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Statistical Entropy of Four-Dimensional Rotating Black Holes from Near-Horizon Geometry
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We show that a class of four-dimensional rotating black holes allow five-dimensional embeddings
as black rotating strings. Their near-horizon geometry factorizes locally as a product of the three-
dimensional anti–de Sitter space-time and a two-dimensional sphere (AdS3 3 S2), with angular
momentum encoded in the global space-time structure. Following the observation that the isometries
on the AdS3 space induce a two-dimensional (super)conformal field theory on the boundary, we
reproduce the microscopic entropy with the correct dependence on the black hole angular momentum.
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Recent developments in nonperturbative string theo
have provided a fruitful framework to consider quantum
properties of black holes. In particular, extreme blac
holes with Ramond-Ramond (RR) charges can be
terpreted in higher dimensions as intersecting D-bran
[1], and this has led to a counting of black hole qua
tum states that agrees precisely with the Bekenste
Hawking (BH) entropy [2]. This counting is carried
out in the weakly coupled regime where the D-bran
constituents of the black hole experienceflat space-time
geometry; however, due to supersymmetry, it remai
valid in the regime where the D-branes are strong
coupled, and the geometric space-time description
black holes emerges. Thus the microscopic derivati
of the BH entropy is justified, but it is difficult to ex-
plore the quantum black hole geometry in detail usin
D-branes.

This obstacle was recently overcome when Stroming
[3] (and also Birminghamet al. [4]) proposed a new
method that counts the black hole microstates direc
using the geometry of the black hole. The central o
servation is that, when embedded in a higher dime
sional space, the near-horizon geometry locally conta
the three-dimensional anti–de Sitter space-time (AdS3).
The microscopic theory of such backgrounds must re
ize a two-dimensional conformal field theory (CFT) an
its central charge can be computed from general princip
[5]. The quantum degeneracy of the theory follows fro
these facts and a few additional mild assumptions; and
remarkable observation of [3] is that it accounts correct
for the black hole entropy. Although this result is logicall
independent of the D-brane countings, it has neverthel
been conjectured that the theory inferred from theAdS3 is
equivalent to the D-brane theory [6].

Shortly after the original D-brane counting of stati
black hole states, it was realized that the D-brane meth
also accounts for the entropy of rotating black hole
[7,8]. The appropriate states belong to the same CFT t
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accounts for the entropy of nonrotating black holes; th
simply have different quantum numbers.

The purpose of this Letter is to include the effects of a
gular momentum within the new geometric approach.
appears at first sight that this goal is doomed to failure:
tating black holes are flattened relative to their nonrotati
brethren, and they couple the angular and temporal co
ponents of the metric. These effects seem to preclude
appearance of anAdS3 space-time in the near-horizon ge
ometry, thus rendering the new method inapplicable, a
furthermore showing that the “geometric CFT” and the “D
brane CFT” are distinct. However, we shall demonstra
that this intuition is incorrect: the near-horizon geomet
of rotating black holes does contain anAdS3 component,
and it reproduces the black hole entropy correctly.

We consider a family of four-dimensional near-extrem
rotating black holes and interpret these black holes
charged rotating strings in five dimensions, with th
string wrapped around the compactified fifth dimensio
Its near-horizon geometry is found to belocally a di-
rect product of theAdS3 and a two-dimensional sphere
(AdS3 3 S2); the sphere is not squashed by the rotatio
(For the correct microscopic interpretation it is essent
that the solution is reinterpreted in five dimensions as a
tating string; in four dimensions the near-horizon geom
try does not have a factorized form.) Instead the rotati
is implemented by boundary conditions that couple t
angular and the temporal components of the metric, w
the rotation absent in the “comoving coordinate system
Related work on five-dimensional rotating black holes
presented in detail elsewhere [9].

The starting point is a large class of four-dimension
black holes (of toroidally compactified string theory
whose explicit space-time metric is given in [10]. The
are specified by their massM, four Us1d chargesQi , and
the angular momentumJ or, more conveniently, in terms
of the nonextremality parameterm, four boostsdi, and the
angular parameterl,
© 1999 The American Physical Society
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G4M ­
1
4

m
3X

i­0

cosh2di ,

G4Qi ­
1
4

m sinh2di; i ­ 0, 1, 2, 3 ,

G4J ­ ml

√
3Y

i­0

coshdi 2

3Y
i­0

sinhdi

!
,

where G4 is the four-dimensional Newton’s constant
(The notation follows [10]. Ther0 of [11] is r0 ­ 2m, the
m of [12] is m ­ 4m, the l of [12] is lhere ­ 4lthere, and
the Qi of [13] is Qhere ­ 2Qthere.) The Kerr-Newman
black hole corresponds to the case where the four char
are identical. The extreme limit is obtained by takin
m ! 0 and l ! 0 while keepingQ0,1,2,3 finite; in this
caseJ ­ 0. From the explicit solution one finds the BH
entropy [10],

S ;
A4

4G4
­

p

4G4

"
8m2

√
3Y

i­0

coshdi 1

3Y
i­0

sinhdi

!

