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Complete 2-Loop Quantum Electrodynamic Contributions to the Muon Lifetime
in the Fermi Model
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The complete 2-loop quantum electrodynamic corrections to the muon lifetime are calculated
the Fermi theory. The exact result for the effects of virtual and real photons, virtual electron
muons as well ase1e2 pair creation, isDG
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p d26.743, whereG0 is the tree-level width. The theoretical error in the value of
the Fermi coupling constantGF is now rendered negligible compared to the experimental uncertainty
coming from the measurement of the muon lifetime. The overall error inGF is then roughly halved,
giving GF ­ s1.16637 6 0.00001d 3 1025 GeV22. [S0031-9007(98)08198-8]
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The Fermi coupling constantGF plays a key role
in precision tests of the standard model of electrowe
interactions. Along with the electromagnetic couplin
constanta and theZ boson massMZ , it is one of the
best measured quantities of electroweak physics and
such is used as input in all higher-order calculations.GF

is one of the few quantities that is sensitive to physics
very high energy scales and is intimately related to ther

parameter [1]. It was the value ofGF that provided some
of the strongest constraints on the mass of the top qu
before it was directly observed.

GF is extracted from measurements of the muo
lifetime, tm ; G21

m , which is a purely leptonic process
and therefore very clean both experimentally and theore
cally. Its quoted error isdGFyGF ­ 1.7 3 1025 of
which 0.9 3 1025 is experimental and1.5 3 1025 is
theoretical; the latter being an estimate of the size of t
2-loop corrections. Experiments are under considerat
at Brookhaven National Laboratory, the Paul Scherr
Institute, and the Rutherford-Appleton Laboratory whic
could lead to a reduction in the experimental error on t
tm of a factor of 10 or more.

The radiative corrections to muon decay in the fu
standard model naturally factorize into two pieces [2
one of which, to a very high degree of accuracy, is ju
the quantum electrodynamic (QED) radiative correctio
in the Fermi theory. The other piece is left free o
infrared singular contributions. It contains purely wea
corrections that can be absorbed intoGF which then
possesses an enriched sample of weak sector phys
Such a separation between QED and weak correction
not generally possible for charged current processes.

The 1-loop QED contributions to the muon lifetime
were first calculated over 40 years ago by Kinoshita a
Sirlin [3] and by Berman [4]. It is known [5] that the
Fermi theory in the presence of QED is finite to leadin
order in GF and to all orders in the electromagneti
coupling constanta. This remarkable fact means thatGF

can be defined in a physically unambiguous manner,
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least up to the point where finiteW propagator effects
begin to appear.

In this article the 2-loop QED radiative correction
to muon lifetime are calculated in the Fermi theor
The result is used to extract an improved value forGF

in which the error is entirely due to the experiment
uncertainty.

I. The Fermi coupling constant.—The Fermi theory
Lagrangian, relevant for the calculation of the muo
lifetime, is

LF ­ L 0
QED 1 L 0

QCD 1 LW . (1)

HereLW is the Fermi contact interaction,

LW ­ 22
p

2 GFfc̄0
nm

glgLc0
mg ? fc̄0

e glgLc0
ne

g , (2)

in which cm, ce, cnm
, and cne are the wave functions

for the muon, the electron, and their associated neutrin
respectively. The Euclidean metric in which timelik
momenta squared are negative is used.L

0
QCD is the bare

quantum chromodynamic (QCD) Lagrangian responsib
for the strong interactions andL 0

QED is the usual bare
Lagrangian of QED,

L 0
QED ­ 2

X
f

c̄0
f sipy 1 m0

f dc0
f 2

1
4

s≠rA0
s 2 ≠sA0

rd2

1 ie0
X
f

Qfc̄0
fgrc0

fA0
r . (3)

The sum is over all fermion speciesf, with massm0
f

and electric chargeQf . Ar is the photon field and
gL ­

1
2 s1 1 g5d denotes the usual Dirac left-hand pro

jection operator. The superscript zero indicates bare,
opposed to renormalized, quantities. For the present p
posesGF goes unrenormalized. Throughout this artic
dimensional regularization [6] is used for the ultraviole
(UV) divergences. The appearance of infrared (IR) dive
gences is largely avoided by the methods employed he

