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Chalker-Coddington Network Model is Quantum Critical
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We show that the localization transition in the integer quantum Hall effect as described
the Chalker-Coddington network model is quantum critical. We first map the anisotropic netw
model to the problem of diagonalizing a one-dimensional non-Hermitian noncompact supersymm
lattice Hamiltonian of interacting bosons and fermions. Its behavior is investigated numeric
using the density matrix renormalization group method, and critical behavior is found at
plateau transition. This result is confirmed by a generalization of the Lieb-Schultz-Mattis theo
[S0031-9007(99)09315-1]
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Transitions between plateaus in the integer quantu
Hall effect provide the clearest example of quantum
critical behavior in a disordered system. Understandin
such critical points is a challenging problem becaus
fluctuations occur over many decades of length and tim
scales, and averages over different realizations of the d
order must be carried out. Critical behavior was predicte
by Levine, Libby, and Pruisken [1] and was observed e
perimentally by Weiet al. [2] for temperatures close to the
critical point at absolute zero. Progress toward a theore
cal understanding of the plateau transition was achiev
with the introduction of a quantum tunneling network
model by Chalker and Coddington [3]. Subseque
numerical studies [4] of the Chalker-Coddington mode
yielded values for the correlation length exponentn ø 2.3
which were consistent with experiments. To the best
our knowledge, however, there has been no exact pro
that the Chalker-Coddington model is quantum critical.

The method of supersymmetry (SUSY) can be use
to analytically carry out disorder averages [5–9]. W
apply the method to the anisotropic network mode
and then use the density matrix renormalization grou
(DMRG) algorithm [10] to study the resulting spin chain
Unlike usual spin chains such as the spin-1y2 Heisenberg
antiferromagnet, the on-site Hilbert space in the SUS
chain is infinite dimensional. To access the critical poin
numerically therefore requires a double extrapolation
large on-site Hilbert spaces and to large chain length
We use our numerical results to motivate a generalizati
of the theorem of Lieb, Schultz, and Mattis (LSM) which
confirms quantum criticality.

1. SUSY spin-chain for the network model.—The
anisotropic Chalker-Coddington model can be represen
[11,12] by an independent-particle Hamiltonian whic
describes a chain ofL (even) edge states alternating
in propagation forward and backward in imaginary tim
t. Random complex tunneling amplitudestjstd between
adjacent edge states account for the Aharonov-Boh
phases accumulated by the electrons as they circul
around equipotential contours of the random potential,
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Hip 
Z

dt

(
L21X
j0

s21djc
y
j stdi≠tcjstd

2

L22X
j0

ftjstdcy
j stdcj11std

1 tp
j stdcy

j11stdcjstdg

)
. (1)

The s21dj term has its origin in the alternating propa-
gation of adjacent edge states, and this factor reappe
several times in the equations which follow. The disorde
average of the tunneling amplitudes is given by

tp
j stdtj0st0d  Jjdj,j0dst 2 t0d ,

Jj  f1 1 s21djRg .
(2)

The relevant dimerization parameterR  61 deep inside
the plateaus; the transition between the plateaus occu
at R  0. Disorder averaging of the corresponding func
tional integral is made possible with the use of SUSY
[13,14] as the partition functionZ  1 for each realiza-
tion of the disorder. Transfer matrix formalism can be
used to resolve normal-ordering ambiguities [15,16] an
the resulting effective SUSY Hamiltonian may then be
extracted. It describes interacting spin-up and spin-dow
fermionscs and bosonsbs (two spin species are intro-
duced to permit the calculation of the disorder-average
product of retarded and advanced Green’s functions whic
determines the conductivity),

H 
L22X
j0

Jj

"
8X

a1

gaSa
j Sa

j11 1 s21dj
16X

a9

gaSa
j Sa

j11

#

1 h

L21X
j0

fS1
j 1 S2

j 1 S5
j 1 S6

j g . (3)