1 8m
p

m2 2 l2

√
3Y

i­0

coshdi 2

3Y
i­0

sinhdi

!#
, (1)
.

ges
g

whereA4 is the area of the outer horizon.
A specific representation of the metric and its accomp

nying matter fields is given in [10] in terms of the NS-N
fields (NS: Neveu-Schwarz); e.g., its higher-dimension
interpretation is that of a rotating fundamental string wi
winding and momentum modes, superimposed with t
Kaluza-Klein monopole and the H monopole [14]. A pa
ticular duality transformation leaves the four-dimension
space-time invariant, while mapping this configuration
three intersecting M5-branes of M theory (specified b
Q1,2,3), with momentum (specified byQ0) along the com-
mon string. This M-theory configuration can be inte
preted as a rotating string in five dimensions after toroid
compactification. The space-time metric of the rotatin
string is rather complicated, and we were unable to wr
it in a relatively compact form. [The complications as
sociated with the angular momentum are similar to tho
of adding an additional charge (the “fifth parameter”)
the configuration [15].] However, the metric simplifie
significantly in the near-horizon regionr ø Q1,2,3, when
the conditiond1,2,3 ¿ 1 is satisfied. Then the metric of
the five-dimensional rotating string in the Einstein fram
becomes
ds2
5 ­

2
l

"√
r 2

l2

2m
cos2u

!
s2dt̃2 1 dỹ2d 1 2m

√
1 2

l2

2m2

!
cos2udt̃2 2

l2

m
cos2udt̃dỹ

#

1
l2

4

"
1

r2 2 2mr 1 l2 dr2 1 du2 1 sin2udf2

#
2

s
ll2

m
sdỹ 1 dt̃d sin2udf ,
ive

he

ng
where the boosted variables (specifying the momentu
along the string) are

dt̃ ­ coshd0dt 2 sinhd0dy,

dỹ ­ coshd0dy 2 sinhd0dt ,
(2)

and the characteristic length scalel is defined asl ;
8G4sQ1Q2Q3d1y3. Note that the metric (2) retains non
trivial dependence on the angular momentum; howev
the Kerr-Newman black holes arenot compatible with the
limit considered here.

Introducing the shifted coordinate,

df̃ ­ df 2
2l

p
l3m

sdỹ 1 dt̃d , (3)

yields the factorized metric

ds2
5 ­

2
l

"
2

√
r 2 2m 1

l2

2m

!
dt̃2

2
l2

m
dt̃dỹ 1

√
r 2

l2

2m

!
dỹ2

#

1
l2

4

"
dr2

r2 2 2mr 1 l2 1 du2 1 sin2udf̃2

#
.

With this choice of coordinates it is apparent that th
geometry is a direct product of a two-sphereS2, with
radius l

2 , and a Banados, Teitelboim, and Zanelli (BTZ
m

-
er,

e

)

black hole in three space-time dimensions with a negat
cosmological constantL ­ 2l2. Indeed, introducing

the coordinatest ; tl

R11
, s ; y

R11
, and r2 ; 2R2

11

l fr 1

2m sinh2 d0 2
l2

2m scoshd0 2 sinhd0d2g, whereR11 is the
radius of the dimension wrapped by the string, we find t
standard BTZ metric [16]

ds2
5 ­ 2N2dt2 1 N22dr2

1 r2sds 2 Nsdtd2 1
1
4

l2dṼ2
2 ,

N2 ­
r2

l2 2 M3 1
16G2

3J2
3

r2 , Ns ­
4G3J3

r2 ,

where the effective BTZ massM3 and angular momentum
J3 are

M3 ­
R2

11

l3

"√
4m 2

2l2

m

!
cosh2d0 1

2l2

m
sinh2d0

#
,

8G3J3 ­
R2

11

l2

"
2l2

m
cosh2d0 1

√
4m 2

2l2

m

!
sinh2d0

#
,

and the effective three-dimensional gravitational coupli
G3 is related to the four-dimensional oneG4 as [13]

1
G3

­
1

G4

A2

2pR11
, (4)
485
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whereA2 ­ pl2 is the area of the two-sphereS2. The
BTZ geometry islocally AdS3 but global identifications
ensure causal structures that are similar to those fami
from four-dimensional black holes. For our purposes
is crucial that the BTZ geometry isasymptoticallyAdS3,
because then the isometries induce a CFT on the bound
at spatial infinity [3,5]. Its central chargec is determined
by the effective cosmological constant2l2 as [5]

c ­
3l

2G3
­ 6

Q1Q2Q3

8G4R11
, (5)

and the conformal weightshL,R (eigenvalues of the
Virasoro operatorsL0, L̄0, respectively) are related to the
BTZ parameters as [17]

hL,R ­
lM3 6 8G3J3

16G3
. (6)

The shift Eq. (3) introduces a coupling between theAdS3
and theS2, but Eqs. (5) and (6) are still justified becaus
their derivations apply at each point on theS2.

