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Vortex states of weakly interacting Bose-Einstein condensates confined in three-dimensional rotating
harmonic traps are investigated numerically at zero temperature. The ground state in the rotating frame
is obtained by propagating the Gross-Pitaevskii equation for the condensate in imaginary time. The total
energies between states with and without a vortex are compared, yielding critical rotation frequencies
that depend on the anisotropy of the trap and the number of atoms. Vortices displaced from the center
of nonrotating traps are found to have long lifetimes for sufficiently large numbers of atoms. The
relationship between vortex stability and bound core states is explored. [S0031-9007(99)09382-5]
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The recent experimental achievement of Bose-Einst
condensation (BEC) in trapped ultracold atomic vapo
[1–5] has provided a unique opportunity to investiga
the superfluid properties of weakly interacting dilute Bo
gases. Mean-field theories, which are usually based on
Bogoliubov approximation [6,7] or its finite-temperatur
extensions [8], yield an excellent description of both th
static and dynamic properties of the confined gases [
These theories also predict that a continuum Bose c
densate with repulsive interactions should be a superflu
which can exhibit second sound, quantized vortices, a
persistent currents. While there exists some evidence
second sound in trapped condensates [10], vortices in th
systems have never been observed despite considerabl
perimental effort [11]. Numerous techniques for the ge
eration of vortices have been suggested, including stirr
the condensate with a blue detuned laser [12,13], ad
batic population transfer via a Raman transition into
angular momentum state [14,15], spontaneous vortex f
mation during evaporative cooling [16,17], and rotation
anisotropic traps [18].

Several studies of vortex stability recently have be
carried out [19–23]. The free energy of a singly qua
tized vortex attains a local maximum when the vorte
is centered in a stationary trap [18]. In the presence
dissipation, such a vortex would migrate to the edge
the trap and eventually disappear [20]. It has been s
gested [19,20] that this mechanical instability may be r
lated to a bound state in the vortex core, correspond
to a negative-energy “anomalous” dipole mode found n
merically in the vortex state at low densities [24]. It i
possible to stabilize singly quantized vortices by rotatin
the trap at an angular frequencyV. When V is larger
than the “metastability” frequencyV0, infinitesimal dis-
placements of the vortex no longer decrease the syste
free energy, and the vortex becomes locally stable; abo
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the critical frequencyVc $ V0, the vortex state becomes
the ground state of the condensate [18].

While rotation of the confining potential has been pro
posed as a method to both nucleate and stabilize vorti
in trapped Bose gases, the relevant critical angular f
quencies are not presently known. In the present wo
numerical results are obtained for Bose-condensed ato
confined in three-dimensional rotating anisotropic traps
zero temperature. The critical frequencyVc is found to
increase with the degree of anisotropy in the plane of r
tation. In order tonucleatevortices, however, the trapped
gas must be rotated either more rapidly thanVc, or at
temperatures above the BEC transition [16,17]. Whi
vortices in nonrotating traps are found to be always u
stable, for large numbers of atoms their lifetimes can
very long compared with a trap period.

The trapped Bose condensate, comprised ofN0 re-
pulsively interacting Rb atoms with massM ­ 1.44 3

10225 kg and scattering lengtha ø 100a0 ­ 5.29 nm
[25], obeys the time-dependent Gross-Pitaevskii (G
equation in the rotating reference frame [26]:

i≠tcsr, td ­ f2 1
2

$=2 1 Vt 1 VH 2 VLzgcsr, td , (1)

where the trap potential isVt ­
1
2 sx2 1 a2y2 1 b2z2d,

the Hartree term isVH ­ 4phjcj2, and the conden-
sate is rotated about thez axis at the trap center.
The effects of gravity (alonĝz) are presumed negli-
gible. The constant rotation at frequencyV induces
angular momentum per particle given by the expect
tion value ofLz ­ i

°
y≠x 2 x≠y

¢
. The trapping frequen-

cies are svx , vy , vzd ­ vxs1, a, bd, with vx ­ 2p 3

132 radys, a $ 1, andb ­
p

8 [1]. Choosing the con-
densate to be normalized to unity yields the scaling p
rameterh ­ N0aydx. Note that energy, length, and time
are given throughout in scaled harmonic oscillator un
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h̄vx, dx ­
p

h̄yMvx ø 0.94 mm, and T ­ 2pyvx ø
7.6 ms, respectively.

