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Observation of Two Narrow States Decaying intaE}y and E%y
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We report the first observation of two narrow charmed strange baryons decayiig foand
E%, respectively, using data from the CLEO Il detector at the Cornell Electron Storage Ring.
We interpret the observed signals as B¢’ (c{su}) and EY (c{sd}), the symmetric partners of the
well-established antisymmetrig (c[su]) and B (c[sd]). The mass differencest (E}') — M(E}
andM(EY) — M(EY) have been measured to b87.8 = 1.7 = 2.5 and 107.0 = 1.4 £ 2.5 MeV/c?,
respectively. [S0031-9007(98)08253-2]

PACS numbers: 14.20.Lq, 13.40.Dk, 13.40.Hq

CLEO [1,2] and other experimental groups [3—6] haveited tox, < 0.4, while (60—70)% of those produced from
previously reported the observation of thié = (%)+ the continuum have, > 0.4. To reduce random com-
ground states€£? (c[sd]) and E (c[su]) baryons, where binatorial background, we apply a mode-dependent cut of
[su] and [sd] denote the antisymmetric nature of their x, > 0.5-0.6, thus excluding charm baryons produced in
wave functions with respect to interchange of the lightB decays.
quarks. The partners of the above charmed strange We begin by reconstructing — pm~, E® — A=®,
baryons are th&€? (c{sd}) and E’ (c{su}), where{sd} =~ E~ — Awx~, and Q~ — AK~. We select hyperons
and {su} specify that the wave functions are symmetricby requiring the distance between the reconstructed sec-
with respect to interchange of the light quarks. In thisondary decay vertex and the beam interaction point as
Letter we present the first observation of fBg states [7]. measured in the plane perpendicular to the beam line, to
The JP = %+ spin-excited state&*° and E**, recently be at least 2 mm forA and E~, and 3 mm for=°, re-

—c

observed by CLEO [8,9], have spin-1 light diquarks like Spectively. No such cut is applied fér ™.
the E/, in contrast to spin-0 light diquarks in thg. Candidates forA — p7~ decays are reconstructed
states. The mass splitting(£.) — M(E.) [10-17] is from pairs of oppositely charged tracks, assuming the
expected to be in the range v60-114 MeV/c2. With ~ higher momentum one to be a proton and requiring
such a mass difference, the transiti®@ — Z.7 is it to be consistent with the proton hypothesis. The
kinematically forbidden, allowing only the decdy’. — invariant mass of the combination is calculated using a
E.v. The above theoretical models also predict the mastiree-dimensional vertex-constrained fit at the point of
differenceM (Z*) — M(Z!) to be about0-70 MeV/c2. intersection. All par~— combinations withins MeV/c?
The data used in this analysis were collected with thd=3 standard deviationgo)] of the nominal mass are
CLEO Il detector [18] operating at the Cornell Electron accepted ad candidates.
Storage Ring (CESR), and correspond to an integrated A E~ candidate vertex is reconstructed by finding the
luminosity of 4.96 fo~! from the Y(4S) resonance and intersection between & candidate andr~ track, and
continuum region at energies just below it. The charmedequiring the=" direction to be consistent with coming
strange baryor£? was reconstructed in the decay modesfrom the event vertex. A fit to the resultant distribution
Eat, B ata, B0t r—, andQ K*t, andE" in  Of Aw~ invariant mass combinations yields a total of
the decay modeE~ 7+ 7+ and=07* 7 [8,9,19]. fn all 11578 = 125 reconstructed=Z~ candidates. All such

_ . . > o . :
cases, the signal area above the combinatorial backgroufg@mpinations within5 MeV/c” (=30) of the nominal
is found by fitting to the sum of one or more Gaussian™aSs are accepted & candidates. _

functions with widths fixed at Monte Carlo predicted FOr {1~ reconstruction, we combine eachcandidate

values, and a low-order Chebychev polynomial. WherdVith any negatively. charged_track thqt is consist_ent with
particle identification is used, a joint probability for the kaon hypothesis. Th&™ vertex is found using a

the pion, kaon, or proton hypothesis is defined usingProcedure very similar to that used for findiggy . A fit
measurements of specific ionizatié /dx) in the wire o the distribution ofAK ™ invariant mass combinations
drift chambers and time of flight in the scintillation Yi€lds a signal of373 = 32 events, and combinations

. : ) ithi 2 i 5
counters. A charged track is defined to be consistenfithin 5 MeV/c® of the nominal mass are selected(®s

with a particular mass hypothesis if the corresponding@ndidates.
probability is greater than 0.1%. The Z° candidates are reconstructed froimand 7°

