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Transverse Depinning and Melting of a Moving Vortex Lattice
in Driven Periodic Josephson Junction Arrays

Verónica I. Marconi and Daniel Domı´nguez
Centro Atómico Bariloche, 8400 S. C. de Bariloche, Rio Negro, Argentina

(Received 24 November 1998)

We study the effect of thermal fluctuations in a vortex lattice driven in the periodic pinning
a Josephson junction array. The phase diagram current (I) vs temperature (T) is studied. Above
the critical currentIcsTd we find a moving vortex lattice (MVL) with anisotropic Bragg peaks. Fo
large currentsI ¿ IcsT d, there is a melting transition of the MVL atTMsId. When applying a small
transverse current to the MVL, there is negligible dissipation at lowT . We find an onset of transverse
vortex motion at a transverse depinning temperatureTtrsId , TMsId. [S0031-9007(99)09324-2]
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The interplay between the periodicity of vortex lattice
(VL) and periodic pinning potentials in superconducto
raises many interesting questions both in equilibriu
[1–6] and in driven systems [7]. Experimentally, periodi
pinning has been realized in artificially fabricated sy
tems like superconducting wire networks [1], Josephs
junction arrays [2], thickness modulated superconducti
films [3], magnetic dot arrays [4], and submicron hol
lattices [5] in superconductors. Commensurability effec
in the ground state vortex configurations lead to enhanc
critical currents and resistance minima for “fractiona
and for “matching” (i.e., commensurate) vortex densitie
where the VL is strongly pinned. Under the effect of the
mal fluctuations, it is possible to have a depinning pha
transition of these commensurate ground states at a te
peratureTp and a later melting transition of the VL at a
temperatureTM [6]. For high vortex densities (i.e.,
strongly interacting VL) both transitions coincide
Tp  TM , while for low vortex densities both transitions
are different withTp , TM . Out of equilibrium, many
recent studies have concentrated in the related problem
the driven VL in the presence of random pinning [8–13
The nature of the fast moving vortex structure for larg
driving forces has been under active discussion late
[8–10] motivating both experimental [11] and numerica
[12–14] studies. In particular, the interesting concept
transversecritical current has been introduced in Ref. [9
After applying a current in the direction perpendicular t
the drive, a finite transverse critical currentIc,tr may exist,
at least atT  0 [9]. For T . 0, there is a very small but
finite transverse linear response [10], with a possible sh
nonlinear voltage increase at an “effective”Ic,tr [9,10].
For periodic pinning, the physics of the driven VL ha
been studied numerically only atT  0, where a complex
variety of dynamic phases has been reported [7]. In th
case, it is clear that a finiteIc,tr will exist due to com-
mensurability effects [10], and it has been obtained in [
for T  0.

In this Letter we study the effect ofthermal fluctuations
in a driven VL in a periodic pinning potential. In
0031-9007y99y82(24)y4922(4)$15.00
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our case, the periodic pinning is provided by a tw
dimensional Josephson junction array (JJA) [2,15,16
We obtain a phase diagram as a function of the drivin
current (I) and temperature (T ), which is shown in
Fig. 1. For low currents, we find that the depinning
and melting transitions are separated withTpsId , TMsId.
More interestingly, for large currents we find an analogou
sequence of transitions but for the transverse response o
fastly moving VL. We find that there is a noveltransverse
depinningtemperatureTtr below the melting transition of
the moving VL,Ttr sId , TMsId.

The current flowing in the junction between two super
conducting islands in a JJA is modeled as the sum of t
Josephson supercurrent and the normal current [15,16],

Imsnd  I0 sinumsnd 1
F0

2pcRN

≠umsnd
≠t

1 hmsn, td ,

(1)

where I0 is the critical current of the junction be-
tween the sitesn and n 1 m in a square lattice
[n  snx , nyd, m  x̂, ŷ], RN is the normal state