The formula obtained fortm by means of theLF

is finite to leading order inGF and all orders in
© 1999 The American Physical Society
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the renormalized electromagnetic coupling constan
ar ­ e2

r y4p [5]. This follows from the fact that, under a
Fierz rearrangement that interchanges the wave functio
c̄e andc̄nm

in LW , the currents remain purely left-handed
vector currents. This is in sharp contrast to the case
neutron decay in which scalar and pseudoscalar terms
generated and for which the following arguments brea
down. The radiative corrections in that case are not finit
Considering the vector part,̄cegmcm, of this effective
m-e current, one sees that after fermion mass reno
malization is performed the remaining divergences a
independent of the masses and thus cancel, as for the c
of pure QED. The QED corrections to the axial vecto
part may be shown to be finite by noting that the trans
formationsce ! g5ce andme ! 2me leaveLQED and
LQCD invariant but exchangec̄eglcm $ c̄eglg5cm.
Thus the radiative corrections to the axial-vector part o
the current are equal to those of the vector part in th
limit of me ­ 0. In practice, only the radiative correc-
tions to the vector pieces inLW need to be calculated
which avoids entirely the problems associated withg5 in
dimensional regularization.

To lowest order inGF the expression for the muon
lifetime calculated fromLF takes the general form,

1
tm

; Gm ­ G0s1 1 Dqd , (4)

where

G0 ­
G2

Fm5
m

192p3

andDq encapsulates the higher-order QED and QCD co
rections generated byLF and can be expressed as a powe
series expansion in the renormalized electromagne
coupling constantar ,

Dq ­
X̀
i­0

Dqsid, (5)

in which the indexi gives the power ofar that appears
in Dqsid.

Assuming that the electron neutrino and muon neutrin
are massless, it can be shown that

Dqs0d ­ 28x 2 12x2 ln x 1 8x3 2 x4, x ­
m2

e

m2
m

,

(6)

which comes from phase space integrations.
The O sad corrections in Dq, first obtained by

Kinoshita and Sirlin [3] and by Berman [4], are

Dqs1d ­

√
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p

! "
25
8

2 3z s2d

#
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√
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m2
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m2
m
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e
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m

!
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wherez is the Riemann zeta function andz s2d ­ p2y6.
An exact expression for the full electron mass dependen
in Dqs1d has been given by Nir [7].

Recently, the hadronic contributions toDqs2d were
computed using dispersion relations along with contr
butions from muon and tau loops [8]. Their effect was
shown to be small relative to the present experiment
error. They become relevant for the next generation
muon lifetime experiments but the hadronic uncertainty
still well under control.

The Kinoshita-Lee-Nauenberg [9] theorem guarantee
that Dq is free from singularities asme ! 0, other than
those that can are absorbed intoar . It may be shown [10]
that all large logarithms of the formai lni21sm2

mym2
ed for

all i . 0 and those ofa3 lnsm2
mym2

ed can be accounted
for, in a manner consistent with both the calculation o
Ref. [8] and the perturbative results presented here,
setting

ar °! aesmmd ­
a

1 2
a

3p ln
m2

m

m2
e

1
a3

4p2 ln
m2

m

m2
e

, (8)

where a is the experimentally measured quantity,a ­
1y137.035 989 5s61d [11]. The contribution to the muon
lifetime from theO sa2d logarithmic term coincides with
the result obtained in Ref. [12]. The logarithms o
O sa3d were first obtained by Jost and Luttinger [13].
When evaluated Eq. (8) yieldsaesmmd ­ 1y135.90 ­
0.007 358 2. In the modified minimal subtraction (MS)
renormalization scheme with ’t Hooft mass,m ­ mm,
Eq. (8) correctly includes nonlogarithmic terms up to
O sa2d, but those ofO sa3d have been dropped.

II. 2-loop corrections.—(A) Photonic corrections:
The calculation of the 2-loop QED corrections to the
muon lifetime involves the sum of the cross section
m2 ! nme2n̄e, m2 ! nme2n̄eg, m2 ! nme2n̄egg,
andm2 ! nme2n̄ee1e2 with up to two virtual photons.
Individual diagrams are IR divergent and, in some case
require integration over a 5-body phase space. Th
problem of canceling these IR singularities can be avoide
entirely if the QED corrections are obtained as the imag
nary part of 4-loop propagator-type Feynman diagrams b
means of the optical theorem. Some of these diagrams
shown in Fig. 1. The heavy lines represent muons whic
are the only particles taken to have nonzero mass. T
4-fermion vertex used is the vector part of the usual on
from the Fermi theory. Inspection of the diagrams show
that the cuts generating imaginary parts produce all of th
Feynman diagrams contributing to muon decay. Extr
diagrams do appear in which the cut goes through a mu
line but such diagrams vanish kinematically because th
external muon is on its mass shell.

