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Holography, Cosmology, and the Second Law of Thermodynamics
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We propose that the holographic principle be replaced by the generalized second law of
thermodynamics when applied to time-dependent backgrounds. For isotropic open and flat universes
with a fixed equation of state, this agrees with the cosmological holographic principle proposed
by Fischler and Susskind (hep-th/9806039). However, in more general situations, it does not.
[S0031-9007(99)09398-9]
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The holographic principle states the maximum number Fischler and Susskind found that closed universes vio-
of degrees of freedom in a volume should be proportionalate their cosmological holographic bound and speculated
to the surface area [1,2]. This principle is based orthat such backgrounds were either inconsistent or that
earlier studies by Bekenstein [3] on maximum entropynew behavior sets in as the bound is violated. We argue
bounds within a given volume. One argument used tdhat the evolution of closed universes does not violate the
motivate the holographic principle is as follows. Considergeneralized second law, and hence such backgrounds are
a region of space with volum&, bounded by an area self-consistent.

A, which contains an entropy§, and assume that this A related problem we consider is how to apply the
entropy is larger than that of a black hole with the sameholographic principle in a volume inside the event horizon
surface area. Now throw additional energy into this regiorof a black hole. The naive holographic bound can
to form a black hole. Assuming that the Bekenstein-easily be violated in such a region. At the same time
Hawking formula,S = A/4, actually gives the entropy the evolution is in accord with the generalized second
of the black hole, we conclude the generalized seconthw. It seems the price an observer pays for violating
law of thermodynamics [4] has been violated. (Notethe holographic principle is to eventually encounter a
that the generalized second law is not related to theurvature singularity. However, it is possible for this fate
generalized entropy introduced by Tsallis [5] in a differentto be delayed for cosmological time scales.

context.) To avoid this contradiction, the holographic I. The story so fa—Fischler and Susskind [6] realized
principle proposes that the entropy inside a given regionthat while the requirement that the holographic bound,
must satisfy§/A < 1. However, this argument implicitly S/A < 1, applies to an arbitrary region for the static
assumes that the black hole forms in a background that isase, the extension to cosmological spacetimes is more
otherwise static. subtle. Specifically, the homogeneous energy dengity,

In the following, we examine how the argument of simple cosmological models implies a homogeneous
changes in the more general time-dependent situatiorentropy densitys. Inside a (comoving, spatial) volume
encountered in cosmology. We argue that the principle/ ~ R?, the total entropy isS = sV. The boundary
that replaces holography is simply that physics respectsf this region has the physical arda~ a(7)’R?, where
the generalized second law of thermodynamics [4]. Fou(r) is the scale factor of the Robertson-Walker metric,
static backgrounds, this reduces to the holographic boundo S/A ~ sR/a(t)>. Consequently, for a fixed it is
However, more generally, a simple formula bounding thealways possible to choose a volume large enough to
entropy inside a region by an amount proportional to theviolate the holographic bound. Fischler and Susskind
area does not hold. propose to resolve this problem by stipulating that the

Fischler and Susskind [6] have proposed a generaholographic bound applies only to regions smaller than the
ization of the holographic principle to certain cosmo-cosmological (particle) horizon [10], which corresponds
logical backgrounds. This proposal has been studietb the forward light-cone of an event occurring at (or
further in [7,8]. Furthermore, in earlier work Bekenstein infinitesimally after) the initial singularity. The comoving
[9] examines a stronger entropy bound for Friedman-distance to the horizony, is
Robertson-Walker cosmologies. For flat and open | ,
universes with time-independent equations of state, we rp = f () dt 1)
find that the Fischler-Susskind bound is in accord with , . . ) . .
the generalized second law. We propose a refinement (Wh'le the corresponding physical dlstance IS
their bpund that also applies to inflationary universes after dy = a(t)ry = a(t)]
reheating.
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The scale factor obeys the evolution equations, the cosmological horizon arbitrarily large; for instance, it
A\ 37 X is not difficult for it to be 10'° times greater than the
(—) =H? = 3P (3) value found in the absence of inflation. Applying the
a 3mp) a original Fischler-Susskind formulation of the holographic
a 47

(p + 3p), 4) pri_nciple leads to a vaIge_oS’_/A rr_lassively greater_tha_n
3mp unity for almost any realistic inflationary model. This dif-
where k takes the valuest1 and 0, for solutions with ~ ficulty is noted by Rama and Sarkar, and they propose
positive, negative, and zero spatial curvature. From her¥arious smaller volumes over which to measure the en-

IS

on we use natural units, wherg, = /87 tropy. In general, their formulation is not consistent with
For a perfect fluid, in a flati{(= 0) universe, whose th€ One we propose in the next section.
pressure and density satisfy = wp, the solution of !l Holography and the generalized second lawOne
Egs. (3) and (4) is straightforward: of the initial motivations for the holographic principle was
q 5 based on the generalized second law of thermodynamics.
f = - . ) 5)  The generalized second law states
a(t) aO( ) ’ 1737+ o ©)