Collecting the formulas (5) and (6) we find, in the
semiclassical regime where the conformal weights a
large, the statistical entropy

S ­ 2p

√r
c
6

hL 1

r
c
6

hR

!

­
p

4G4

p
Q1Q2Q3

"
p

m ed0 1

s
m 2

l2

m
e2d0

#
. (7)

On the other hand, we assume parameters satisfy
d1,2,3 ¿ 1 and so the BH entropy (1) becomes

S .
p

4G4

p
Q1Q2Q3

"
p

m ed0 1

s
m 2

l2

m
e2d0

#
. (8)

This is in precise agreement with the microscopic calcu
tion (7). It also agrees with the D-brane motivated coun
ing given in [11].

The derivation of statistical black hole entropy does n
rely on the details of the underlying quantum theory, b
the relation to M theory is interesting. In M-theory unit
R11 ­ g

p
a0, the Planck length islp ­ s2pgd1y3

p
a0,

andG4 ­
1
8

sa0d4g2

R1R2R3R4R5R6
where theRi are the radii of the

compact dimensions andg is the string coupling constant.
In the preceding section we assumed the near-horiz

approximationr ø Q1,2,3 and the conditiond1,2,3 ¿ 1.
These become exact in the formal decoupling limit [6],

slp , r , m, ld ! 0,

with sr , l3
p , m , l3

p , l , l3
p , R1,...,6 , lp , R11 , 1d ,

(9)

where the field theory on the intersection of the M5-bran
decouples from gravity. Note, in particular, that angul
momentum is compatible with decoupling. This appea
to be the case only for configurations that correspond
regular black holes in four and five dimensions; the nea
horizon geometry of, e.g., the (coincident) D3-branes, a
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the M5-branes do not have rotating versions. Thus on
the induced CFTs intwo dimensions seems to have world
volume currents with charges that can be interpreted
angular momenta.

The quantization conditions on the D-brane charg
are [1] Qi ­ fs

p
a0d3yR2i21R2ignig, where n1,2,3 is the

number of coincident M5-branes with a given orientatio
soQ1Q2Q3 ­ 8G4R11n1n2n3, and from (5) the quantized
form of the central charge becomesc ­ 6n1n2n3 as
expected [18–20]. A heuristic microscopic interpretatio
of this formula is that each of the M-branes traver
the intersection stringni times, giving a total ofn1n2n3
distinct topological sectors, each associated with6 degrees
of freedom.

The quantum numberse and p for the string energy
and momentum, respectively, are introduced through

E ­ 2m cosh2d0 ­ 8G4
e

R11
,

Q0 ­ 2m sinh2d0 ­ 8G4
p

R11
,

(10)

and then the conformal weightshL,R can be written as

hL ­
R11

8G4
me2d0 ­

1
2

se 1 pd,

hR ­
R11

8G4

√
m 2

l2

m

!
e22d0 ­

1
2

se 2 pd 2
1

n1n2n3
J2.

(11)

The space-time angular momentum is normalized so t
J is measured in units of̄h, and thus, from semiclassica
reasoning,J is quantized as an integer. By introducin
a single unit of angular momentum we see thathR is
quantized in units of1yn1n2n3.

The angular momentum of the black hole brea
rotational invariance of the background, so it is n
guaranteed by symmetries that the near-horizon geom
contains a two-sphereS2. In the present model the
linking of AdS3 and S2 is accomplished by theglobal
features contained in the boundary conditions at infin
and encoded in the coordinate shift (3). It is therefo
surprisingly simple to include angular momentum whi
preserving full analytical control. This makes the prese
model an attractive setting to study angular momentu
The precise value of the shift can be understood
follows: the potentials conjugate to the left- and righ
moving string energies are

bL ­
p

2

s
l3

m
e2d0 , bR ­

p

2

s
l3m

m2 2 l2 ed0 ,

(12)

respectively, and the rotational velocityV is given
through bHV ­ s2ply

p
m2 2 l2 d, where bH ­

1
2 sbL 1 bRd is the inverse of the Hawking temperature
Thus, in the “comoving” frame where thẽf, given in (3),
is fixed, we have
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√
df

dt

!
t­y,f̃

­
4l

p
l3m

e2d0 ­
bHV

bR
, (13)

so the azimuthal anglef is essentially shifted by the
angular velocityV. The factors of inverse temperature
and their significance for the wave functions of black ho
perturbations are similar to the ones discussed for fiv
dimensional black holes in [9].

The direct connection between the near-horizon geom
try and the underlying CFT appears to be valid for blac
holes in the near-extreme limit only. Eventually, it will
be important to test its validity and limitations away from
the near-extreme limit. The structure indicated by angul
momentum may play an important role in this endeavo
[10,21].
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