The imaginary parts of the necessary 4-loo
propagator-type diagrams were calculated as follow
Recursion relations [14], obtained by integration-by-part
were first applied to reduce all dimensionally regularize
489
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FIG. 1. Examples of diagrams whose cuts give contributio
to m2 ! nme2n̄e, m2 ! nme2n̄eg, or m2 ! nme2n̄egg.

integrals to a small set of relatively simple integral
These primitive integrals were chosen to be free fro
specific IR divergences that occur on shell. The we
behaved primitive integrals were then calculated by ta
ing the external muon momentumq off mass shell to
obtain expressions as power series inx ­ 2q2ym2

m and
logarithms ofx using well-established large mass expa
490
ns

s.
m
ll-
k-

n-

sion techniques along the lines of Ref. [15]. This ser
serves as a convenient representation as its coeffici
involve simpler integrals. Many terms in the large ma
expansion can be discarded since they do not contrib
to the imaginary part. What remains of the coefficien
in the expansion can be evaluated in closed form in ter
of polygamma functions and certain classes of multip
nested sums [16]. Then, the on-shell limit,x ­ 1, is
taken and the infinite sum over the coefficients ofxk is
performed. In this process the exact expressions colla
into known constants such as the Riemann zeta func
of integer argumentsz skd and polylogarithmsLiks1y2d.
Details of the procedures followed will be described els
where [10].

Fermion mass renormalization is performed in the o
shell scheme (that is to say that the renormalized mas
a stable fermion is set equal to its physical or pole ma
that generates derivatives of fermion self-energies for
external leg corrections. All diagrams were calculated
a general covariant gauge for the photon field, and ex
cancellation in the final result of the dependence on
gauge parameter was demonstrated.

The result for just the photonic diagrams is
ther

ms are
.
cluded

. (10b)
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p
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wherez s3d ­ 1.2020569 . . . andz s4d ­ p4y90.
(B) Electron loop corrections: The contribution of electron loops to the muon lifetime differs from those of o

fermions in that they must be combined with diagrams with an additionale1e2 pair in the final state in order to produce
an IR finite result; however, the procedure described above may be applied here as well. The electron loop diagra
shown in Fig. 2. A diagram containing a muon mass counterterm,dmm, on the external leg must be added to Fig. 2d
Furthermore, diagrams, in which the electron loop is replaced by the photon self-energy counterterm, must be in
to produce a UV finite result. This counterterm contribution is proportional toDqs1d and depends on the particular
renormalization scheme that has been chosen. The overall result in theMS renormalization scheme with ’t Hooft mass
m ­ mm consistent with Eq. (8) is

DG
s2d
elec ­ 2G0

√
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p

!2√
1009
228

2
77
36

z s2d 2
8
3

z s3d

!
, (10a)

­ G0

√
aesmmd

p

!2

3.22034 , (10b)

which is about 2 orders of magnitude greater than that of either muon loops or hadrons. The value obtained in Eq
is consistent with a numerical study presented in Ref. [17] in the context of semileptonic decays of heavy quarks.

The same methods used to calculate the contribution from electron loops can be applied to muon loops. Agre
was found with the result of Ref. [8].

III. Conclusions.—The photonic corrections of section II(A) can be combined with those of the electron loops
e1e2 pair production of section II(B), and adding the exact result for muon loops of Ref. [8] gives

DG
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6.743 , (11b)
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FIG. 2. Diagrams containing an electron loop whose cu
give contributions to muon decay,m2 ! nme2n̄e, m2 !
nme2n̄eg, or m2 ! nme2n̄ee1e2.

with ar ­ aesmmd ­ 1y135.90. The resulting
expression contains all corrections ofO sa2d,
O sssa3 lnsm2

eym2
mdddd, and O sssai lni21sm2

eym2
mdddd for all

i $ 2. Adding the hadronic and tau loop contributions
of Ref. [8], one obtains

DGs2d ­ G0

√
ar

p

!2

s6.700 6 0.002d , (12)

where the error is a conservative estimate of the hadron
uncertainty. Using the current best value fortm ­
s2.197 03 6 0.000 04d ms [11] yields

GF ­ s1.166 37 6 0.000 01d 3 1025 GeV22, (13)

which represents a reduction in the overall error onGF of
about a factor of 2 and a downward shift in the centra
value of twice the experimental uncertainty.GF is now
known to 9 ppm. The next generation of measuremen
of the muon lifetime is expected to reduce this by at lea
a further factor of 10.
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