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Coarse-Grained Surface Energies and Temperature-Induced Anchoring Transitions
in Nematic Liquid Crystals
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We introduce a coarse-grained description of the surface energy of a nematic liquid crystal. The
thermal fluctuations of the nematic director close to the surface renormalize at macroscopic scales th
bare surface potential in a temperature-dependent way. The angular dependence of the renormalize
potential is dramatically smoothed, thus explaining the success of the Rapini-Papoular form. Close
to the isotropic phase, the anchoring energy is strongly suppressed and the change of its shap
allows for anchoring transitions. Our theory describes quantitatively the temperature dependence
of the anchoring energy and the temperature-induced anchoring transitions reported in the literature
[S0031-9007(99)09369-2]
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In recent years, surface phenomena have attracted
lot of interest. Particularly, the interface between liqui
crystals [1] and solid substrates displays a rich varie
of behaviors: orientational wetting [2–5] and spreadin
[6,7], memory effects [8], surface melting [9], Kosterlitz-
Thouless transitions [10], quasicritical behavior of surfac
energies [11–13], surface anchoring transitions [14–22
etc. Despite the complexity and the diversity of the in
teractions between nematic liquid crystals and solid su
strates, some simple—though unexplained—ubiquito
aspects emerge from the experiments: the angular dep
dences of the surface potentials are extremely smoo
and well described by the so-called Rapini-Papoular la
[23], at high temperatures the preferred surface orie
tation is usually either parallel or perpendicular to th
substrate, tilted orientations are difficult to achieve [24
and temperature-driven anchoring transitions systema
cally occur immediately below the bulk isotropic transition
temperature [20]. In this Letter, we show that all these e
fects can be explained in terms of a renormalization of th
surface energy by the short-wavelength orientational flu
tuations in the bulk.

Nematic liquid crystals are fluid mesophases made
elongated molecules displaying a broken orientation
symmetry along a nonpolar direction called the nemat
director n [1]. At a molecular level, nematics exhibit
large orientational fluctuations and usually some degree
short-range biaxial and positional order. The link betwee
the microscopic and the macroscopic description can
established by means of a coarse-graining procedure [2
Before determining the consequences of this procedure
the surface behavior, let us briefly discuss how it is carrie
out in the bulk. One can associate a local orientationm
with each molecule; then the probabilitypfmg of a given
instantaneous microscopic configurationmsrd is propor-
tional to the Boltzmann factor exps2bF fmgd, where
F fmg is a complex microscopic free energy [26] and
b ­ 1ykBT is the inverse temperature. At macroscopi
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scales the bulk free-energyFfng is well described by a
simple elasticity involving only the average molecula
orientation n and its gradient [1,27]. The quantity
exps2bFfngd gives the probability of observing a given
smooth director configurationnsrd, whatever the details of
its rapidly varying components. One therefore obtains t
coarse-grained free-energyFfng by summing the micro-
scopic probabilities exps2bF fmgd over all the Fourier
componentsmsqd with wave vectorjqj . L, where L

is some macroscopic cutoff, the componentsmsqd with
jqj , L being fixed and denoted bynsqd. The resulting
free-energyFfng, which corresponds to the Frank elas
ticity [27], is therefore meaningful only for the slowly
varying Fourier componentsjqj , L of n. Such a coarse-
graining procedure yields a renormalized elasticity e
panded in power series of the derivatives ofn, whose
coefficients depend onT and are expected to scale a
powers of the rangeb of the molecular interactions. This
is why, for Lb ø 1, it is justified to retain inFfng only
the lowest-order gradient terms.

Using the Frank elasticityFfng implicitly entails a
coarse graining in the bulk. For the sake of consi
tency, this procedure should also be performed on the s
face. The latter will then be effectively transformed into
blurred layer of widthL21 acquiring some properties of the
bulk. Such a coupling between surface and bulk is usua
introduced in a phenomenological way by means of La
dau expansions in the tensorial nematic order-parameteQ
[2–4,9–14,28,29]. However, modeling surface properti
in this way is rather complicated, since one has to deal w
spatially varying tensorial fields, and also somewhat ar
trary, since high powers ofQ should be included due to
the first-order character of the nematic-isotropic transitio

