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Vortex states of weakly interacting Bose-Einstein condensates confined in three-dimensional rotating
harmonic traps are investigated numerically at zero temperature. The ground state in the rotating frame
is obtained by propagating the Gross-Pitaevskii equation for the condensate in imaginary time. The total
energies between states with and without a vortex are compared, yielding critical rotation frequencies
that depend on the anisotropy of the trap and the number of atoms. Vortices displaced from the center
of nonrotating traps are found to have long lifetimes for sufficiently large numbers of atoms. The
relationship between vortex stability and bound core states is explored. [S0031-9007(99)09382-5]

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj

The recent experimental achievement of Bose-Einsteithe critical frequency). = (), the vortex state becomes
condensation (BEC) in trapped ultracold atomic vaporghe ground state of the condensate [18].
[1-5] has provided a unique opportunity to investigate While rotation of the confining potential has been pro-
the superfluid properties of weakly interacting dilute Boseposed as a method to both nucleate and stabilize vortices
gases. Mean-field theories, which are usually based on thie trapped Bose gases, the relevant critical angular fre-
Bogoliubov approximation [6,7] or its finite-temperature quencies are not presently known. In the present work,
extensions [8], yield an excellent description of both thenumerical results are obtained for Bose-condensed atoms
static and dynamic properties of the confined gases [9fonfined in three-dimensional rotating anisotropic traps at
These theories also predict that a continuum Bose coreero temperature. The critical frequengy. is found to
densate with repulsive interactions should be a superfluidncrease with the degree of anisotropy in the plane of ro-
which can exhibit second sound, quantized vortices, anthtion. In order tanucleatevortices, however, the trapped
persistent currents. While there exists some evidence fazas must be rotated either more rapidly th@p, or at
second sound in trapped condensates [10], vortices in thesemperatures above the BEC transition [16,17]. While
systems have never been observed despite considerable grftices in nonrotating traps are found to be always un-
perimental effort [11]. Numerous techniques for the genstable, for large numbers of atoms their lifetimes can be
eration of vortices have been suggested, including stirringery long compared with a trap period.
the condensate with a blue detuned laser [12,13], adia- The trapped Bose condensate, comprisedNgfre-
batic population transfer via a Raman transition into arpulsively interacting Rb atoms with madg = 1.44 X
angular momentum state [14,15], spontaneous vortex fort0~? kg and scattering lengtt = 100ay = 5.29 nm
mation during evaporative cooling [16,17], and rotation of[25], obeys the time-dependent Gross-Pitaevskii (GP)
anisotropic traps [18]. equation in the rotating reference frame [26]:

Several studies of vortex stability recently have been L=
carried out [19-23]. The free energy of a singly quan-id-¢(r,7) =[5 V> + V, + Vg — QL. Jy(r,7), (1)
tized vortex attains a local maximum when the vortex .
is centered in a stationary trap [18]. In the presence ofvhere the trap potential % = 5 (x? + a%y? + B2z?),
dissipation, such a vortex would migrate to the edge othe Hartree term isVy = 47 nly|?, and the conden-
the trap and eventually disappear [20]. It has been sugsate is rotated about the axis at the trap center.
gested [19,20] that this mechanical instability may be re-The effects of gravity (alongt) are presumed negli-
lated to a bound state in the vortex core, correspondingible. The constant rotation at frequendy induces
to a negative-energy “anomalous” dipole mode found nuangular momentum per particle given by the expecta-
merically in the vortex state at low densities [24]. It is tion value ofL, = i(yd, — xd,). The trapping frequen-
possible to stabilize singly quantized vortices by rotatingcies are(w,, @y, w.) = w.(1, a, B), with @, = 27 X
the trap at an angular frequen€y. WhenQ is larger 132 rad/s,a = 1, and8 = /8 [1]. Choosing the con-
than the “metastability” frequenc§ly, infinitesimal dis- densate to be normalized to unity yields the scaling pa-
placements of the vortex no longer decrease the systemfametern = Nya/d,. Note that energy, length, and time
free energy, and the vortex becomes locally stable; abovare given throughout in scaled harmonic oscillator units
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hwy, d, =\JEi/Mw, =094 um, and T = 27/w, = preserves its overall vortex-free shape far from the origin
7.6 ms, respectively. except for a slight overall bulge in order to preserve

The ground state of the GP equation is found within athe norm. The structure of the vortex indicates that
discrete-variable representation (DVR) [27] by imaginarythe healing lengthé is governed largely by the local
time propagation using an adaptive stepsize Runge-Kuttdensity and is only weakly dependent on trap geometry.
integrator. A total of between 40000 and 130000 DVRIn the Thomas-Fermi (TF) approximation, which is valid
points of a Gauss-Hermite quadrature are used, and dibr large Ny, the healing length scales with the TF
calculations are performed on a standard workstation. The-axis radiusk = (15a87)'/5d, asé ~ (d,/R)d, [18].
stationary ground state in the rotating frame is found byindeed, the numerics clearly indicate that the mean vortex
setting7 = ir and solving the diffusion equation: core radius (approximately, at low densities) shrinks

3 = (g _ = very slowly as the TF limit is approached.

