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Chalker-Coddington Network Model is Quantum Critical
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We show that the localization transition in the integer quantum Hall effect as described by
the Chalker-Coddington network model is quantum critical. We first map the anisotropic network
model to the problem of diagonalizing a one-dimensional non-Hermitian noncompact supersymmetric
lattice Hamiltonian of interacting bosons and fermions. Its behavior is investigated numerically
using the density matrix renormalization group method, and critical behavior is found at the
plateau transition. This result is confirmed by a generalization of the Lieb-Schultz-Mattis theorem.
[S0031-9007(99)09315-1]
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Transitions between plateaus in the integer quantum . < Pt N
Hall effect provide the clearest example of quantum- Hip = f dT‘ ._0(_1)j¢f (7)id- (1)
critical behavior in a disordered system. Understanding Lo
such critical points is a challenging problem because - Z[tj(r)wf(r)wjﬂ(r)
fluctuations occur over many decades of length and time Jj=0

scales, and averages over different realizations of the dis- . t

order must be carried out. Critical behavior was predicted G Og @Y 0] (@)

by Levine, Libby, and Pruisken [1] and was observed ex- '

perimentally by Weet al. [2] for temperatures close to the The (—1)’ term has its origin in the alternating propa-
critical point at absolute zero. Progress toward a theoretigation of adjacent edge states, and this factor reappears
cal understanding of the plateau transition was achievegeveral times in the equations which follow. The disorder
with the introduction of a quantum tunneling network average of the tunneling amplitudes is given by

model by Chalker and Coddington [3]. Subsequent () = 1.8 8(r — 7'
numerical studies [4] of the Chalker-Coddington model 5 (D7) = J;858(x o ) 2)
yielded values for the correlation length exponent 2.3 Ji =[1+ (-1)R].

which were consistent with experiments. To the best ofrpq relevant dimerization parametRr=
our knowledge, however, there has been no exact pro
that the Chalker-Coddington model is quantum critical.
The method of supersymmetry (SUSY) can be use
to analytically carry out disorder averages [5-9]. We
apply the method to the anisotropic network model
and then use the density matrix renormalization grou

+1 deep inside
e plateaus; the transition between the plateaus occurs
tR = 0. Disorder averaging of the corresponding func-
ional integral is made possible with the use of SUSY
[13,14] as the partition functiod = 1 for each realiza-
tion of the disorder. Transfer matrix formalism can be

: . . OURised to resolve normal-ordering ambiguities [15,16] and
(DMRG) algorithm [10] to study the resulting spin chain. yhe resylting effective SUSY Hamiltonian may then be

Unlike usual spin chains such as the spjf2-Heisenberg gyiracted. It describes interacting spin-up and spin-down

antiferromagnet, the on-site Hilbert space in the SUSYfermionSC,, and bosong,, (two spin species are intro-

chain is infinite dimensional. To access the critical pomtduced to permit the calculation of the disorder-averaged
numerically therefore requires a double extrapolation t

) ) X roduct of retarded and advanced Green’s functions which
large on-site Hilbert spaces and to large chain length

: . 19" determines the conductivity),
We use our numerical results to motivate a generalization

L-2 8 16
of the theorem of Lieb, Schultz, and Mattis (LSM) which aga j aga
. . ! = . a Qd + (=1) a Qa
confirms quantum criticality. H jZoJJL; 8aSiSin + (=1) Z 8aS; Sj+1:|

a=9
1. SUSY spin-chain for the network modelThe L—1
anisotropic Chalker-Coddington model can be represented + 1 D[S+ 87+ 87+ 89. (3)
[11,12] by an independent-particle Hamiltonian which j=0

describes a chain of. (even) edge states alternating parameter; > 0 ensures convergence of the noncompact
in propagation forward and backward in imaginary timeposonic sector and defines the advanced and retarded
adjacent edge states account for the Aharonov-Bohm

phases accumulated by the electrons as they circulate

_ {1, a=1,2,10,12,14,16,
around equipotential contours of the random potential, 8a -1, a

3,...,9,11,13,15. 4)
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In Eq. (3) we have introduced 16 spin operators, thewith the ground state of thdermitianSUSY ferromagnet

components ofd X 4 superspin matrix:

St=blby+1/2 §°=¢lp

S2=biby +1/2 S0 =clpy

$3=bibf S =ple

S* = byby §12 = bTTCT (5)
SSECTTCT— 1/2 SBEblCT

$6=cle, — 172 ¥ =

S7ECTJrcfL Slszbfc;r

S8 = ¢ §16 = b{rcfr.

which describes a chiral metal with all edge states
propagating in the same direction [9]. Backscattering is
absent, localization cannot occur, and the ground state of
the SUSY ferromagnet is simply the vacuum state.