Charmed baryons can be produced from either sed?@irs- Candidates for® are formed from pairs of photon
ondary decays oB mesons or directly frome™e~ an- candidates detepted in the Csl calorimeter, with at least
nihilations tocc jets. We definer, andx/, as the scaled 9N€ photon coming from the barrgtosg| < 0.7) rather
momentum of theZ, and 2/, respectively. Herer, = than the end cep regions, whetds the polar qngle W|th
p/pmax; p is the momentum of the charmed baryon,respect to the™ direction. Only phpt_on candidates with

5 ' . energy greater than 50 MeV and distinctly separated from
Pmax = \Ei — M?, E} is the beam energy, arM isthe  charged tracks are used. As a first approximation, the
mass of the charmed baryon being considered. Charmegld mass is calculated assuming the event vertex to be
baryons produced fron® decays are kinematically lim- jts point of origin. A E° vertex is then found from the

493



VOLUME 82, NUMBER 3 PHYSICAL REVIEW LETTERS 18 ANuARY 1999

intersection of theA and #° directions. The mass and are consistent with coming from the event vertex. For the
four-momentum of ther® is recalculated assuming the decay modeZ~ 7" 7%, we assume the photons used for
=" vertex to be its origin. A new vertex is calculated reconstructing=® — yy are coming from the event ver-
using the newr® andA directions. A fitto theA7° mass tex. Onlyyy combinations having invariant mass within
distribution yields7568 + 227 signal events, and ak#°  12.5 MeV/c? (2.50) of the nominal mass are used a8
combinations withind MeV/c? of the nominal mass are candidates. In the case 6f K *, we use only primary
defined as=° candidates. charged tracks consistent with the kaon hypothesis. Only

We first discuss the reconstruction 8f" candidates in  combinations withx, > 0.5 are used in the case of the
the decay modeE 77" andE°7 " #°. As presented first three decay modes; for the last decay mode, since the
earlier,E~ andE° candidates are combined with chargedcombinatorial background is higher, a cutxgf > 0.6 is
or neutral pions which are consistent with originatingused. Fitting the invariant mass distributions correspond-
from the event vertex. In the case of the first decaying to the decay modegE #*, E #*#% Q K™*, and
mode, only charged tracks with momentum greater tha®’7* 7~ with Monte Carlo predicted widths of 8, 10, 7,
100 MeV/c are used. For the second decay mode, whictand 12 MeV/c?, we obtain yields of133 = 41), (86 +
has more combinatorial background because of#fie  13), (24 = 5), and(46 + 10) signal events, respectively.
both the charged and neutral pions are required to havEhis gives a combine®’ yield of (289 + 44) events.
momenta greater thaS0 MeV/c. We form invariant The sum of the four=? invariant mass distributions is
mass distributions 0E~ 7“7 combinations witht, > shown in Fig. 1(b).

0.5 and E°7* 7% combinations withx, > 0.6. Fitting To search for=’ and Y, we start with theE; and
these distributions with Monte Carlo predicted widths = candidates reconstructed according to the procedure
of 8.5 and 15 MeV/c?, respectively, we obtain yields described in the earlier sections. We then foHEij y

of (155 = 15) and (70 = 14) signal events in these and Z%y combinations using photon candidates with
two decay modes or a combined yield (25 = 21).  energy greater than 100 MeV. Only showers detected
Combinations withir2o of the fitted peak masses in each in the barrel Csl crystal calorimetéjcosé| < 0.7), with
decay mode are then selected &S candidates. The clear isolation from nearby charged tracks and shower
invariant mass distribution for the summed combinationdragments are used as photon candidates. The lateral
in both E} decay modes is shown in Fig. 1(a). shower profile of the candidate is required to be consistent

We reconstrucE’,g in the four decay mode& =™, with that of a photon. A photon is also rejected if it is
E ntx% Q KT, andE°7 7. We start with the hy- part of a good7’ candidate, as defined in the section
peron candidates, which are defined according to proceén 2 reconstruction. About (30-50)% of photons from
dures discussed previously, and add charged tracks which.. are lost due to this veto. Instead of plotting the

H.y invariant mass combinations, we plot the mass

difference AM = M(E.y) — M(E.), which has better

150 T mass resolution as the errors frdf) reconstruction are

common to both terms and therefore cancel. In plotting
the AM distributions, thex, cut on =, reconstruction is
removed, and instead we place a cut dp the x, of
the Z.y combination. Final states including’ have
larger combinatorial backgrounds. We therefore require
x}, > 0.6 for these states and, > 0.5 for all other final
states.