We have calculated the renormalization of the surfa
energy by coarse graining the director orientation from
mesoscopic lengtha, of the order of the nematic coher
ence lengthjNI at the isotropic transition [1], up to a scale
L21 at least a few times larger thana. Our results, based
© 1999 The American Physical Society 4859
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on perturbation theory, are valid for weak anchorings,
the sense, ¿ jNI, where, is the anchoring extrapolation
length [1]. Callingu and f the director’s polar angles
and starting from a “bare” surface anchoring energy e
panded in Fourier harmonics of the form css2nud cssmfd
(cs being either cos or sin), we find that each harmon
is independently renormalized by a Debye-Waller facto
exps2an 2 bmd, with an, bn ~ n2kBTyKa, whereK is
a bulk nematic elastic constant. At scales larger thanL21,
the high-order harmonics are thus strongly suppressed
the director thermal fluctuations: this explains the succe
of the Rapini-Papoular form [23]. Moreover, the ancho
ing energy naturally acquires a temperature depende
through the elastic constantKsT d. The surface energy is
thus reduced close to the nematic-isotropic transition
where K is lowered—in agreement with experiment
[11–13]. The different temperature dependences of t
surface harmonics allow for anchoring transitions: as th
temperature increases, the suppression of the high-or
harmonics shifts the minimum of the anchoring energy t
wards some symmetry axis of the surface. Our results
well the quasicritical temperature dependence of the a
muthal anchoring energy measured by Faettiet al. [11],
the oblique-to-homeotropic anchoring transition measur
by Patel and Yokoyama [20], and the bistable oblique-t
planar anchoring transition [16] measured by Jägema
et al. [22]. It turns out that the effective macroscopic an
choring, whose minimum gives the coarse-grained dire
tor orientation at the surface, can significantly differ from
the mesoscopic surface potential (Fig. 1). The direct
fluctuations within the coarse-grained region dramatical
smooth the fine details of the anchoring energy. They c
also shift the average equilibrium position of the directo
at the surface, similarly to the amplitude-dependent sh
of the average position of an anharmonic oscillator [30].

Precisely, we consider a semi-infinite nematic slab
thez $ 0 half-space, and we describe the nematic direct

FIG. 1. Schematic representation of the surface and its a
choring potential at the mesoscopic scalea and coarse-grained
scaleL21. The mesoscopic potentialysud and its correspond-
ing effective coarse-grained potentialV sud are plotted in polar
coordinates in arbitrary units. The renormalized potentialV sud,
which depends on temperature, favors here an oblique anch
ing at T1 and an homeotropic one atT2 . T1.
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by its spherical coordinatesu, f centered on thez axis.
We start with a bulk elasticity already coarse grained on
mesoscopic lengtha ø jNI, such that it can be expressed
in the usual Frank form. In the one-constant approxim
tion [1], its harmonic part, expanded about an arbitrar
direction (u0, f0), takes the form

H0 ­
1
2

KsT d
Z

d3rfs=ud2 1 sin2u0s=fd2g . (1)

At the length scalea, the bare surface potentialHs is
given by some local functional of the mesoscopic director
orientation at the surface

Hs ­
Z

d2r' ysu, fd . (2)

The total free-energyFt of the nematic slab is given by the
path integral

exps2bFtd ­
Z

D fugD ffg

3 expf2bsH0 1 Hnh 1 Hsdg , (3)

where Hnh contains the nonharmonic bulk terms. To
further coarse grain on a length scaleL21 . a, we
put usrd ­ u,srd 1 u.srd andfsrd ­ f,srd 1 f.srd,
whereu,srd, f,srd have Fourier components with wave
vectorsjqj # L, andu.srd, f.srd have Fourier compo-
nents withL , jqj , 2pya. Integrating outu. andf.

yields the renormalized HamiltonianH , at length scales
L21; to lowest order in perturbation theory, it is given
by [25]

H , ­ H0 1 kHnh 1 Hsl. , (4)

where k· · ·l. indicates the statistical average over th
high-wave vector components, weighted by the Gaussi
HamiltonianH0. At first order, the bulk and the surface
are therefore renormalized independently.

Because of then ! 2n invariance, the bare surface
energy density can be Fourier expanded as

ysu, fd ­
X
n,m

0 cosnufwcc
nm cosmf 1 wcs

nm sinmfg

1
X
n,m

00 sinnufwsc
nm cosmf 1 wss

nm sinmfg ,

(5)

wheren runs over all even integers, andm runs over all
even (respectively, odd) integers in the first (respectivel
second) sum.

Even though (5) is nonlinear, the renormalized Hami
tonian (4) can be transformed into Gaussian integrals
writing the trigonometric functions as complex exponen
tials. We obtain a renormalized surface energy dens
V su,, f,d whose Fourier componentsW

ab
nm (a, b being

either c or s) are separately renormalized,

Wab
nm std ­ wab

nm exp

"
2

1
2

√
n2 1

m2

sin2u0

!
t

#
, (6)
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where, forLa ø 1,

t ­ ku.srd2l. ­ kBT
Z 2pya

L

d3q
s2pd3

1
Kq2 .

kBT
pKa

.

