mean valu
e.g., f̄ ­ k fl and Ā ­ kAl, while the mean values of
fluctuations vanish,kdfl ­ 0 andkal ­ 0. We also split
4982
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Fa
mn ­ F̄a

mn 1 fa
mn , (4a)

fa
mn ­ sD̄man 2 D̄namda 1 gfabcab

mac
n , (4b)

with D̄ ; DfĀg andF̄ ; FfĀg. Note that the mean field
strength kFa

mnl ­ F̄a
mn 1 gfabckab

mac
nl due to the non-

Abelian nature of the theory.
Let us take a statistical average of (2) to find the kineti

equations for the mean values,

pmsD̄m 2 gQaF̄a
mn≠n

pd f̄ ­ khl 1 kjl , (5a)

D̄mF̄mn 1 kJn
flucl ­ J̄n . (5b)

In (5a) we usedf≠m 2 gfabcQcAb
m≠

Q
a g f ; Dmf. The

functionsh, j, andJfluc are of second and higher order
in the fluctuations and read

h ; gQapm≠n
pfa

mndf , (6a)

j ; gpmfabcQcs≠Q
a ab

mdf 1 gaa
mab

n≠n
pf̄d , (6b)

J
a,n
fluc ; gfdbcsD̄m

adab,man
c 1 dadab,mfmn

c d . (6c)

The corresponding equations for the fluctuations a
obtained by subtracting (5) from (2). The result is
pmfD̄m 2 gQaF̄a
mn≠n

pgdf 2 gpmab,mfabcQc≠Q
a f̄ 2 gQafD̄man 2 D̄namgapm≠p

n f̄ ­ h 1 j 2 kh 1 jl , (7a)

fD̄2am 2 D̄msD̄nandga 1 2gfabcF̄
mn
b ac,n 1 J

a,m
fluc 2 kJa,m

flucl ­ dJa,m. (7b)
lt
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A number of comments are in order:
(i) Equations (5) and (7) are exact; no approximatio

have been made. In particular, they are also valid in o
of-equilibrium situations.

(ii) Equations (5) and (7) are consistent with gaug
invariance. They are covariant under the mean gau
field symmetrydeĀa

m ­ sD̄meda anddeaa
m ­ gfabcab

mec,
in analogy to the background field formalism [10]. Thi
establishes the compatibility of the statistical average w
the gauge transformations of the mean field. We postpo
a careful and detailed discussion to [7].

(iii) The microscopic current conservation implies

sD̄mJ̄mda 1 gfabckab
mdJc,ml ­ 0 . (8)

This is automatically consistent with (5b), providedJ̄ and
dJ are solutions of (5) and (7). (A similar equation hold
for the fluctuation fields.) Note that the validity of (8
turns into a nontrivial consistency check for approxima
solutions.

(iv) The functionskhl and kjl can be considered as
the effective collision integrals of the Boltzmann equatio
(5a). In our formalism, the collision integrals arise a
correlators of statistical fluctuations. The fluctuations
the gauge fields cause random changes in the motion
particles, and, thus, they can be viewed as having the sa
effects as collisions. This can be seen as a derivation
collision integrals from the microscopic theory. Note als
that the current induced by the fluctuations of the gau
field kJflucl is a purely non-Abelian effect.

(v) A general procedure for integrating out the fluctu
tions amounts to first solving their dynamics (7) in th
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background of mean fields. In general, this is a difficu
task, in particular, due to the nonlinear terms in (7
The (explicit) solution is then inserted into (6). Th
back coupling of the fluctuations to the mean fields
finally obtained after taking the statistical average of th
functions (6), and yields the effective collision integra
and the induced current in (5).

(vi) The set of equations (5) and (7) reproduces th
known set of kinematic equations for Abelian plasmas
the corresponding limit [8], in which only the collision
integralkhl survives. The Abelian counterpart ofkhl can
be expressed as the Balescu-Lenard collision integral [
One can then prove in a rigorous way the corresponden
between fluctuations and collisions in the Abelian plasm
mentioned above. (An analogous derivation of collisio
integrals for Wigner functions can be found in [11]; se
also [12].)

(vii) Neglecting all fluctuations reduces (5) to the well
known (non-Abelian) Vlasov equations.

This terminates the derivation and discussion of th
basic set of equations.

