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The complete 2-loop quantum electrodynamic corrections to the muon lifetime are calculated in

the Fermi theory. The exact result for the effects of virtual and real photons, virtual electrons,
muons as well ag* ¢~ pair creation, isSATGLp = To(2)2[ 281 _ 19 r0) — ¥5,3) +  7(4) +
537(2)In(2)] = To(%)%6.743, whereT, is the tree-level width. The theoretlcal error in the value of
the Fermi coupling constarr is now rendered negligible compared to the experimental uncertainty
coming from the measurement of the muon lifetime. The overall erra@¥inis then roughly halved,

giving Gr = (1.16637 = 0.00001) X 1075 GeV 2. [S0031-9007(98)08198-8]

PACS numbers: 13.35.Bv, 12.20.Ds, 13.40.Ks, 14.60.Ef

The Fermi coupling constanG plays a key role least up to the point where finitd/ propagator effects
in precision tests of the standard model of electroweakegin to appear.
interactions. Along with the electromagnetic coupling In this article the 2-loop QED radiative corrections
constanta and theZ boson masd\y, it is one of the to muon lifetime are calculated in the Fermi theory.
best measured quantities of electroweak physics and d$e result is used to extract an improved value dgr
such is used as input in all higher-order calculatiods=  in which the error is entirely due to the experimental
is one of the few quantities that is sensitive to physics atincertainty.
very high energy scales and is intimately related toghe  I. The Fermi coupling constanrt-The Fermi theory
parameter [1]. It was the value 6fr that provided some Lagrangian, relevant for the calculation of the muon
of the strongest constraints on the mass of the top quaiifetime, is
before it was directly observed. _r0 0
Gy is extracted from measurements of the muon Lr=Loep + Locp + Lw- (1)
lifetime, 7, = I',;!, which is a purely leptonic process Here Ly is the Fermi contact interaction,
and therefore very clean both experimentally and theoreti- _ _ 70 07.r170 0
cally. Its quoted error is8Gr/Gp = 1.7 X 1073 of Lw = =2V2Geldy, yavay) - [vaven ], @
which 0.9 X 1073 is experimental andl.5 X 107 is  in which &, #., #,,, and,, are the wave functions
theoretical; the latter being an estimate of the size of théor the muon, the electron, and their associated neutrinos
2-loop corrections. Experiments are under consideratiofespectively. The Euclidean metric in which timelike
at Brookhaven National Laboratory, the Paul Scherremomenta squared are negative is useﬁJQCD is the bare
Institute, and the Rutherford-Appleton Laboratory whichquantum chromodynamic (QCD) Lagrangian responsible
could lead to a reduction in the experimental error on thdor the strong interactions anoIQED is the usual bare
7, of a factor of 10 or more. Lagrangian of QED,
The radiative corrections to muon decay in the full ) 1
standard model naturally factorize into two pieces [2], Lgp = —>. #(ip + mDy) — 7 (0,49 — 0,A%)°
one of which, to a very high degree of accuracy, is just f
the quantum electrodynamic (QED) radiative corrections . 0 70 040
in the Fermi theory. The other piece is left free of e ZQflpfy’“ﬂ Ap - 3)
infrared singular contributions. It contains purely weak
corrections that can be absorbed inf which then The sum is over all fermion specigg with massm)
possesses an enriched sample of weak sector physi@ld electric chargeDs. A, is the photon field and
Such a separation between QED and weak corrections ig, = %(1 + 7v5) denotes the usual Dirac left-hand pro-
not generally possible for charged current processes.  jection operator. The superscript zero indicates bare, as
The 1-loop QED contributions to the muon lifetime opposed to renormalized, quantities. For the present pur-
were first calculated over 40 years ago by Kinoshita anghosesGr goes unrenormalized. Throughout this article
Sirlin [3] and by Berman [4]. It is known [5] that the dimensional regularization [6] is used for the ultraviolet
Fermi theory in the presence of QED is finite to leading(UV) divergences. The appearance of infrared (IR) diver-
order in Gr and to all orders in the electromagnetic gences is largely avoided by the methods employed here.
coupling constan&. This remarkable fact means thGit The formula obtained forr, by means of thelp
can be defined in a physically unambiguous manner, d@s finite to leading order inGr and all orders in
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the renormalized electromagnetic coupling constantwhere/ is the Riemann zeta function ad2) = 72/6.