The ground state of the GP equation is found within
discrete-variable representation (DVR) [27] by imaginar
time propagation using an adaptive stepsize Runge-Ku
integrator. A total of between 40 000 and 130 000 DVR
points of a Gauss-Hermite quadrature are used, and
calculations are performed on a standard workstation. T
stationary ground state in the rotating frame is found b
settingt̃ ; it and solving the diffusion equation:

≠t̃csr, t̃d ­ 2sH 2 mdcsr, t̃d , (2)

whereH is the GP operator appearing on the right side o
Eq. (1), andm is the chemical potential. The condensat
wave function is assumed to be even under inversion ofz,
and is initially taken to be the vortex-free Thomas-Ferm
result, which is the time-independent solution of Eq. (2
neglecting the kinetic energy operator andLz . A vortex
is generated by imposing one quantum of circulationk,
a 2p winding of the phase around thez axis, on the
condensate wave function att̃ ­ 0. At each imaginary
time step, the chemical potentialm is readjusted in order
to preserve the norm of the wave function (i.e., the valu
of N0). The propagation continues until the right side
of Eq. (2) is equal to a toleranced # 10210 defining the
error in the dimensionless chemical potential. Stationa
solutions are verified by subsequently integrating in re
time; any deviations from self-consistency would be mad
manifest by collective motion.

The solution to the GP equation for a vortex locate
at the center of a nonrotating anisotropic trap containin
N0 ­ 105 atoms is shown in Fig. 1. In general, the
vortex core is found to become decreasingly anisotrop
as N0 increases. Furthermore, the condensate dens
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FIG. 1. The condensate density with a singly quantized vorte
at the origin (solid lines) is shown projected along thex
and y axes. The vortex-free case is shown as dashed lin
for comparison. Parameters for both cases areN0 ­ 105 and
a ­ 2, yielding j ø 0.12dx .
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preserves its overall vortex-free shape far from the orig
except for a slight overall bulge in order to preserv
the norm. The structure of the vortex indicates th
the healing lengthj is governed largely by the local
density and is only weakly dependent on trap geomet
In the Thomas-Fermi (TF) approximation, which is vali
for large N0, the healing length scales with the TF
x̂-axis radiusR ­ s15abhd1y5dx asj , sdxyRddx [18].
Indeed, the numerics clearly indicate that the mean vor
core radius (approximatelydx at low densities) shrinks
very slowly as the TF limit is approached.

A superfluid subjected to a torque will remain purel
irrotational until the critical frequencyVc is reached, at
which point it becomes globally favorable for the syste
to contain a vortex with a single quantum of circulationk.
In cylindrically symmetric systems where the Hamiltonia
commutes withLz , the circulation and angular momentum
(with quantumm) are identical; in the rotating frame, the
free energies of them fi 0 states are shifted bymV, and
Vc is simply the difference in energy between them ­ 1
and m ­ 0 states (divided byh̄). In fully anisotropic
traps, however, even thek ­ 0 state is shifted, so the
applied V in Eq. (1) must be increased until the fre
energy curves cross. It is straightforward to extend t
TF estimate ofVc [28] to include a small deviation
from cylindrical symmetry [18]; neglecting the shift of
the vortex-free chemical potential (valid fora , 1), one
obtains

Vc ø
5a

2

√
d2

x

R2

!
ln

√
R
j

!
vx . (3)

Figure 2 shows the critical frequencies for the glob
stability of a vortex withk ­ 1 at the trap center. For
all geometries, the critical frequency drops monotonica
as N0 is increased. For a given number of atoms, th
value ofVc increases with in-plane anisotropy, similar t
the behavior found for liquid helium in rotating elliptica
containers [29]. The energy of vortex formation mu
compensate for that of the irrotational velocity field
which is finite for a vortex-free condensate in a rotatin
anisotropic trap. The TF result (3) agrees well with th
numerical data in its regime of validitya , 1, though it
tends to slightly overestimate the value ofVc.