To put the method to work, we will specialize our analy
sis to hot non-Abelian plasmas close to equilibrium, wi
the gauge couplingg ø 1. This allows us to perform sev-
eral approximations. We will consider small fluctuation
neglecting in (6a) and (6c) the terms cubic in the fluctu
tions. This is interpreted as neglecting effective three bo
collisions versus binary ones. In the same spirit, we e
ploy the second-moment approximation for the dynam
ics of the fluctuations [8], settingh ­ khl, j ­ kjl, and
Jfluc ­ kJflucl in (7). This linearizes the dynamics of the
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n-
fluctuations and can be interpreted as neglecting the
fluence of collisions on the dynamics of the fluctuation
Finally, the term containing the mean field strength in (7
is negligible compared to the remaining terms and will b
omitted, as long asgjF̄

mn
a jymD ø T , where mD is the

Debye mass [8].
We study the mean distribution function̄fsx, p, Qd ­

f̄eqsp0d 1 gf̄s1dsx, p, Qd. In the strictly classical ap-
proach, the relativistic Maxwell distribution at equilib
rium is used for any species of particles. Here, w
consider only massless particles in the adjoint, wiR

dQ QaQb ­ Ndab. For particles in the fundamental
one has

R
dQ QaQb ­ 1

2 dab instead. Solving (5) for van-
ishing fluctuations in this approximation gives the infinit
set of non-Abelian hard thermal loops [5,6].

We now include small statistical fluctuationsdf around
f̄ and rewrite the approximations to (5) and (7) in term
of current densities and their fluctuations. Consider t
current densities

Jr
a1···an

sx, pd ­ gpr
Z

dQ Qa1 · · · Qan fsx, p, Qd , (9a)

J r
a1···an

sx, yd ­
Z

dP̃ Jr
a1···an

sx, pd . (9b)
in-
s.
a)
e

-
e
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,
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The measuredP̃ only integrates over the radial compo
nents,dP ­ dP̃dVy4p, and ym ­ s1, vd with v2 ­ 1.
The current (2c) is obtained performing the remaining a
gle integrationJsxd ­

R dV

4p J sx, yd. From now one, we
will omit the arguments of the current densityJ , unless
necessary to avoid confusion.

After multiplying (5a) by gQapryp0, summing over
the two helicities, and integrating overdP̃dQ, we obtain
for the mean current density at leading order ing

ymD̄mJ̄ r 1 m2
DyrymF̄m0 ­ khrl 1 kjrl , (10a)

D̄mF̄mn 1 kJn
flucl ­ J̄n , (10b)

with the Debye massm2
D ­ 22g2N

R
dP̃ df̄eqspdydp,

and

hr
a ­ 2g

Z dP̃
p0

(
sD̄mar 2 D̄ramdbdJ

m
absx, pd

2
pr

p0
sD̄ma0 2 D̄0amdbdJ

m
absx, pd

)
,

(11a)

jr
a ­ 2gfabcymab

mdJ c,r , (11b)

J
r,a
fluc ­ gfdbchD̄ad

m a
m
b ar

c 1 dadab
msD̄mar 2 D̄ramdcj .

(11c)
For the fluctuations, we find
fymD̄mdJ rga ­ 2m2
DyrymfD̄ma0 2 D̄0amga 2 gfabcymab

mJ̄ c,r , (12a)

fymD̄mdJ rgab ­ gymam
ms fmacdbd 1 fmbddacdJ̄ r

cd , (12b)

fD̄2am 2 D̄msD̄adga 1 2gfabcF̄
mn
b ac,n ­ dJm

a . (12c)
ve,
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We solve the equations for the fluctuations (12) w
an initial boundary condition fordf, andamst ­ 0d ­ 0.
Exact solutions to (12a) and (12b) can be obtained [7]. T
current fluctuationdJa reads, forx0 ; t $ 0,

dJ r
a sx, yd ­ Ūabsx, xtddJ

r
b sxt , yd 2

Z `

0
dt Ūabsx, xtd

3 hgfbdcymad
msxtdJ̄ r

c sxt , yd

1 m2
DyrymsD̄ma0 2 D̄0amdbsxtdj .

(13)
We introducedxt ; x 2 yt and the parallel transporte
Ūab , obeyingymD̄x

mŪabsx, ydjy­xt
­ 0. In order to solve

(12c) for am, we make a double expansion in bothĀ and
J̄ , using Ūab ­ dab 1 O sgĀd. We denote byasnd the
term containing a total ofn powers in the mean fields̄A
and/orJ̄ .

For our purposes, it will be sufficient to consider th
zeroth order term in̄A, and the zeroth and first order term
in J̄ . Using the one-sided Fourier transform [8], we fin

a
T s0d
i,a1skd ­

1
2k2 1 PT

Z dVv

4p

dJ
T
i,ast ­ 0, k, yd

2ik ? y
,

(14a)

a
T s1d
i,a1skd ­

2gfabc

2k2 1 PT
PT

ijskd
Z dVv

4p

1
2ik ? y

3
Z d4q

s2pd4 ymabs0d
m sqdJ̄ c

j sk 2 q, yd , (14b)
ith
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in the gaugek ? a ­ 0. The function PT skd is the
transverse polarization tensor of the plasma,PT

ijskd ­
dij 2 kikjyk2 is the transverse projector, andaT

i ;
PT

ijaj . Retarded boundary conditions are assumed abo
with the prescriptionk0 ! k0 1 i01.

