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Holography, Cosmology, and the Second Law of Thermodynamics
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We propose that the holographic principle be replaced by the generalized second law
thermodynamics when applied to time-dependent backgrounds. For isotropic open and flat unive
with a fixed equation of state, this agrees with the cosmological holographic principle propo
by Fischler and Susskind (hep-th/9806039). However, in more general situations, it does
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The holographic principle states the maximum numb
of degrees of freedom in a volume should be proportion
to the surface area [1,2]. This principle is based o
earlier studies by Bekenstein [3] on maximum entrop
bounds within a given volume. One argument used
motivate the holographic principle is as follows. Conside
a region of space with volumeV , bounded by an area
A, which contains an entropy,S, and assume that this
entropy is larger than that of a black hole with the sam
surface area. Now throw additional energy into this regio
to form a black hole. Assuming that the Bekenstein
Hawking formula,S ­ Ay4, actually gives the entropy
of the black hole, we conclude the generalized seco
law of thermodynamics [4] has been violated. (Not
that the generalized second law is not related to t
generalized entropy introduced by Tsallis [5] in a differen
context.) To avoid this contradiction, the holographi
principle proposes that the entropy inside a given regio
must satisfySyA , 1. However, this argument implicitly
assumes that the black hole forms in a background tha
otherwise static.

In the following, we examine how the argumen
changes in the more general time-dependent situatio
encountered in cosmology. We argue that the princip
that replaces holography is simply that physics respe
the generalized second law of thermodynamics [4]. F
static backgrounds, this reduces to the holographic bou
However, more generally, a simple formula bounding th
entropy inside a region by an amount proportional to th
area does not hold.

Fischler and Susskind [6] have proposed a gener
ization of the holographic principle to certain cosmo
logical backgrounds. This proposal has been studi
further in [7,8]. Furthermore, in earlier work Bekenstei
[9] examines a stronger entropy bound for Friedma
Robertson-Walker cosmologies. For flat and ope
universes with time-independent equations of state, w
find that the Fischler-Susskind bound is in accord wit
the generalized second law. We propose a refinement
their bound that also applies to inflationary universes aft
reheating.
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Fischler and Susskind found that closed universes v
late their cosmological holographic bound and specula
that such backgrounds were either inconsistent or t
new behavior sets in as the bound is violated. We arg
that the evolution of closed universes does not violate
generalized second law, and hence such backgrounds
self-consistent.

A related problem we consider is how to apply th
holographic principle in a volume inside the event horizo
of a black hole. The naive holographic bound ca
easily be violated in such a region. At the same tim
the evolution is in accord with the generalized seco
law. It seems the price an observer pays for violatin
the holographic principle is to eventually encounter
curvature singularity. However, it is possible for this fa
to be delayed for cosmological time scales.

I. The story so far.—Fischler and Susskind [6] realized
that while the requirement that the holographic boun
SyA , 1, applies to an arbitrary region for the stati
case, the extension to cosmological spacetimes is m
subtle. Specifically, the homogeneous energy density,r,
of simple cosmological models implies a homogeneo
entropy density,s. Inside a (comoving, spatial) volume
V , R3, the total entropy isS ­ sV . The boundary
of this region has the physical areaA , astd2R2, where
astd is the scale factor of the Robertson-Walker metri
so SyA , sRyastd2. Consequently, for a fixeds it is
always possible to choose a volume large enough
violate the holographic bound. Fischler and Susski
propose to resolve this problem by stipulating that t
holographic bound applies only to regions smaller than t
cosmological (particle) horizon [10], which correspond
to the forward light-cone of an event occurring at (o
infinitesimally after) the initial singularity. The comoving
distance to the horizon,rH , is

rh ­
Z t

0

1
ast0d

dt0 (1)

while the corresponding physical distance is

dh ­ astdrh ­ astd
Z t

0

1
ast0d

dt0. (2)
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The scale factor obeys the evolution equations,√
Ùa
a

!2

­ H2 ­
8p

3m2
pl

r 2
k
a2 (3)

ä
a

­ 2
4p

3mpl
sr 1 3pd , (4)

where k takes the values61 and 0, for solutions with
positive, negative, and zero spatial curvature. From he
on we use natural units, wherempl ­

p
8p.