In particular, if @ = 0 we recover the equation of state 8Smat + 8Spn =0, (8)

for dust, whilew = 1/3 is the appropriate value for a hot

(relativistic) gas or radiation. In general, where Sy, is the entropy of matter outside black holes,
p andSgy is the Bekenstein-Hawking entropy of the black

dn

(6) holes. This law has not been proven but is expected to
follow from most of the current approaches to quantum
gravity. There are many nontrivial situations where this

' law has been tested [3]. If we assume this law is correct,

S o f173a ) the holographic principle follows if we consider a region
A of space embedded in an approximately static background

If ¢ <1/3 (w > 1) the holographic bound is violated (such as Minkowski space, or anti—de Sitter space), as

at late times but, as Fischler and Susskind explain, suctliscussed in the introduction.

a cosmological model is not viable since a perfect fluid Our main interest is to study the formulation of holo-

with > 1 has a speed of sound greater than the speegraphic style bounds in time-dependent situations. Our

of light. guiding principle is the generalized second law of ther-
In realistic cosmological models the equation of statemodynamics, rather than the holographic principle itself.
is far from that of a perfect fluid with constantb.  Thus, the general principle which proposes to replace the

Even simple models of the big bang combine dust andholographic principle in time-dependent backgrounds is

radiation and make a transition between= 1/3 and simply the generalized second law of thermodynamics

w = 0, since the energy density of radiation drops fasteholds.

than the density of dust as the universe expands. More In the examples considered below, we will assume

importantly, during an inflationary epoch in the primordial changes are quasistatic. This implies that to an arbitrarily

universe,a is, by definition, positive so the pressure andgood approximation, the entropy is maximized, subject to
® must be negative. constraints, at all times. In these situations we can make

One of the original motivations for inflation was that it a stronger statemerfbr all time the entropy is maximized
endows the primordial universe with a substantial entropysubject to the constraints.

density. Inflationary models generate entropy after infla- For volumes embedded in certain backgrounds we may

tion has finished, when energy is transferred from the scalarse these principles to deduce holographic style bounds

field which drives the inflationary expansion to radia-on the entropy, but this does not appear to be possible
tion and ultrarelativistic particles. This process is referredn general. In the following examples we proceed by
to as reheating, and the equation of state changes fronoting that while sufficiently large volumes of a nonstatic

o < —1/3, usually to a radiation dominated universe spacetime may havé/A > 1, the generalized second

whose subsequent evolution is described by the “standardaw will hold if these regions cannot (causally) collapse to

model of the hot big bang. The comoving entropy densityform black holes while§ /A is still much larger than unity.

is not constant, anl/A is thus a more complicated func- Therefore, the largest length scale over which we need

tion of time than it is in models with constast. to be concerned about/A is the size of the (spatially)
Rama and Sarkar [8] have discussed the application dargest perturbation of the background spacetime which

the holographic bound to inflationary models. The maxi-grows with time. If perturbations do not grow, black
mum temperature]’, attained after inflation is model de- holes cannot form§Sgy = 0, and the generalized second
pendent, and the resulting entropy density is proportiondaw reduces t06S,,; = 0, which is satisfied by any

to 7° only if we assume a relativistic gas. Inflation makesphysically reasonable equation of state.

- —t
The comoving entropy density is constant, so witk 0
it follows that when measured over the horizon volume
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(A) Flat universe—Let us consider isotropic, homo- (B) Closed universe—For the case of an isotropic
geneous, and spatially flat cosmologies. The comovinglosed universe with fixed equation of state, Fischler and
entropy density in these models is constant. This is conSusskind found [6] that even if/A < 1 initially on

sistent with the generalized second law. S}A < 1 ini- particle horizon sized regions, it could be violated at later
tially, this condition is satisfied at all later times, providedtimes. This violation is possible even while the universe
w is fixed and less than unity. is still in its expansion phase.