_ 0ry(r, 7) H ’M)lé(r’ 7, _ (2.) A superfluid subjected to a torque will remain purely
whereH is the GP operator appearing on the right side ofirotational until the critical frequency). is reached, at
Eqg. (1), andu is the chemical potential. The condensate,ynich point it becomes globally favorable for the system
wave function is assumed to be even under inversian of g contain a vortex with a single quantum of circulation
and is initially taken to be the vortex-free Thomas-Fermii, cyjindrically symmetric systems where the Hamiltonian
result, which is the time-independent solution of Eq. (2).,commutes witti.., the circulation and angular momentum
neglecting the kinetic energy operator abd A vortex  (with quantumm) are identical; in the rotating frame, the
is generated by imposing one quantum of circulation  free energies of the: # 0 states are shifted by Q, and
a 2m winding of the phase around the axis, on the () js simply the difference in energy between the= 1
condensate wave function &t= 0. At each imaginary gndm,; = 0 states (divided byA). In fully anisotropic
time step, the chemical potential is readjusted in order traps, however, even the = 0 state is shifted, so the
to preserve the norm o_f the wave functiqn (i.e.,.the V"?‘lueapplied Q in Eq. (1) must be increased until the free
of No). The propagation continues until the right sideenergy curves cross. It is straightforward to extend the
of Eq. (2) is equal to a tolerana® = 10~ '° defining the TF estimate of(),. [28] to include a small deviation
error in the dimensionless chemical potential. Stationary.om cylindrical symmetry [18]; neglecting the shift of

solutions are verified by subsequently integrating in realhe vortex-free chemical potential (valid far ~ 1), one

time; any deviations from self-consistency would be made,pi5ins
manifest by collective motion. 5
The solution to the GP equation for a vortex located O, ~ Sa (dx)ln<R>wx. 3)

at the center of a nonrotating anisotropic trap containing ‘ 2 \R? 3

No = 10° atoms is shown in Fig. 1. In general, the Figyre 2 shows the critical frequencies for the global
vortex core is found to become decreasingly anlsotrop!%tab”ity of a vortex withx = 1 at the trap center. For
as Ny increases. Furthermore, the condensate density geometries, the critical frequency drops monotonically
as Ny is increased. For a given number of atoms, the
1.0 I S value of(). increases with in-plane anisotropy, similar to
ormes the behavior found for liquid helium in rotating elliptical
AR « containers [29]. The energy of vortex formation must
0.8 r / 1 compensate for that of the irrotational velocity field,
which is finite for a vortex-free condensate in a rotating
anisotropic trap. The TF result (3) agrees well with the
numerical data in its regime of validitg ~ 1, though it
tends to slightly overestimate the value(@f.

While Q. provides the criterion for the global stability
of a vortex, it does not necessarily indicate the critical
/ frequency for vortex nucleation. When initially vortex-
0.2t y 1 free condensates are placed in anisotropic traps rotating at
a frequency) < w,, the velocity field of the stationary
0.0 ) A solution is found to be irrotational even fa > (..

“10 8 6 -4 2 0 2 4 6 8 10 In a harmonic trap with smooth edges, it is not clear if
r/d there exists any suitable locus for vortex formation. The

o ) _ vortices are most likely to originate at the condensate
FIG. 1. The condensate density with a singly quantized vortex,ifaces normal to the axis of weak confinement, where
at the origin (solid lines) is shown projected along the '