FIG. 1. I-T Phase diagram forf  1y25. TMsId line is
obtained fromYx vs T curvesshd and fromSsGd vs T curves
sdd. TpsId line is obtained fromI-V curves spd, from SsGd
vs T curves sdd, and from kVyl vs T curves snd. Ttr sId
curve is obtained fromkVtr l vs T curves ssd. Temperature
is normalized byI0F0y2pkB.
© 1999 The American Physical Society
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resistance, andumsnd  usn 1 md 2 usnd 2 Amsnd 
Dmusnd 2 Amsnd is the gauge invariant phase differ
ence withAmsnd 

2p

F0

Rsn1mda
na A dl. The thermal noise

fluctuationshm have correlationskhmsn, tdhm0sn0, t0dl 
2kT
RN

dm,m0dn,n0dst 2 t0d. In the presence of an ex-
ternal magnetic field H we have Dm 3 Amsnd 
Axsnd 2 Axsn 1 yd 1 Aysn 1 xd 2 Aysnd  2pf,
f  Ha2yF0, anda is the array lattice spacing. We take
periodic boundary conditions (p.b.c.) in both directions
the presence of an external currentIext in the y direction
in arrays withL 3 L junctions [14]. The vector potential
is taken as Amsn, td  A0

msnd 2 amstd where in the
Landau gaugeA0

xsnd  22pfny, A0
ysnd  0, and amstd

allows for total voltage fluctuations. With this gauge th
p.b.c. for the phases areusnx 1 L, nyd  usnx , nyd
and usnx , ny 1 Ld  usnx , nyd 2 2pfLnx. The
condition of a current flowing in they directionP

n Imsnd  IextL2dm,y determines the dynamics of
amstd [14]. After considering conservation of current
Dm ? Imsnd 

P
m Imsnd 2 Imsn 2 md  0, we obtain

D2
m

≠usnd
≠t

 2Dm ? fSmsnd 1 hmsn, tdg , (2)

≠am

≠t
 Iextdm,y 2

1
L2

X
n

fSmsnd 1 hmsn, tdg , (3)

where Smsnd  sinfDmusnd 2 A0
msnd 2 amg, we have

normalized currents byI0, time by tJ  2pcRN I0yF0,
temperature byI0F0y2pkB, and the discrete Laplac-
ian is D2

musnd  usn 1 x̂d 1 usn 2 x̂d 1 usn 1 ŷd 1

usn 2 ŷd 2 4usnd.
The Langevin dynamical equations (2) and (3) a

solved with a second order Runge-Kutta-Helfand
Greenside algorithm with time stepDt  0.1tJ and
integration time10 000tJ after a transient of5000tJ .
The discrete Laplacian is inverted with a fast Fourie
1 tridiagonalization algorithm as in [16]. We study
the following properties: (i) Superconducting cohe
ence: we calculate the helicity modulus in the directio
transverse to the currentYx 

1
L2 k

P
n cosuxsndl 2

1
T

1
L4 hkf

P
n sinuxsndg2l 2 kf

P
n sinuxsndgl2j. [In order to

calculate the helicity modulus alongx, we enforce strict
periodicity in u by fixing axstd  0]. (ii) Transport:
we calculate the time average of the total voltag
V  kyystdl  kdaystdydtl (voltages are normalized
by RN I0). (iii) Vortex structure: we obtain the vor-
ticity at the plaquetteñ (associated with the siten)
as bsñd  2Dm 3 nintfumsndy2pg with nintfxg the
nearest integer ofx. We calculate the average vorte
structure factor asSskd  kj 1

L2

P
ñ bsñd expsik ? ñdj2l.

We study JJA with a magnetic field corresponding
f  1y25 and system sizes ofL 3 L junctions, withL 
50, 100. The ground state vortex configuration forf 
1y25 is a tilted squarelike vortex lattice commensura
with the underlying periodic pinning potential of the
-
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square JJA (see [17]). The structure factorSskd has
correspondingly deltalike Bragg peaks. For this valu
of f we find an equilibrium phase transition atTc ø
0.050 6 0.003, which corresponds to a simultaneou
VL depinning (corresponding to the onset of resistivit
and vanishing of helicity modulus) and VL melting
(corresponding to the vanishing of Bragg peaks); i.e
Tc  Tp  TM .