For a perfect fluid, in a flat (k ­ 0) universe, whose
pressure and density satisfyr ­ vp, the solution of
Eqs. (3) and (4) is straightforward:

astd ­ a0

√
t
t0

!q

, q ­
2
3

1
1 1 v

. (5)

In particular, if v ­ 0 we recover the equation of state
for dust, whilev ­ 1y3 is the appropriate value for a hot
(relativistic) gas or radiation. In general,

dH ­
t

1 2 q
. (6)

The comoving entropy density is constant, so withk ­ 0
it follows that when measured over the horizon volume,

S
A

~ t123q. (7)

If q , 1y3 (v . 1) the holographic bound is violated
at late times but, as Fischler and Susskind explain, su
a cosmological model is not viable since a perfect flu
with v . 1 has a speed of sound greater than the spe
of light.

In realistic cosmological models the equation of sta
is far from that of a perfect fluid with constantv.
Even simple models of the big bang combine dust an
radiation and make a transition betweenv ­ 1y3 and
v ­ 0, since the energy density of radiation drops fast
than the density of dust as the universe expands. Mo
importantly, during an inflationary epoch in the primordia
universe,ä is, by definition, positive so the pressure an
v must be negative.

One of the original motivations for inflation was that i
endows the primordial universe with a substantial entrop
density. Inflationary models generate entropy after infl
tion has finished, when energy is transferred from the sca
field which drives the inflationary expansion to radia
tion and ultrarelativistic particles. This process is referre
to as reheating, and the equation of state changes fr
v , 21y3, usually to a radiation dominated univers
whose subsequent evolution is described by the “standa
model of the hot big bang. The comoving entropy densi
is not constant, andSyA is thus a more complicated func-
tion of time than it is in models with constantv.

Rama and Sarkar [8] have discussed the application
the holographic bound to inflationary models. The max
mum temperature,T , attained after inflation is model de-
pendent, and the resulting entropy density is proportion
to T3 only if we assume a relativistic gas. Inflation make
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the cosmological horizon arbitrarily large; for instance,
is not difficult for it to be 101000 times greater than the
value found in the absence of inflation. Applying th
original Fischler-Susskind formulation of the holograph
principle leads to a value ofSyA massively greater than
unity for almost any realistic inflationary model. This dif
ficulty is noted by Rama and Sarkar, and they propo
various smaller volumes over which to measure the
tropy. In general, their formulation is not consistent wi
the one we propose in the next section.

II. Holography and the generalized second law.—One
of the initial motivations for the holographic principle wa
based on the generalized second law of thermodynam
The generalized second law states

dSmat 1 dSBH $ 0 , (8)

whereSmat is the entropy of matter outside black hole
andSBH is the Bekenstein-Hawking entropy of the blac
holes. This law has not been proven but is expected
follow from most of the current approaches to quantu
gravity. There are many nontrivial situations where th
law has been tested [3]. If we assume this law is corre
the holographic principle follows if we consider a regio
of space embedded in an approximately static backgro
(such as Minkowski space, or anti–de Sitter space),
discussed in the introduction.

Our main interest is to study the formulation of holo
graphic style bounds in time-dependent situations. O
guiding principle is the generalized second law of the
modynamics, rather than the holographic principle itse
Thus, the general principle which proposes to replace
holographic principle in time-dependent backgrounds
simply the generalized second law of thermodynam
holds.

In the examples considered below, we will assum
changes are quasistatic. This implies that to an arbitra
good approximation, the entropy is maximized, subject
constraints, at all times. In these situations we can m
a stronger statement:for all time the entropy is maximized
subject to the constraints.