and y axes. The vortex-free case is shown as dashed Iineg]e Ioca! critical yelqcity is small [30] but the t_angential
for comparison. Parameters for both casesMje= 10° and  Superfluid velocity in the laboratory frame is largest
a = 2, yielding ¢ = 0.124,. [29]. While these issues are beyond the scope of the
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1.0 - , , solutions of Eq. (2) for all values oty and Q =0
' considered; such configurations do not appear to decay
in either real or imaginary time. A vortex at the center
of a nonrotating cylindrical trap increases the system’s
free energy, but is stationary because both the vorticity
and angular momentum commute with the Hamiltonian;
in principle, the angular momentum can be eliminated,
and the free energy reduced, only if this symmetry is
broken by displacing the vortex from the center. Since
angular momentum is not conserved in anisotropic traps,
the apparent vortex stability is likely due to the free
energy maximum at the trap center [18]. In the absence
of an external pinning mechanism, any such configuration
‘ ‘ ‘ should be unstable against infinitesimal displacements.
2 3 4 5 6 In order to further explore the issue of vortex stability
log(N,) in nonrotating traps, the initial condensate phase is wound
. o by 27 a small distance, = 0.2d, from the origin of a
FIG. 2. The critical frequency for the global stabilization of trap with @ = 1. For all values ofN, =< 10°, the con-

a singly quantized vortex at the origin is given as a function : :

of thg ynlj]mber of atoms in the cogdensa?fe and in-plane densate wave func'tlon rfipldly (by ~ T) converges to
anisotropya. Circles, squares, and triangles show numerica® Metastable solution with a vortex, where the fluctua-
results for @ = 1,2,3; bold solid, short dashed, and long tions in u become smaller thad =~ 10”7 per time step
dashed lines are the corresponding TF estimates, respectivelx# ~ 10737. This wave function subsequently decays
The thin solid line represents the frequency of the anomalougy the trye ground state, but both the real and imaginary
mode (shown as a positive value) in the vortex statenfoe 1. time required to do so is found to increase with [32].

To an excellent approximation, the total time diverges as
present issue of vortex stability, there is evidence thak . Ng/ST; for No = 10°, the time required~30T be-
multiple vortices appear at higher frequencies [31]. Forzomes computationally inaccessible and the vortex state
smallerNy, it would likely be easier to generate a vortex hecomes numerically indistinguishable from stationary.
experimentally by rotating the anisotropic trap before therhe numerics suggest that while vortices in nonrotating
condensate is cooled below the BEC transition [16,17]. raps are always unstable against off-center displacements,

Wher_n_u > 1, the angular momentum per partldLe_ls they may be very long-lived.

a nontrivial function ofNg, «, andQ). In a nonrotating  The observedy, > 0 instability of the vortex state is
system with unit vorticity,/, increases withVo. In the jikely due to the existence of an anomalous collective
absence of a vortexi, is finite for a given(), and  mpdew, at low densities [18,20,24]. This dipole mode,
increases withy; th_e super_flu_|d veIc_)Clty's can be locally  \yhich has positive norm but negative energy (or vice
appreciable but still remain irrotation& X v, = 0. At yersa), is associated with a zero angular momentum bound
the critical frequency, the difference betwegnandly  state in the vortex core [20]; its value corresponds to
is always less than unity; for the most extreme casgne precession frequency of the vortex relative to the
considered here, a system wifhy = 10° and @ =3 ¢loud [18]. Previous numerical calculations [24] found
rotating a(). = 0.14w,, oneobtaing; = 2.63fandlp = |, | > 0 for all N, = 10*. As the core radius shrinks
L77h. Asa — =, the angular momentum approaches thaiyiih |arger N,, however, the anomalous energy might be
of a nonsuperfluid TF clloutb ~ I» Q2 with “solid-body”  pyshed to zero, yielding long-lived or even stable vortices
moment of inertias, = 5 MR?. in the TF limit.

An anisotropic harmonic oscillator potential becomes The low-lying excitation frequencies of a nonrotating
unconfining when it is rotated at a frequency betweertondensate in the vortex state are calculated using the Bo-
the smallest and largest trapping frequencies. Slidge goliubov equations [6,7]. For completely anisotropic ge-
exceedsw, for sufficiently largea, there exists a critical ometries, however, the Bogoliubov operator is too large
minimum number of condensed atos able to support to diagonalize explicitly. Calculations are therefore re-
a vortex. The value ofV. increases witha and is stricted to the cylindrical case = 1, where the vortex
given by the intercept of th€)/w, = 1 line in Fig. 2. condensate igr = ,(p,z)e’® and the quasiparticle am-

In cylindrically symmetric system#/, = 1, since in the plitudesu and v are labeled byn, the projection of the

rotating frame the free energies for_a!l the states angular momentum operatdr,. The Bogoliubov equa-
become degenerate & = w,. In the limit of extreme tjons are then

anisotropya — oo vortices can never be stabilized. .
It should be noted that states with vortices at the center O —Vy Upm | _ U 4
. . . . _O/ B = €y _ 3 ( )
of anisotropic harmonic traps are found to be stationary Vu Va—m U2—m
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