2. DMRG Analysis—To simply show that the den-
sity of states (DOS) is nonvanishing it suffices to remove
one of the spin sectors, for example, thepins. The re-
maining 1-spin degrees of freedom are then compact, the
ground state is the vacuum stdé, the DOS is propor-
tional to (S') = —(S°) = 1/2, and the Hamiltonian can
be exactly diagonalized [14]. When both spin sectors are
included, the theory is noncompact and highly nontriv-

Bosonic-valued operatofs, ..., S8 make up the symmet- ial. To make further progress we employ the infinite-

ric sector of the Hamiltonian while fermion-valued opera-size DMRG method [10].

The Hilbert space is first

tors S%,...,S' are in the antisymmetric sector. Despite constructed systematically on each site by repeated action
the fact thatH is non-Hermitian, it has only real-valued of the double-creation operaté? = b{rbf. Introducing

eigenvalues.

the integer level index = 0,1,2,..., we add to the vac-

The Hamiltonian commutes with four (fermion-valued) yum statg0) a tower of states built out of the quartets,

supersymmetry generatord,H, Qi,] = [H, Q2] = 0,
where

Qlo = Z[b}.acjo - (_1)jc}0'bj0']a
! (6)
oy = Z[(_l)'ib}zrcja + C;Ubjtf]-

J

It is not difficult to see that the supersymmetric Hamilton-
ian must have a unique, zero-energy, ground state. The 1
right and left (ground) eigenstates are therefore annihi-

lated by the HamiltonianH|¥y) = (¥y|H = 0. Also,

]
l4n + 1) = ;(bﬁbf)"cﬁcﬂox

1

Jnl(n + 1)!

1

Jnl(n + 1)!

l4n +2) = b1 b1y 0y,
)
lan + 3) = ity el b0y,

lan + 4) = (b b)) bi b 10) .

(n+ 1)
Truncations withD = 4n + 1 states preserve supersym-

the ground state is annihilated by the SUSY chargesmetry, as the SUSY generators, Eq. (6), intermix the quar-
Q101W0) = Q25|Wo) = 0. All excited states appear in tet of states, Eq. (9), separately within each level of the
quartets or larger multiples of 4, half with odd total tower without changing the total number of particles. The
fermion content, and these cancel out in the partition funchOS remains unchanged, and the ground state energy is

tion by virtue of the supertrace
Z = Stre P = Tr(—1)Nee PH =1, (7)

where N, is the total number of fermions.
of n — o, |¥y) — |0). For finite » > 0, however, it

is a remarkable fact that the normalized ground state i

a superposition of the vacuum state withit amplitude
and an infinite number afero-normmany-body statef/)
with a differing total number of particles [17],

[To)y = 10) + D as(n)J);
J= (8)
(I1J)y=0 VI,J>O0.

In the limit

exactly zero, providing a valuable check on the accuracy
of the DMRG algorithm which incurs errors when, as the
chain length increases, the Hilbert spaces of the blocks
grow beyond the finite limit oM/ states. Increasing/
.up to limits set by machine memory and speed yields sys-
tematic improvement in the accuracy of the DMRG algo-
rithm. In results reported below we have checked Mat
is sufficiently large to ensure adequate accuracy; even in
the challenging case @ = 13 andM = 170 the ground
state, when targeted, had an energy which deviated from
zero by less thaf.003.

Reduced density matrices for the two augmented
blocks, each of Hilbert space size X M, are formed by

This result can be verified directly by observing thatcomputing a partial trace over half the chain. For the left

|Wo) = limg_.. e #7]0) and application of powers dff
to the vacuum state yields only zero-norm states.

have also checked numerically, for finite length chains,
that the vacuum state has unit amplitude when the Hilbert

half of the chain the density matrix is given by

We DM

pij = Z \P,‘,’/\I’ﬁ/ .

i=1

(10)

space is truncated in a way that respects supersymmetijere ¥, = (i, i’| V) are the real-valued matrix elements

(see below).