For volumes embedded in certain backgrounds we m
use these principles to deduce holographic style bou
on the entropy, but this does not appear to be poss
in general. In the following examples we proceed b
noting that while sufficiently large volumes of a nonstat
spacetime may haveSyA ¿ 1, the generalized second
law will hold if these regions cannot (causally) collapse
form black holes whileSyA is still much larger than unity.
Therefore, the largest length scale over which we ne
to be concerned aboutSyA is the size of the (spatially)
largest perturbation of the background spacetime wh
grows with time. If perturbations do not grow, blac
holes cannot form,dSBH ­ 0, and the generalized secon
law reduces todSmat $ 0, which is satisfied by any
physically reasonable equation of state.
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(A) Flat universe.—Let us consider isotropic, homo-
geneous, and spatially flat cosmologies. The comovi
entropy density in these models is constant. This is co
sistent with the generalized second law. IfSyA , 1 ini-
tially, this condition is satisfied at all later times, provide
v is fixed and less than unity.

It remains to be seen whetherSyA . 1 at earlier times,
and if this would imply a violation of the generalized sec
ond law. In order to discuss this, we need to introduc
a length scale. Rather than the particle horizon, which
arbitrarily large in inflationary models, we focus on th
Hubble length, or Hubble horizon size,H21. Physically,
H21 is the distance at which a point appears to be rece
ing at the speed of light due to the overall expansion
the universe. More relevantly, gravitational perturbatio
theory shows that small perturbations to a spatially fla
homogeneous, and isotropic universe with wavelengt
larger thanH21 do not grow with time [11]. While it
is possible thatSyA . 1 in a volume much larger than
H23, this region is unable to collapse to form a blac
hole and violate the second law. Thus the maximum vo
ume over which we need to be concerned thatSyA is the
Hubble volume,H23.

If v is constant the particle horizon,dH , andH21 are
related to one another by a factor of order unity, an
we recover the Fischler-Susskind formulation. Howeve
if inflation has taken place the particle horizon is muc
larger thanH21, which depends only on the instantaneou
expansion rate and not on the integrated history of t
universe.

As an example, consider the energy density and entro
density for a relativistic gas at temperatureT :

r ­
p2

30
npT4, (9)

s ­
2p2

45
npT3, (10)

where np is the number of bosonic degrees of freedom
plus 7y8 times the number of fermionic degrees o
freedom. Using Eq. (3) to relater andH,

S
A

#
p

np T , (11)

up to constant factors. Since the density must be le
than unity for quantum gravitational corrections to b
safely ignored, the maximum temperature is proportion
to n

21y4
p , and the maximum value ofSyA inside a

Hubble volume is proportional ton
1y4
p . Violating SyA ,

1 significantly at a sub-Planckian energy requires a
enormous value ofnp, which constitutes a fine-tuning.

Furthermore, a perturbation the size of the Hubb
horizon does not collapse into a black hole instantaneous
Thus the bound would need to be violated during the time
took the black hole to form, andSyA decreases with time.
Thus, in the absence of tuning the holographic bound w
have proposed is satisfied at all post-Planckian times.
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(B) Closed universe.—For the case of an isotropic
closed universe with fixed equation of state, Fischler a
Susskind found [6] that even ifSyA , 1 initially on
particle horizon sized regions, it could be violated at lat
times. This violation is possible even while the univers
is still in its expansion phase.

The generalized second law, on the other hand,
expected to hold on particle horizon sized regions in
closed universe. For the sake of definiteness, suppose
violation occurs while the universe is still in its expansio
phase. One would certainly expect that a region wi
an excessive entropy density could start to collapse
the Jeans instability and form a black hole. Howeve
simple estimates indicate the time taken to form such
black hole is of the order of the lifetime of the close
universe. Thus while it is conceivable that a region wi
SyA . 1 could form a black hole in a closed universe, th
process of its formation would require a time comparab
to the overall lifetime of the universe which contains i
Consequently, a violation of the holographic bound
Fischler and Susskind remains consistent with the seco
law for cosmologically long time scales.