First, we have calculated the current-voltage (I-V )
characteristics for different temperatures. AtT  0 there
is a critical current ofIcs0d  0.114 6 0.002, which
corresponds to the single vortex depinning current
square JJA [18]. AboveIcs0d there is an almost linear
increase of voltage untilI ø 1 where there is a sharp rise
of V because all the junctions become normal. Simil
behavior has been reported forT  0 I-V curves for low
values off [19]. We restrict our analysis for currents
I , 0.4, where the collective behavior of the VL is the
dominant physics. For temperaturesT , Tc we see that
there is a sharp rise in voltage for the apparent critic
current IcsT d, which decreases withT , vanishing atTc.
In Fig. 1 we plot theIcsT d line obtained with a voltage
criterion of V , 1024. For currents belowIcsT d there
is a pinned vortex lattice (PVL) which is the same a
the T  0 ground state, with deltalike Bragg peaks. O
the other hand, for currentsI . IcsT d there is amoving
vortex lattice(MVL), which hasanisotropicBragg peaks
in the structure factorSskd as shown in Fig. 2(a). There
are two features in the anisotropy ofSskd: (i) The height
of the peaks decreases in the direction of vortex moti

FIG. 2. (a) Intensity plot of the structure factorSsGd for
a moving vortex lattice atI  0.06, T  0.02. (b) Finite
size analysis and power law fit ofSsGd , L2hG ; we obtain
hG1  0.25 6 0.06 (p) andhG2  0.14 6 0.05 (n).
4923
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(i.e., perpendicular to the current drive). (ii) Thewidth
of the peaks increases in the direction perpendicular
vortex motion. This means that thermal broadening is le
effective in the direction of motion. We have also studie
the behavior of the Bragg peaks of the PVL and the MV
for three different lattice sizes (L  50, 100, 150) and
different values ofI andT . In the PVL the peak height is
independent of the system size, as expected for a pin
lattice. On the other hand, for the MVL, the peak heig
decreases with system size, with a power law behav
SsGd , L2hGsI ,Td and 0 , hGsI, T d , 2. In Fig. 2(b)
we show a finite size analysis for two Bragg peaksSsG1d
andSsG2d at a particular point insI , T d with a power law
fit. This is the expected behavior for a floating solid i
two dimensions [6]. In general we see thathG increases
with T for a given current. WhenhGsI , T d . 2 the MVL
melts into a liquid. The anisotropic structure of the MVL
of Fig. 2(a) is similar to the behavior predicted for
moving Bragg glass [9]. However, in our case there is n
random pinning, but periodic pinning. The only source o
dynamic randomness is thermal fluctuations.

We now study in more detail the different transitions b
fixing a given value of the currentI and slowly changing
temperatureT with small increases ofDT  0.0005. In
this way we obtain the phase diagram shown in Fig.
We have also cross-checked these results with theI-V
curves at fixedT . There are two cases of interest: (i) low
currentsI , Ics0d and (ii) large currentsI . Ics0d.

(i) Low currents.—In Fig. 3 we show the behavior
for I  0.03 , Ics0d. At low temperatures the voltage
is almost zero since the VL is pinned. When increasin
T there is a sharp rise of the voltage (of 2 orders
magnitude) at a depinning temperatureTpsId, as shown
in Fig. 3(a). At this temperature the VL starts to mov
since the driving current is higher than the critical curren
Therefore, this corresponds to a transition from a pinn
VL to a moving VL. We find that theIcsT d line obtained
from theI-V curves at fixedT coincides with theTpsId line
obtained from theV -T curves. We have also calculate
at the same time the structure factorSsk, T d and the
transverse helicity modulusYxsT d. In Fig. 3(b) we show
the behavior of two Bragg peaksSsG1d and SsG2d. For
T , TpsId we see thatSsG1d  SsG2d since there is a
pinned VL with isotropic structure factor. AboveTpsId
we find thatSsG1d fi SsG2d. This shows the fact that
there is a MVL with anisotropic Bragg peaks. Thes
peaks vanish at a higher temperatureTMsId in a continuous
and smooth transition, corresponding to a melting of t
MVL. Above TMsId all Bragg peaks vanish and there
is a vortex liquid forT . TM . In the inset of Fig. 3(b)
we showSsG1d for two different sizesL  50, 100 [we
find similar finite size effects forSsG2d]. We see that
for T , TpsId theSsG1d is size independent since the VL
is pinned, while forTpsId , T , TMsId there is a power
law size dependence as expected for a floating solid;
Fig. 2(b). The temperatureTMsId whereSsG1d vanishes
is size independent. On the other hand, theYxsT d has
4924
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FIG. 3. ForI , Ics0d, I  0.03: (a) DissipationkVylyI vs T .
(b) Structure factor at two lattice vectors,SsG1d spd andSsG2d
sed vs T . Inset: Size effect inSsGd. (c) Helicity modulus
Yx vs T .