a, = e¢2/4m [5]. This follows from the fact that, under a An exact expression for the full electron mass dependence
Fierz rearrangement that interchanges the wave functioris A¢‘") has been given by Nir [7].

e andfﬂpﬂ in Ly, the currents remain purely left-handed Recently, the hadronic contributions thg® were
vector currents. This is in sharp contrast to the case ofomputed using dispersion relations along with contri-
neutron decay in which scalar and pseudoscalar terms abaitions from muon and tau loops [8]. Their effect was
generated and for which the following arguments brealshown to be small relative to the present experimental
down. The radiative corrections in that case are not finiteerror. They become relevant for the next generation of
Considering the vector party.y.i,, of this effective muon lifetime experiments but the hadronic uncertainty is
um-e current, one sees that after fermion mass renorstill well under control.

malization is performed the remaining divergences are The Kinoshita-Lee-Nauenberg [9] theorem guarantees
independent of the masses and thus cancel, as for the cabat Ag is free from singularities as:, — 0, other than

of pure QED. The QED corrections to the axial vectorthose that can are absorbed inta It may be shown [10]
part may be shown to be finite by noting that the transthat all large logarithms of the form' In"~!(m, /m?) for
formationsy. — ysi. andm, — —m, leave Loep and  all i > 0 and those ofa’ In(m?, /m?) can be accounted
Locp invariant but exchangel,y i, < ¥.yays¥u.  for, in @ manner consistent with both the calculation of

Thus the radiative corrections to the axial-vector part ofRef. [8] and the perturbative results presented here, by
the current are equal to those of the vector part in th&etting
limit of m, = 0. In practice, only the radiative correc- 5
tions to the vector pieces iy need to be calculated a, — a,(m,) = o + o In My (8)

. . . . . . r e M o mz 2 2 £
which avoids entirely the problems associated within 1 — L nZ  4m> mg
dimensional regularization. ‘

To lowest order inGr the expression for the muon where « is the experimentally measured quantity,=

lifetime calculated fromL takes the general form, 1/137.0359895(61) [11]. The contribution to the muon
| lifetime from the © («?) logarithmic term coincides with

— =T, = Ty(l + Ag), (4) t(ge 3result ob_talned in Ref. [12]. The Iogquthms of

“ (a”) were first obtained by Jost and Luttinger [13].

When evaluated Eq. (8) yields,(m,) = 1/135.90 =
0.0073582. In the modified minimal subtractionV(S)
Gim® renormalization scheme with 't Hooft masg, = m,,
_ ® : -
= 19272 Eq. (28) correctly includes nonlogarithmic terms up to
O (a?), but those of0 (o) have been dropped.
andAg encapsulates the higher-order QED and QCD cor- Il. 2-loop corrections—(A) Photonic corrections:
rections generated hf » and can be expressed as a powerThe calculation of the 2-loop QED corrections to the
series expansion in the renormalized electromagnetiouon lifetime involves the sum of the cross sections

where

Lo

coupling constang,., no o vge Ve, pT S vge Doy, M —vue Doy,
. andu™ — v,e p.ete” with up to two virtual photons.
Ag = Z Ag® (5) Individual diagrams are IR divergent and, in some cases,
= ’ require integration over a 5-body phase space. The

. _ _ o problem of canceling these IR singularities can be avoided
in which the indexi gives the power ofx, that appears entirely if the QED corrections are obtained as the imagi-

in Ag". nary part of 4-loop propagator-type Feynman diagrams by
Assuming that the electron neutrino and muon neutringneans of the optical theorem. Some of these diagrams are
are massless, it can be shown that shown in Fig. 1. The heavy lines represent muons which
5 are the only particles taken to have nonzero mass. The
Aq((’) = —8x — 12x%Inx + 8x* — x4, x = m; , 4-fermion vertex used is the vector part of the usual one
m

w from the Fermi theory. Inspection of the diagrams shows
(6) that the cuts generating imaginary parts produce all of the
Feynman diagrams contributing to muon decay. Extra

which comes from phase space integrations. diagrams do appear in which the cut goes through a muon
The O(a) corrections in Ag, first obtained by |ine but such diagrams vanish kinematically because the
Kinoshita and Sirlin [3] and by Berman [4], are external muon is on its mass shell.
2 2 The imaginary parts of the necessary 4-loop
AglV = (ﬂ> [é - 3;(2)} + @(ar m_ze In m_§> propagator-type diagrams were calculated as follows.
™ 8 my,, o my, Recursion relations [14], obtained by integration-by-parts,