Moreover, to find SyA . 1 well before the closed
universe reaches its final singularity we must consid
a volume that is a substantial fraction of the overa
universe. The collapse of this region into a sing
black hole is not a small perturbation of the backgroun
Friedmann universe, and the naive use of the evoluti
equations for the unperturbed universe to discuss
entropy density of collapsing region is an assumption
dubious validity.

(C) Open universe.—The behavior of isotropic open
(with negative spatial curvature) universes is similar
that of flat universes. IfSyA , 1 initially, it remains so
at later times [6]. An argument thatSyA , 1 remains
valid at earlier times can likewise be made in a simila
way to the flat case.

Fischler and Susskind also considered the case
certain anisotropic flat universes. In these cases it w
foundSyA was constant in time.

(D) Inside a black hole.—Another time-dependent
background of interest is the region inside the eve
horizon of a black hole. If we consider a spatial volum
inside the event horizon, the generalized second law w
apply if the volume is out of thermal contact with othe
regions. However, it is straightforward to argue that th
entropy in such a volume, with size of order the horizo
size, can exceed its surface area. In fact, the phys
inside a black hole should closely resemble that of t
closed universe, at sufficiently late times.

We see no reason why an observer inside such a reg
should not be able to actually measure a violation
the holographic bound. A direct measurement is difficu
since the observer will typically hit the singularity within
a light-crossing time of the black hole horizon. Howeve
if the observer has the additional information that th
4969
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entropy density is constant, he/she can infer a violatio
of holography via local measurements.

(E) Inflating universe.—We can view an inflationary
universe as a Friedmann universe with a time-depend
equation of state. During the reheating phase at the e
of inflation there is a sharp change in the equation
state, as energy is transferred from the inflation field
radiation (or ultrarelativistic particles). This raises th
entropy of the universe in a homogeneous way. Aft
this sudden increase in the entropy density it is possible
violate Fischler and Susskind’s bound when it is applie
to regions the size of the particle horizon. Of cours
a sharp homogeneous increase in the entropy density
permitted by the generalized second law.

The process of reheating is model dependent. To si
plify the discussion assume that reheating takes pla
instantaneously. After reheating, the postinflationary un
verse resembles a universe which never inflated, the o
difference being the much larger particle horizon in a
inflationary universe. We may therefore adopt the r
sults for Friedmann universes with a constant equation
state. The postinflationary universe is accurately appro
mated by a flat, isotropic spacetime, so ifSyA , 1 when
measured over a Hubble volume at the end of inflatio
this inequality will continue to be satisfied at later times
Moreover, immediately after reheating the energy dens
is typically well below the Planck scale soSyA ø 1 in
the absence of extreme fine-tuning. This bound diffe
from that of Rama and Sarkar [8], and we obtain no sp
cific constraints on inflationary models beyond the usu
assumption that the energy density is sub-Planckian d
ing and after inflation.

III. Conclusions.—We have proposed that the holo
graphic principle be replaced by the generalized seco
4970
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law of thermodynamics [4] for general time-depende
backgrounds. In static backgrounds, this reduces to
holographic principle of Susskind and of ’t Hooft [1,2]
For cosmological backgrounds, corresponding to spatia
open universes with fixed equations of state, the seco
law implies the entropy bound of Fischler and Susskin
[6] on particle horizon sized regions. However, for close
universes, and inside black hole event horizons, a use
holographic bound does not follow from the second law
For inflationary universes, we show that in the absence
fine-tuning SyA ø 1 in any region of the postinflation-
ary universe that can undergo gravitational collapse. T
ensures that the generalized second law holds, but the
mulation of the cosmological holographic principle give
by Fischler and Susskind requires modification.
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