It remains to be seen whethg&fA > 1 at earlier times, The generalized second law, on the other hand, is

and if this would imply a violation of the generalized sec-expected to hold on particle horizon sized regions in a
ond law. In order to discuss this, we need to introduceclosed universe. For the sake of definiteness, suppose the
a length scale. Rather than the particle horizon, which iwiolation occurs while the universe is still in its expansion
arbitrarily large in inflationary models, we focus on the phase. One would certainly expect that a region with
Hubble length, or Hubble horizon sizH,”!. Physically, an excessive entropy density could start to collapse via
H~! is the distance at which a point appears to be recedhe Jeans instability and form a black hole. However,
ing at the speed of light due to the overall expansion okimple estimates indicate the time taken to form such a
the universe. More relevantly, gravitational perturbationblack hole is of the order of the lifetime of the closed
theory shows that small perturbations to a spatially flatuniverse. Thus while it is conceivable that a region with
homogeneous, and isotropic universe with wavelength§ /A > 1 could form a black hole in a closed universe, the
larger thanH ! do not grow with time [11]. While it process of its formation would require a time comparable
is possible thatS/A > 1 in a volume much larger than to the overall lifetime of the universe which contains it.
H~3, this region is unable to collapse to form a black Consequently, a violation of the holographic bound of
hole and violate the second law. Thus the maximum volFischler and Susskind remains consistent with the second
ume over which we need to be concerned At is the  law for cosmologically long time scales.
Hubble volumeH 3. Moreover, to findS/A > 1 well before the closed

If w is constant the particle horizody, andH ™! are  universe reaches its final singularity we must consider
related to one another by a factor of order unity, anda volume that is a substantial fraction of the overall
we recover the Fischler-Susskind formulation. Howeveruniverse. The collapse of this region into a single
if inflation has taken place the particle horizon is muchblack hole is not a small perturbation of the background
larger thanH !, which depends only on the instantaneousFriedmann universe, and the naive use of the evolution
expansion rate and not on the integrated history of thequations for the unperturbed universe to discuss the

universe. entropy density of collapsing region is an assumption of
As an example, consider the energy density and entropgubious validity.
density for a relativistic gas at temperature (C) Open universe—The behavior of isotropic open
2 . (with negative spatial curvature) universes is similar to
p=3gnT (9)  that of flat universes. 1§/A < 1 initially, it remains so
5 at later times [6]. An argument that/A < 1 remains
5 = 2 n.T? (10) valid at earlier times can likewise be made in a similar
45 ’ way to the flat case.

where n.. is the number of bosonic degrees of freedom Fischler and Susskind also considered the case of
plus 7/8 times the number of fermionic degrees ofcertain anisotropic flat universes. In these cases it was

freedom. Using Eq. (3) to relaje andH, found S/A was constant in time.
S (D) Inside a black hole—Another time-dependent
" = n. T, (11) background of interest is the region inside the event

horizon of a black hole. If we consider a spatial volume

up to constant factors. Since the density must be lesggige the event horizon, the generalized second law will
than unity for quantum gravitational corrections to be pply if the volume is out of thermal contact with other

safely ignored, the maximum temperature is proportionafegions, However, it is straightforward to argue that the

to n.'”, and the maximum value of/A inside a entropy in such a volume, with size of order the horizon

Hubble volume is proportional tos/*, Violating S/A <  size, can exceed its surface area. In fact, the physics
1 significantly at a sub-Planckian energy requires arinside a black hole should closely resemble that of the
enormous value of.., which constitutes a fine-tuning. closed universe, at sufficiently late times.

Furthermore, a perturbation the size of the Hubble We see no reason why an observer inside such a region
horizon does not collapse into a black hole instantaneouslghould not be able to actually measure a violation of
Thus the bound would need to be violated during the time ithe holographic bound. A direct measurement is difficult
took the black hole to form, an§i/A decreases with time. since the observer will typically hit the singularity within
Thus, in the absence of tuning the holographic bound wa light-crossing time of the black hole horizon. However,
have proposed is satisfied at all post-Planckian times. if the observer has the additional information that the
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entropy density is constant, he/she can infer a violatioiaw of thermodynamics [4] for general time-dependent
of holography via local measurements. backgrounds. In static backgrounds, this reduces to the
(E) Inflating universe—We can view an inflationary holographic principle of Susskind and of 't Hooft [1,2].

universe as a Friedmann universe with a time-dependefior cosmological backgrounds, corresponding to spatially

equation of state. During the reheating phase at the enoben universes with fixed equations of state, the second

of inflation there is a sharp change in the equation ofaw implies the entropy bound of Fischler and Susskind

state, as energy is transferred from the inflation field td6] on particle horizon sized regions. However, for closed

radiation (or ultrarelativistic particles). This raises theuniverses, and inside black hole event horizons, a useful

entropy of the universe in a homogeneous way. Aftetholographic bound does not follow from the second law.

this sudden increase in the entropy density it is possible t&or inflationary universes, we show that in the absence of

violate Fischler and Susskind’s bound when it is appliedine-tuningS/A < 1 in any region of the postinflation-

to regions the size of the particle horizon. Of courseary universe that can undergo gravitational collapse. This

a sharp homogeneous increase in the entropy density ensures that the generalized second law holds, but the for-

permitted by the generalized second law. mulation of the cosmological holographic principle given

The process of reheating is model dependent. To simby Fischler and Susskind requires modification.
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