While Vc provides the criterion for the global stability
of a vortex, it does not necessarily indicate the critic
frequency for vortex nucleation. When initially vortex
free condensates are placed in anisotropic traps rotatin
a frequencyV , vx , the velocity field of the stationary
solution is found to be irrotational even forV ¿ Vc.
In a harmonic trap with smooth edges, it is not clear
there exists any suitable locus for vortex formation. Th
vortices are most likely to originate at the condensa
surfaces normal to the axis of weak confinement, whe
the local critical velocity is small [30] but the tangentia
superfluid velocity in the laboratory frame is larges
[29]. While these issues are beyond the scope of t
4957
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FIG. 2. The critical frequency for the global stabilization o
a singly quantized vortex at the origin is given as a functio
of the number of atoms in the condensateN0 and in-plane
anisotropya. Circles, squares, and triangles show numeric
results for a ­ 1, 2, 3; bold solid, short dashed, and long
dashed lines are the corresponding TF estimates, respectiv
The thin solid line represents the frequency of the anomalo
mode (shown as a positive value) in the vortex state fora ­ 1.

present issue of vortex stability, there is evidence th
multiple vortices appear at higher frequencies [31]. F
smallerN0, it would likely be easier to generate a vorte
experimentally by rotating the anisotropic trap before th
condensate is cooled below the BEC transition [16,17].

Whena . 1, the angular momentum per particlelk is
a nontrivial function ofN0, a, andV. In a nonrotating
system with unit vorticity,lk increases withN0. In the
absence of a vortex,lk is finite for a given V, and
increases witha; the superfluid velocityvs can be locally
appreciable but still remain irrotational= 3 vs ­ 0. At
the critical frequency, the difference betweenl1 and l0
is always less than unity; for the most extreme ca
considered here, a system withN0 ­ 106 and a ­ 3
rotating atVc ­ 0.14vx , one obtainsl1 ­ 2.63h̄ andl0 ­
1.77h̄. Asa ! `, the angular momentum approaches th
of a nonsuperfluid TF cloudl0 ø IsbV with “solid-body”
moment of inertiaIsb ­

1
7 MR2.

An anisotropic harmonic oscillator potential become
unconfining when it is rotated at a frequency betwee
the smallest and largest trapping frequencies. SinceVc

exceedsvx for sufficiently largea, there exists a critical
minimum number of condensed atomsNc able to support
a vortex. The value ofNc increases witha and is
given by the intercept of theVyvx ­ 1 line in Fig. 2.
In cylindrically symmetric systemsNc ­ 1, since in the
rotating frame the free energies for all them states
become degenerate atV ­ vx . In the limit of extreme
anisotropya ! ` vortices can never be stabilized.

It should be noted that states with vortices at the cen
of anisotropic harmonic traps are found to be stationa
4958
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solutions of Eq. (2) for all values ofN0 and V $ 0
considered; such configurations do not appear to de
in either real or imaginary time. A vortex at the cente
of a nonrotating cylindrical trap increases the system
free energy, but is stationary because both the vortic
and angular momentum commute with the Hamiltonia
in principle, the angular momentum can be eliminate
and the free energy reduced, only if this symmetry
broken by displacing the vortex from the center. Sin
angular momentum is not conserved in anisotropic tra
the apparent vortex stability is likely due to the fre
energy maximum at the trap center [18]. In the absen
of an external pinning mechanism, any such configurati
should be unstable against infinitesimal displacements.