It is useful to contrast the complicatedof the targeted many-body wave function projected onto

ground state of the non-Hermitian SUSY Hamiltoniana basis of states labeled by unprimed Roman index
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which covers the left half of the chain and primed indextion about the middle sitej(«— L — j) combined with

i’ which covers the right half. To compute the gaipjs  a rotation of 180 about they axis (§* < —S%). So

chosen to be one of the lowest-lying right eigenstates oV either creates a low-energy excitation above a unique

H. All of the eigenvalues op are real and positive; these ground state or mixes degenerate ground states. In con-

are interpreted as probabilities and the — 1)M least trast, for integer sping/ — U under parity and/ does

probable states are thrown away. The desifed- «©  not, in general, create a low-energy excitation or switch

limit can be reached by extrapolation, Fig. 1. Figure 2degenerate ground states.

shows that the gap is nonzero in the thermodynamic limit In the SUSY problem we are able to make a stronger

for finite fixed D = 4n + 1 (solid lines), but as shown in statement, because we know that the ground state is

Fig. 1 it approaches zero in thg — oo limit as expected. unique by supersymmetry. The natural generalization of
Also of interest are nonsupersymmetric truncationghe LSM slow-twist operator for the SUSY chain is

D = 4n + 2, with the state|4n + 1) selected as the . L

final state at the top of the tower. The special case of [y = exp[ﬂ Zj(—l)j[nc(j) + np(j) — 1]}, (12)

no bosonsp = 2, with on-site statef0), cTT cflO)} corre- L =

sponds to the ordin.a.ry spihf2 Hgisenberg antiferrqmag- where n,(j) = b,t,bj(, is the number of bosons on site

net as can be verified by making separate particle-hole '

N .
transformations on the even and odd sublatticeg: < iec?SgeZC(i] Ii :h;/D"czf‘fz ITinTteo?ur:?)b?)ros?;n;errg:wodnséﬁeli

t t. -

Coj1 AN Caj1) < €45 consequently, the gap vanishes ihe particle-hole transformation is taken, to the usual

in this case. As seen in Fig. 2 the gap aIsp vam;heESM operator Eq. (11). In the ground state, the sum

for D = 6. We show below that all truncations with n.(j) + ny(j) is always an even number, g6 respects

D =4r_1 + 2 are gaplesls. . the periodic boundary condition and it also has the
3. Lieb-Schultz-Mattis theorers-For half-odd-integer yasired propertyUT[H,U] = O(1/L). The canonical

spin antiferromagnets on a periodic chain of lengtsites parity transformation nE)w takes the form

(SL = Sp) LSM proved [18] that either (1) the ground

state is degenerate or (2) there are gapless spin excitations JeL -,
in the thermodynamic limit. — «. LSM employed a (—1) = (=1),
variational argument by introducing the unitary slow-twist + (13)
operator, Cjo = CL—jo>
. L bia— b,
U = ex @Z]sz}, (11) . - | Jt L—jl»
L =0 again reducing in the absence of bosons to the usual

LSM parity operation. The supersymmetric Hamiltonian
is invariant under this operation, but only at the presumed
critical point R = 5 = 0. The slow-twist operatoiU,

which has the property that f[H, U] = 0(1/L). Now
(WolU|¥y) = 0 becausd/ — —U under parity of reflec-

10 | -
0.8 1.0 + I’ i
g g
(=2} E
> /
200 08 | g ]
5 3 / ol o o
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FIG. 1. Gaps to the lowest excited state for chains with open 1% ° D=6, M=192
boundary conditions an&k = 0. The gap for the two-site 0.0 ‘ ‘ ‘ ‘ ‘
. . = 0.0 0.1 0.2 0.3 0.4 0.5
problem was obtained by diagonalizing Eq. 61 of Ref. [16]. UL

A straight line is fit to theL = 4 points (with M = D).

Also shown are gaps al. — « which are obtained from FIG. 2. Gaps, fom = 107#, extrapolated td. — «. Trunca-

the extrapolations presented in Fig. 2 for the supersymmetriions which respect supersymmetry (solid lines) and nonsuper-
truncationsD = 5,9,13, and 17. A straight line is fit to the symmetric truncations (dashed lines) are plotted. Poinis=at

last three points. o are obtained by fitting the gap to the foum+ b/L + ¢/L>.

4908



VOLUME 82, NUMBER 24 PHYSICAL REVIEW LETTERS 14 Jne 1999

however, changes form because while— 2 — n., the tion of this work. This research was supported in part

number of bosonsg, remains invariant, by the NSF under Grants No. DMR-9357613, No. DMR-
. L 9712391, and No. PHY94-07194. Double-precision com-
U— — exp{m > j(=1Y[ne(j) — np(j) — 11}. (14)  putations were carried out in C++ on Cray PVP machines
L 5 at the Theoretical Physics Computing Facility at Brown

University.

However, U is invariant under global supersymmetry
rotations[Q,, U] = [Q2,, U] = 0. As only the ground
state is a SUSY singlet/ cannot create a low-energy
excitation for truncations which respect SUSY, consistent : . ,
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