(7)  were first applied to reduce all dimensionally regularized
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7. sion techniques along the lines of Ref. [15]. This series

mo m f\ serves as a convenient representation as its coefficients
\W W involve simpler integrals. Many terms in the large mass
expansion can be discarded since they do not contribute
b to the imaginary part. What remains of the coefficients
(a) (b) - - - -
in the expansion can be evaluated in closed form in terms

N of polygamma functions and certain classes of multiple
—— > — nested sums [16]. Then, the on-shell limit,= 1, is
mﬁj taken and the infinite sum over the coefficientsxbfis

performed. In this process the exact expressions collapse
(c) (d) into known constants such as the Riemann zeta function
of integer argumentg (k) and polylogarithmdLi,(1/2).
Details of the procedures followed will be described else-
where [10].
Fermion mass renormalization is performed in the on-
integrals to a small set of relatively simple integrals.She” scheme (that is to say that the renormalized mass of

These primitive integrals were chosen to be free fronft Stable fermion is set equal to its physical or pole mass)
specific IR divergences that occur on shell. The well-that generates derivatives of fermion self-energies for the

behaved primitive integrals were then calculated by tak€xternal leg corrections. All diagrams were calculated in

ing the external muon momentum off mass shell to & genera_l covariant gauge for the photon field, and exact

obtain expressions as power seriestir —g2/m? and cancellation in the final result of the dependence on the
o

logarithms ofx using well-established large mass expa‘n-gagﬁ: Peag S‘l;nfztsz‘gﬁsh g%ﬁggﬁ{fﬁgérams <

FIG. 1. Examples of diagrams whose cuts give contribution
tou™ —wvye v, 0~ —vye vy, 00 - — vye v.yy.

2
@ _ ac(my)\ (11047 1030 223 67
AT Fo( . )(2592 SR - 2206+ % @) + @) ), (92)
2
- F.{@) 3.55877 . (9b)

where/(3) = 1.2020569... and/(4) = 74/%,

(B) Electron loop corrections: The contribution of electron loops to the muon lifetime differs from those of other
fermions in that they must be combined with diagrams with an additiehal” pair in the final state in order to produce
an IR finite result; however, the procedure described above may be applied here as well. The electron loop diagrams are
shown in Fig. 2. A diagram containing a muon mass countertérn),, on the external leg must be added to Fig. 2d.
Furthermore, diagrams, in which the electron loop is replaced by the photon self-energy counterterm, must be included
to produce a UV finite result. This counterterm contribution is proportionak46’ and depends on the particular
renormalization scheme that has been chosen. The overall resultMiShienormalization scheme with 't Hooft mass
n = m, consistent with Eq. (8) is

o _ o fam)\ (1000 77 - 8
AI‘Ielec - FO( T ) ( 228 36 5(2) 3 §(3)>’ (108-)
2
- r()(@) 3.22034, (10b)

which is about 2 orders of magnitude greater than that of either muon loops or hadrons. The value obtained in Eqg. (10b)
is consistent with a numerical study presented in Ref. [17] in the context of semileptonic decays of heavy quarks.
The same methods used to calculate the contribution from electron loops can be applied to muon loops. Agreement

was found with the result of Ref. [8].
I1l. Conclusions—The photonic corrections of section II(A) can be combined with those of the electron loops and

e" e pair production of section II(B), and adding the exact result for muon loops of Ref. [8] gives

2
o e\ 156815 1036 895 67
ATGho = ro( ﬂ) [ T (O -+ S+ 535<z>ln<2>] (112)
2
- ro(%> 6.743 (11b)
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