With the above, we can express all fluctuations i
terms of initial conditions and the mean fields. Following
[8] the statistical average over initial conditions can b
deduced [7] and finally expressed (for each species
helicity index) as

kdfkpQdfk0p0Q0l ­ s2pd6ds3dsk 1 k0d fds3dsp 2 p0d

3 dsQ 2 Q0d f̄spd 1 mkpp0QQ0g .

(15)
The function dsQ 2 Q0d is, apart from a (representa-
tion dependent) normalization constant, aN2 2 N dimen-
sionald function over the proper set of Darboux variable
related to the color charges [5]. The second term in (1
is the Fourier transform of a smooth function that vanishe
at large distances. The above statistical average is all
need to evaluate the collision integrals.

For the remaining part, we will concentrate on th
dynamics of mean fields with typical momenta aroun
gmD. When computing the related collision integrals, w
will find logarithmic divergences, cut off in the infrared
4983
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by the inverse collision time. We employ the leadin
logarithmic approximation, assuming lns1ygd ¿ 1 while
neglecting all subleading (though finite) terms.

We find that the induced currentkJ s0d
flucl vanishes, as do

the fluctuation integralskhs0dl and kjs0dl. The vanishing
of khs0dl is consistent with the fact that in the Abelian
limit the counterpart ofkhl vanishes at equilibrium [8].
In the same spirit, we evaluate the collision integra
containing oneJ̄ field. Consider

kjs1d
r,al ­ gfabcym

(
2kas1d

m,bsxddJ s0d
r,csx, ydl 1 gfcdeyn

3
Z `

0
dt J̄r,esxt , yd kas0d

m,bsxdas0d
n,dsxtdl

)
, (16)

which simplifies, at logarithmic accuracy, to

kjs1d
r,asx, ydl ­ 2

g2

4p
NT lns1ygd

3 yr

Z dVv 0

4p
I sv , v 0dJ̄ 0

a sx, y0d , (17)

I sv , v 0d ; ds2dsv 2 v 0d 2
4
p

sv ? v 0d2p
1 2 sv ? v 0d2

. (18)

The above expression has been obtained first in [
and reproduces the collision integral considered in th
Boltzmann equation of [13].

We verified that the leading logarithmic solution is con
sistent with gauge invariance. Evaluating the correlat
in (8) yields D̄mJ̄m ­ 0, in accordance with (10b) in the
present approximation.

Following Bödeker, one can now estimatēJi from
(10a) to obtain for (10b)

sD̄mF̄mida ­ sĒi
a 1 ni

a, s ­
4pm2

D

3Ng2T lns1ygd
.

(19)

This is the result of [3]. The coefficients represents
the color conductivity and has been discussed in [13,1
The white noisen has its origin in the fluctuations of the
transverse part ofjs0d [3,7]. We obtain to leading order

kni
asxdnj

bs ydl ­ 2Tsdijdabds4dsx 2 yd , (20)

in accordance with the fluctuation-dissipation theore
(FDT). Note also that the classical Debye mass diffe
from the quantum one.

In order to go beyond classical transport theory, w
expand about the bosonic (fermionic) quantum-statistic
equilibrium distribution function̄f1 s f̄2d. For gluons in
the adjoint, the Debye mass obtains asm2

D ­ g2NT2y3.
The FDT is obeyed as well, if̄f in (15) is replaced
by f̄6s1 6 f̄6d. sssThis should, however, be derived in
a similar way as (15) from the microscopic theory [7].ddd
Also, the quantum collision integrals are obtained with th
correct statistical factors [7]. It is interesting to note tha
all quantum modifications are contained in the implic
change ofmD .
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This terminates the explicit derivation, in the leadin
logarithmic approximation, of the collision integral an
the dynamical equations for the soft fields from classic
transport theory.

In summary, we have given a prescription to deriv
mean gauge field equations from classical transport t
ory. This includes a recipe to obtain effective (classical
quantum) collision integrals from the microscopic theor
The approach is in accordance with gauge invariance.
a close-to-equilibrium plasma and for small gauge co
pling, we reproduce Bödeker’s effective theory.

The last part of our analysis can straightforwardly b
generalized in order to obtain explicit expressions for t
collision integrals not only for the soft momentum region
Another interesting open problem is using the sam
methods for out-of-equilibrium situations. Based on th
evaluation of collision integrals for Abelian plasmas o
of equilibrium [8], we should find the Coulomb logarithm
changing drastically the mean non-Abelian gauge fie
equations.

It remains remarkable that classical transport theory
efficient enough as to describe not only the non-Abeli
dynamics of semihard modes with momenta aroundgT ,
but as well the nonperturbative dynamics of soft gluons
leading logarithmic order. This establishes a link eve
beyond the one-loop level between our approach a
a complete quantum field theoretical treatment, who
deeper structure is waiting to be uncovered [15].
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