Parameterh . 0 ensures convergence of the noncompac
bosonic sector and defines the advanced and retard
propagators; also the signsga are given by

ga 

Ω
1, a  1, 2, 10, 12, 14, 16 ,
21, a  3, . . . , 9, 11, 13, 15 . (4)
© 1999 The American Physical Society
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In Eq. (3) we have introduced 16 spin operators, th
components ofa4 3 4 superspin matrix:

S1 ; b
y
" b" 1 1y2 S9 ; c

y
# b#

S2 ; b
y
# b# 1 1y2 S10 ; c

y
" b"

S3 ; b
y
" b

y
# S11 ; b

y
# c#

S4 ; b#b" S12 ; b
y
" c"

S5 ; c
y
" c" 2 1y2 S13 ; b#c"

S6 ; c
y
# c# 2 1y2 S14 ; b"c#

S7 ; c
y
" c

y
# S15 ; b

y
# c

y
"

S8 ; c#c" S16 ; b
y
" c

y
# .

(5)

Bosonic-valued operatorsS1, . . . , S8 make up the symmet-
ric sector of the Hamiltonian while fermion-valued opera
tors S9, . . . , S16 are in the antisymmetric sector. Despit
the fact thatH is non-Hermitian, it has only real-valued
eigenvalues.

The Hamiltonian commutes with four (fermion-valued
supersymmetry generators,fH, Q1sg  fH, Q2sg  0,
where

Q1s ;
X

j

fby
jscjs 2 s21djc

y
jsbjsg ,

Q2s ;
X

j

fs21djb
y
jscjs 1 c

y
jsbjsg .

(6)

It is not difficult to see that the supersymmetric Hamilton
ian must have a unique, zero-energy, ground state. T
right and left (ground) eigenstates are therefore anni
lated by the Hamiltonian:HjC0l  kC0jH  0. Also,
the ground state is annihilated by the SUSY charge
Q1sjC0l  Q2sjC0l  0. All excited states appear in
quartets or larger multiples of 4, half with odd tota
fermion content, and these cancel out in the partition fun
tion by virtue of the supertrace

Z  Stre2bH ; Trs21dNc e2bH  1 , (7)

where Nc is the total number of fermions. In the limit
of h ! `, jC0l ! j0l. For finite h . 0, however, it
is a remarkable fact that the normalized ground state
a superposition of the vacuum state withunit amplitude
and an infinite number ofzero-normmany-body statesjJl
with a differing total number of particles [17],

jC0l  j0l 1
X̀
J1

aJshd jJl ;

kI j Jl  0 ; I , J . 0 .
(8)

This result can be verified directly by observing tha
jC0l  limb!` e2bH j0l and application of powers ofH
to the vacuum state yields only zero-norm states. W
have also checked numerically, for finite length chain
that the vacuum state has unit amplitude when the Hilb
space is truncated in a way that respects supersymm
(see below). It is useful to contrast the complicate
ground state of the non-Hermitian SUSY Hamiltonia
e
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with the ground state of theHermitianSUSY ferromagnet
which describes a chiral metal with all edge state
propagating in the same direction [9]. Backscattering
absent, localization cannot occur, and the ground state
the SUSY ferromagnet is simply the vacuum state.

2. DMRG Analysis.—To simply show that the den-
sity of states (DOS) is nonvanishing it suffices to remov
one of the spin sectors, for example, the# spins. The re-
maining "-spin degrees of freedom are then compact, t
ground state is the vacuum statej0l, the DOS is propor-
tional to kS1l  2kS5l  1y2, and the Hamiltonian can
be exactly diagonalized [14]. When both spin sectors a
included, the theory is noncompact and highly nontri
ial. To make further progress we employ the infinite
size DMRG method [10]. The Hilbert space is firs
constructed systematically on each site by repeated ac
of the double-creation operatorS3 ; b

y
" b

y
# . Introducing

the integer level indexn  0, 1, 2, . . . , we add to the vac-
uum statej0l a tower of states built out of the quartets,

j4n 1 1l ;
1
n!

sby
" b

y
# dnc

y
" c

y
# j0l ,

j4n 1 2l ;
1p

n! sn 1 1d!
sby

" b
y
# dnb

y
" c

y
# j0l ,

j4n 1 3l ;
1p

n! sn 1 1d!
sby

" b
y
# dnc

y
" b

y
# j0l ,

j4n 1 4l ;
1

sn 1 1d!
sby

" b
y
# dnb

y
" b

y
# j0l .