In order to further explore the issue of vortex stabilit
in nonrotating traps, the initial condensate phase is wou
by 2p a small distancex0 ø 0.2dx from the origin of a
trap with a ­ 1. For all values ofN0 # 106, the con-
densate wave function rapidly (bỹt , T ) converges to
a metastable solution with a vortex, where the fluctu
tions in m become smaller thand ø 1027 per time step
Dt̃ , 1023T . This wave function subsequently decay
to the true ground state, but both the real and imagina
time required to do so is found to increase withN0 [32].
To an excellent approximation, the total time diverges
t̃ ~ N

2y5
0 T ; for N0 * 105, the time required,30T be-

comes computationally inaccessible and the vortex st
becomes numerically indistinguishable from stationar
The numerics suggest that while vortices in nonrotati
traps are always unstable against off-center displaceme
they may be very long-lived.

The observedx0 . 0 instability of the vortex state is
likely due to the existence of an anomalous collecti
modeva at low densities [18,20,24]. This dipole mode
which has positive norm but negative energy (or vic
versa), is associated with a zero angular momentum bo
state in the vortex core [20]; its value corresponds
the precession frequency of the vortex relative to t
cloud [18]. Previous numerical calculations [24] foun
jvaj . 0 for all N0 # 104. As the core radius shrinks
with largerN0, however, the anomalous energy might b
pushed to zero, yielding long-lived or even stable vortic
in the TF limit.

The low-lying excitation frequencies of a nonrotatin
condensate in the vortex state are calculated using the
goliubov equations [6,7]. For completely anisotropic g
ometries, however, the Bogoliubov operator is too lar
to diagonalize explicitly. Calculations are therefore r
stricted to the cylindrical casea ­ 1, where the vortex
condensate isc ; c1sr, zdeif and the quasiparticle am-
plitudesu and y are labeled bym, the projection of the
angular momentum operatorLz . The Bogoliubov equa-
tions are then√

Ô 2VH
VH 2Ô0

! √
um

y22m

!
­ em

√
um

y22m

!
, (4)
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where Ô ; 2
1

2r

≠

≠r r
≠

≠r 2
1
2

≠2

≠z2 1
m2

2r2 1 Vt 1 2VH,

Ô0 ; Ô 1
2s12md

r2 , andu1 ­ y1 ­ c1 whene1 ­ 0. In
the r̂ direction, the points of the DVR grid correspond to
those of Gauss-Laguerre quadrature, and the kinetic
ergy matrix elements are obtained using the prescripti
of Baye and Heenen [33].

The anomalous modeva, which is labeled bym ­ 2,
is shown as a function ofN0 in Fig. 2. The results in-
dicate that0 , jvaj # Vc for all N0 # 106 considered.
Our calculations suggest that for large numbers of atom
va coincides with the metastability rotation frequencyV0
discussed above; the numerical value ofva is consistent
with the TF resultV0 ­

3
5 Vc [18]. Indeed, in the frame

of a condensate rotating atV ­ va, the frequency of the
vortex oscillation would be Doppler shifted to zero. Al
ternatively, it can be shown in both the weakly interac
ing and TF limits thatV0 is also the frequency at which
the chemical potentialsm for the vortex and vortex-free
states become equal; in the TF limit,va vanishes when
the vacua (or energy zero) for quasiparticle excitations f
both states coincide.

Since the anomalous mode corresponds to the prec
sion of the vortex about the trap origin, one may make
crude estimate of the vortex lifetimet. In the presence of
dissipation, the vortex will spiral out of the condensate a
ter a few orbit periodsv21

a . Assuming thatva ­
5
3 Vc,

then with Eq. (3) one obtainst , N
2y5
0 T in the TF limit

neglecting logarithmic factors. This result is consiste
with the time required to yield the vortex-free ground sta
in the fully three-dimensional numerical calculations dis
cussed above. Similar decay times have been obtain
for solitons and vortices in the presence of a small no
condensate component [34].

In summary, we have obtained numerically the critica
frequenciesVc for the stabilization of a vortex at the cente
of a rotating anisotropically trapped Bose condensa
Since Vc increases with the in-plane anisotropya ­
vyyvx and the condensate becomes unconfined forV .

vx , there is a minimum number of atoms able to support
vortex state. Vortices in nonrotating traps are found to b
unstable against small off-center displacements, but th
decay time diverges with the total number of atoms.
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