Fitting the mass differenceAM™ = M(E}y) —
M(E]) distributions corresponding to the tw®, decay
modes used in the analysis, we obtaih.1 = 5.1)
and (7.5 = 3.6) signal events, respectively. Similarly,
fits to the mass differencdM® = M(E%y) — M(E°
distributions corresponding to the fo&® decay modes
separately yield signal areas @f0 = 4.0), (11.6 = 4.4),

L i (3.8 = 2.0), and(6.0 = 3.3) events, respectively. It may
- 1 be noted that there is at least one mode in each case
o with an enhancement dio statistical significance and
Invariant Mass (GeV / ¢?) corroborating enhancements in the other decay modes in
the mass difference region arour®8 MeV/c?. The
=t and B im0 combinations withx, = 0.5 and for individual channel fits use width.fixed at the Monte
0.6, respectively, and (b) foE- 7", =~ 7" #°, Q" K", and Car!o prediction and floating mass; however, if the mass
E%7*7  combinations withx, > 0.5, 0.5, 0.5, and 0.6, IS fixed to the mean values found below, essentially
respectively. the same results are obtained. Figures 2(a) and 2(b)
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FIG. 2. Invariant mass differencAM(E.y — E,) distribu- ) ) —, .
tions for (a)E;y and (b) E°y, where contributions from the E'S 3. forlagmentatlon function fdE; (weighted average of
different 2. decay modes have been summed in each case. =.’ andEY momentum distributions).

show the combined mass difference distributions forS0 that we can combine the data for the two resonances
the 27y and 2%y combinations, respectively, where together. The yield is then obtained as a functionxpf

the contributions from the different decay modes havé‘?r all the decay modes of b(?th the resonances fdim<
been summed. The distributions are fitted with widthst, < 1.0 and corrected fow,-dependent reconstruction
fixed at the Monte Carlo values df MeV/c? in both  efficiencies. The normalized distribution is shown in

cases. In Fig. 2(a), the narrow resonance corresponddd.- 3. A fit to the Peterson fragmentation function
to a signal area of25.5 + 6.5) events at a mass differ- [20] yields the fragmentation parametegr = 0.20105 =
ence AM™ = (107.8 = 1.7) MeV/c? with a statistical 0.07, which is similar to the previously published result of

. g . . . . _ +0.06 =+ i
significance of3.9¢. Similarly, a fit to Fig. 2(b) yields €, = 0.23Zgps * 0.03 for £ production [19].
a signal area 0f28.0 = 7.1) events at a mass difference We measure thaB7 + 11 = 7)% of all £ produced
AMY = (107.0 = 1.4) MeV/c? with statistical signifi- from the continuum are fronE.’ decays, while(35 +
cance of3.90. We associate these resonances with th® * 7)% of all 20 are fromEY’ decays. The comparable
isospin double/’ andZ”. To rule out the possibility fraction of Zf's from Z° decays is27 + 6 * 6)% [8].
that the signal is due to random background under thdhe fraction of=Z. from E, is predicted by Adamov and
E. signal, we reconstrucE.y combinations using fake Goldstein [21] to be 1.7 times that frof;.
E. candidates from the sideband of tBe nominal mass ~ In conclusion, we have observed two narrow reso-
region. The corresponding mass difference distributiongances decaying t&;y and E2y. The mass differ-
(AM) show no evidence of peaking in the region ofencesM(E/y) — M(E}) and M(E2y) — M(E?) are
interest. measured to be107.8 = 1.7 + 2.5) and(107.0 = 1.4 =

In order to probe the systematic stability of the mea-2.5) MeV/c?, respectively; the second error in each case
sured mass differences, we studied the effect of differis systematic. This is in good agreement with theoreti-
ent background shapes, alternate selection criteria, and ti§@l expectations for these mass differences, assuming the
calibration of the calorimeter absolute energy scale. Théesonances to b’ and £, respectively. This is also
major contributor to systematic shifts was found to be thén good agreement with the models which predict the mass
removal of therr® veto. This has the effect of increasing differenceM (Z7) — M(E!) to be about0-70 MeV/c?.
the efficiency by 30% and 60% fc&.’ and Z¥, respec-  Since theJ” = (3) charmed strange baryor&;* and
tively, but also doubling the background, dominantly fromZ:° have already been observed, the most likely in-
E* — E.7Y in which one of the photons from decay terpretation of the observed resonances would be as
is ignored in the reconstruction. Based on all these studhe J” = (%)+ charmed strange baryori§!’ and 7,
ies we assign a systematic error to the mass differences ofspectively.
+2.5 MeV/c?. We gratefully acknowledge the effort of the CESR staff

To measure ther, spectrum for=] production, we in providing us with excellent luminosity and running
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