(9)

Truncations withD  4n 1 1 states preserve supersym
metry, as the SUSY generators, Eq. (6), intermix the qu
tet of states, Eq. (9), separately within each level of t
tower without changing the total number of particles. Th
DOS remains unchanged, and the ground state energ
exactly zero, providing a valuable check on the accura
of the DMRG algorithm which incurs errors when, as th
chain length increases, the Hilbert spaces of the bloc
grow beyond the finite limit ofM states. IncreasingM
up to limits set by machine memory and speed yields sy
tematic improvement in the accuracy of the DMRG algo
rithm. In results reported below we have checked thatM
is sufficiently large to ensure adequate accuracy; even
the challenging case ofD  13 andM  170 the ground
state, when targeted, had an energy which deviated fr
zero by less than0.003.

Reduced density matrices for the two augment
blocks, each of Hilbert space sizeD 3 M, are formed by
computing a partial trace over half the chain. For the le
half of the chain the density matrix is given by

rij 
DMX
i01

Cii0Cji0 . (10)

HereCii0 ; ki, i0jCl are the real-valued matrix element
of the targeted many-body wave function projected on
a basis of states labeled by unprimed Roman indexi
4907
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which covers the left half of the chain and primed inde
i0 which covers the right half. To compute the gap,C is
chosen to be one of the lowest-lying right eigenstates
H. All of the eigenvalues ofr are real and positive; these
are interpreted as probabilities and thesD 2 1dM least
probable states are thrown away. The desiredD ! `

limit can be reached by extrapolation, Fig. 1. Figure
shows that the gap is nonzero in the thermodynamic lim
for finite fixedD  4n 1 1 (solid lines), but as shown in
Fig. 1 it approaches zero in theD ! ` limit as expected.

Also of interest are nonsupersymmetric truncation
D  4n 1 2, with the statej4n 1 1l selected as the
final state at the top of the tower. The special case
no bosons,D  2, with on-site stateshj0l, c

y
" c

y
# j0lj corre-

sponds to the ordinary spin-1y2 Heisenberg antiferromag-
net as can be verified by making separate particle-ho
transformations on the even and odd sublattices:c2j" $

c
y
2j" and c2j11# $ c

y
2j11#; consequently, the gap vanishe

in this case. As seen in Fig. 2 the gap also vanish
for D  6. We show below that all truncations with
D  4n 1 2 are gapless.

3. Lieb-Schultz-Mattis theorem.—For half-odd-integer
spin antiferromagnets on a periodic chain of lengthL sites
( $SL ; $S0) LSM proved [18] that either (1) the ground
state is degenerate or (2) there are gapless spin excitati
in the thermodynamic limitL ! `. LSM employed a
variational argument by introducing the unitary slow-twis
operator,

U ; exp

8<:2pi
L

LX
j0

jSz
j

9=; , (11)

which has the property thatUyfH, Ug  Os1yLd. Now
kC0jUjC0l  0 becauseU ! 2U under parity of reflec-

0.00 0.05 0.10 0.15 0.20
1/D

0.0

0.2

0.4

0.6

0.8

1.0

en
er

gy
 g

ap

L = 2, η = 10
-4

L = 2, η = 10
-3

L = 4, η = 10
-4

infinite L, η = 10
-4

FIG. 1. Gaps to the lowest excited state for chains with op
boundary conditions andR  0. The gap for the two-site
problem was obtained by diagonalizing Eq. 61 of Ref. [16
A straight line is fit to theL  4 points (with M  D).
Also shown are gaps atL ! ` which are obtained from
the extrapolations presented in Fig. 2 for the supersymmet
truncationsD  5, 9, 13, and 17. A straight line is fit to the
last three points.
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tion about the middle site (j $ L 2 j) combined with
a rotation of 180± about they axis (Sz $ 2Sz). So
U either creates a low-energy excitation above a uniq
ground state or mixes degenerate ground states. In c
trast, for integer spinsU ! U under parity andU does
not, in general, create a low-energy excitation or switc
degenerate ground states.