(7)

Note thatkf.srd2l. ­ ty sin2u0 also appears in (6).
It follows from (6) that for larget, i.e., in the vicinity of

the nematic-isotropic transition, whereK is reduced, the
effective surface potential should be very well describe
by its first harmonics. This is indeed what was measur
by Faettiet al. [11] using the nematic liquid crystal 5CB,
planarly anchored on a glass plate treated by obliq
evaporation of SiO: exploring the azimuthal anchorin
energy in regions far away from the parabolic minimum
they could not detect any deviation from the simple form

V ­ W0 sin2f ­ Wcc
02 cos2f 1 const. (8)

Setting u0 ­ py2, f0 ­ 0, we have fitted their data
with (6), i.e., Wcc

02 std ­ wcc
02 exps22td, in which we have

assumed a Landau–de Gennes form for the temperat
dependence ofK [31], yielding

t ­
kBTNI

pKNI a

√
4

3 1
p

9 2 8t

!2

, (9)

wheret ­ sT 2 TpdysTNI 2 Tpd is the reduced tempera-
ture, TNI the nematic-isotropic transition temperature,Tp

the isotropic supercooling temperature, andKNI the elastic
constant at the transition. WithTNI . 306.8 K, TNI 2

Tp . 1.5 K [32], our best fit, shown in Fig. 2, yields
tNI ; kBTNIypKNI a ­ 2.1 6 0.1 and Wcc

02 stNId ­
s22.08 6 0.08d 3 1024 ergycm2. For an extrapolated
KNI . 0.5 pN [33], the value oftNI yields a . 13 Å,
which roughly compares withjNI for a first-order phase
transition.

Close to the nematic-isotropic transition of the ne
matic compound E7, Patel and Yokoyama [20] have o

FIG. 2. Azimuthal anchoring energyW0 vs temperatureT
according to Faettiet al. [11]. Points: experimental data; solid
line: our fit.
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served a tilted-to-homeotropic anchoring transition on
fluoropolymer-coated surface. Again, we can explain
by retaining inV the first two harmonics allowed by sym-
metry, i.e.,

V ­ Wcc
20 cos2u 1 Wcc

40 cos4u . (10)

Minimizing (10) with respect tou yields the anchoring
phase diagram shown in the inset of Fig. 3, which displa
the following regions separated by second-order transiti
lines: conical oblique (O), homeotropic (H), degenerated
planar (P), and metastable homeotropicyplanar (HyP).
According to (6) and (9), as temperature increases, t
easy axis of the anchoring follows the typical path show
in the phase diagram. SettingTNI . 57.7 ±C andTH ­
54.48 ±C [20], whereTH is the homeotropic-to-oblique
transition temperature, we fit closely the temperatu
dependence of the easy-axis directionu with TNI 2 Tp .
1.62 K and tNI ­ 1.2 6 0.04 (Fig. 3).

Using the same values ofTNI, TNI 2 Tp, andtNI, which
depend only on the nematic material, we can fit equal
well the bistable oblique-to-planar anchoring transition ob
served by Jägemalmet al. [22] at T ­ TP ­ 49.7 ±C for
the same compound E7 (Fig. 4). This anchoring trans
tion also appears close to the nematic-isotropic transitio
in the presence of a glass substrate treated by an obliq
evaporation of SiO. Here, by symmetry, the lowest-orde
expansion ofV is

V ­ Wcc
20 cos2u 1 Wcc

02 cos2f 1 W sc
21 sin2u cosf .

(11)

SettingWu ­ Wcc
20yWcc

02 andWuf ­ jW sc
21yWcc

02 j, the cor-
responding anchoring phase diagram, shown in the ins
of Fig. 4, displays the four regions, separated by secon
order transition lines, that are observed experimenta
[16,17]: oblique in the evaporation plane (O), bistable
symmetric with respect to the evaporation plane (B),

FIG. 3. Surface easy-axisu (measured with respect to the
surface normal) vs temperatureT according to Patel and
Yokoyama [20]. Points: experimental data; solid line: our fit
Inset: Anchoring phase diagram (in arbitrary units) correspon
ing to Eq. (10).
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FIG. 4. Surface easy-axis (u, f) vs temperatureT according
to Jägemalmet al. [22]. Points: experimental data; solid
line: our fit. Inset: anchoring phase diagram corresponding
Eq. (11); the arrow indicates the path followed asT increases.

homeotropic (H), and planar orthogonal to the evapora
tion plane (P). Once fixed the values ofTP , and, by the
previous fit, ofTNI, TNI 2 Tp, andtNI, the fit onu has no
adjustable parameter, while for the fit onf there remains
the only free parameterwsc

21ywcc
02, best adjusted to the value

6.76 6 0.05.
To estimate the validity of our first-order perturbative

expansion in the surface potential, we have calculated t
second-order correction toWcc

40 coming from wcc
20 [34].

For La ø 1, we find
dWcc

40

wcc
20

.
2 wcc

20

pLK
exps24td , (12)

which is negligible forL21 ø ,, where, ­ Kywcc
20 is

a bare anchoring extrapolation length; this sets the lim
of validity of our analysis. Coarse graining on a length
L21 * , effectively reduces the anchoring for purely
elastic reasons, as will be described elsewhere.

Finally, note that, since we coarse grained on a leng
L21 . jNI, our model is insensitive to the variations of
the scalar order-parameterS [1]. This does not imply,
however, thatS must be uniform throughout the sample
any substrate inducing a surface variation ofS will still
be described—at length scales larger thanjNI —by some
potentialysu, fd depending only on the director’s orien-
tation. Our analysis simply disregards the underlying su
face variations ofS: this is a limitation only whenjNI
becomes critically large.
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