a significant drop atTpsId; however, it remains finite but
with large fluctuations in the MVL phase,Tp , T , TM .
This suggests that in the MVL there is superconducti
coherence in the direction transverse to the current.

(ii) Large currents.—When the VL is driven with
a large currentI . Ics0d there is a moving VL with
anisotropic Bragg peaks even atT  0. In Fig. 4 we
show our results forI  0.16 . Ics0d. The structure
factor is always anisotropic as can be seen in Fig. 4
where SsG1d fi SsG2d. We find that the Bragg peaks
vanish at a temperatureTMsId, which is size independent
as shown in the inset of Fig. 4(b) forSsG1d [similar
behavior is found forSsG2d]. We have investigated the
possibility of a transverse critical currentIc,tr [9,10]. At
T  0 a finite Ic,tr is expected due to commensurabilit
effects [7,10]. We have applied a transverse currentItr 
Ix in the x direction (in addition to the applied bias,I 
Iy  0.16), and we have calculated the transverse volta
responseVtr . We find that for finite low temperaturesVtr
is negligibly small within our numerical accuracy, unt
there is a sharp increase at an effective transverse crit
current Ic,trsT d. We find thatIc,trsT d tends to vanish at
a temperatureTtr . An interesting way of studying this
phenomenon is to apply a small currentItr and varyT . In
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FIG. 4. For I . Ics0d, I  0.16: (a) Transverse dissipation
kVtrlyItr vs T . (b) SsG1d spd andSsG2d sed vs T . Inset: Size
effect in SsGd. (c) Yx vs T .

Fig. 4(a) we study the onset of thetransverse depinning
transition: we apply a small currentItr  0.01, and we
show the transverse resistive responseVtryItr vs T . We
see thatVtr is vanishingly small at lowT and it rises
at Ttr . This transition temperature is clearlybelow TM

as we can see in Fig. 4. We have obtainedTtr sId for
two driving currentsI . Ics0d as we show in Fig. 1.
It seems reasonable that this transverse depinning l
will exist all along this region of the phase diagram
For the intermediate temperaturesTtr , T , TM we find
that there is always an ordered vortex array but t
orientation and structure of the MVL depends on th
initial conditions. Moreover, finite size analysis show
that for T , Ttr the MVL structure factor is weakly
size dependent withhGsT d , 0.05, while after Ttr , the
exponenthG has a steep increase to valueshGsT d , 0.5.
The helicity modulus is shown in Fig. 4(c). We se
that forT , Ttr the MVL has transverse superconductin
coherence with a well-definedYx . On the other hand,Yx

shows strong fluctuations in the regionTtr , T , TM .
In conclusion, we have studied the current-temperatu

phase diagram of a vortex lattice driven in a period
Josephson junction array. We find that for low curren
the “longitudinal” depinning transition of the VL and
ine
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the later melting of the moving VL are different with
TMsId . TpsId. For large currents we find a very analo
gous behavior for the “transverse” response of a fa
moving VL (compare Fig. 3 with Fig. 4). In this case
it is possible to define a transverse depinning transiti
at a temperatureTtr , and a later melting transition of the
moving VL atTMsId. This transverse depinning transition
could easily be studied in controlled experiments
Josephson junction arrays with transport measurement
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