In the SUSY problem we are able to make a strong
statement, because we know that the ground state
unique by supersymmetry. The natural generalization
the LSM slow-twist operator for the SUSY chain is

U ; exp

8<:pi
L

LX
j0

js21djfncsjd 1 nbsjd 2 1g

9=; , (12)

where nbsjd ; b
y
jsbjs is the number of bosons on site

j and ncsjd ; c
y
jscjs is the number of fermions. It

reduces, in theD  2 limit of no bosons, and after
the particle-hole transformation is taken, to the usu
LSM operator Eq. (11). In the ground state, the su
ncsjd 1 nbsjd is always an even number, soU respects
the periodic boundary condition and it also has th
desired propertyUyfH, Ug  Os1yLd. The canonical
parity transformation now takes the form

j $ L 2 j ,

s21dj $ s21dj ,

c
y
js $ cL2js ,

bj" $ bL2j# ,

(13)

again reducing in the absence of bosons to the us
LSM parity operation. The supersymmetric Hamiltonia
is invariant under this operation, but only at the presum
critical point R  h  0. The slow-twist operatorU,
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FIG. 2. Gaps, forh  1024, extrapolated toL ! `. Trunca-
tions which respect supersymmetry (solid lines) and nonsup
symmetric truncations (dashed lines) are plotted. Points atL 
` are obtained by fitting the gap to the forma 1 byL 1 cyL2.
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however, changes form because whilenc ! 2 2 nc, the
number of bosonsnb remains invariant,

U ! 2 exp

(
pi
L

LX
j0

js21djfncsjd 2 nbsjd 2 1g

)
. (14)

However, U is invariant under global supersymmetr
rotations,fQ1s , Ug  fQ2s , Ug  0. As only the ground
state is a SUSY singlet,U cannot create a low-energy
excitation for truncations which respect SUSY, consiste
with the above DMRG results. Indeed, from Eq. (8
it follows that jkC0jUjC0lj  1 and thusUjC0l does
not contain a component orthogonal to the ground sta
jC0l. [This can be viewed as an alternative proo
of Eq. (8).] For non-SUSY truncationsD  4n 1 2,
however, the ground state does not obey Eq. (8); inste
jkC0jUjC0lj , 1 as can be verified either directly for
small chains, and in the special caseD  2 of no
bosons (for whichkC0jUjC0l  0), or by appealing to
the fact thatU changes form under the parity operation
Eq. (14). For sufficiently largeD andh . 0 the ground
state approaches the SUSY ground state and is t
unique; thereforeU creates low-energy excitations [19]
and chains with the non-SUSY truncationD  4n 1 2
are gapless in the thermodynamic limit.

Before examining the physically relevantD ! ` limit,
first consider the large spin limit of one-dimensiona
nearest-neighbor Heisenberg antiferromagnets. Cha
with spin S  n 1 1y2 (and even-numberedD  2S 1

1  2n 1 2) are gapless for all integern $ 0. Chains
with S  n 1 1 (and odd-numberedD  2n 1 3) are
Haldane gapped, but this gap must vanish in the lim
of large spin to accord with the gaplessness of the ha
odd-integer chain in then ! ` limit. This reasoning can
be checked by a simple renormalization-group argume
using the beta function for the nonlinears model which
shows that the gap for integer-spin chains vanishes
e2pS . Likewise, for h  01, continuity requires that
SUSY truncations with odd-numberedD  4n 1 1 must
converge to the gapless behavior exhibited by the no
SUSY even-numberedD  4n 1 2 truncations in the
n ! ` limit. Hence the Chalker-Coddington model is
quantum critical atR  0.
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