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Energy of a Plasma in the Classical Limit
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When Ar < dr, whereAr is the de Broglie wavelength ant} is the distance of closest approach
of thermal electrons, a classical analysis of the energy of a plasma can be made. In all the classical
analysis made until now, it was assumed that the frequency of the fluctuatieesT, (ky = i = 1).
Using thefluctuation-dissipation theoremye evaluate the energy of a plasma, allowing the frequency
of the fluctuations to be arbitrary. We find that the energy density is appreciably larger than previously
thought for many interesting plasmas, such as the plasma of the Universe before the recombination era.
[S0031-9007(99)09376-X]

PACS numbers: 52.25.Dg, 95.30.Qd

There have been many classical calculations of the (I) Electromagnetic fluctuations-The spectra of the
energy of a plasma [1-3]. They are based on perturbatioalectromagnetic fluctuations in an isotropic plasma are
theory of an ideal gas, in terms of the plasma parameteagiven by [6]

g (which usually is a small value). The treatment, to the (E¥%w 1 Ime;
first order ing, is the Debye-Huckel theory. However, =

. ] ) 8 e/T — 1 |gg|?

in the calculations that have been made it is assumed that

w < T (kg = h = 1). Thisis a very strong assumption. +0 1 Imer (1)

For example, in our previous analysis [4,5], we showed that e/T =1 |gp — (550227

only by not assuming < T, is the blackbody spectrum (B2, 1 ke \2 Imey

obtained. © —9 Y <_> —T (2
We evaluate the energy of a plasma, studying the elec- 8 ¢ LN/ Jer — (521

tromagnetic fluctuations in a plasma without assumingZ = kg = 1), where ¢, and e are, respectively, the
thatw < T. A plasma in thermal equilibrium sustains longitudinal and transverse dielectric permittivities of
fluctuations of the magnetic and electric fields. The electhe plasma. The first and second terms in Eq. (1) are
tromagnetic fluctuations are described by the fluctuationthe longitudinal and transverse electric field fluctuations,
dissipation theorem [6]. respectively.

The evaluation of the electromagnetic fluctuations in a By using the fluctuation-dissipation theorem, we can
plasma has been made in numerous studies [7]. Recentlgstimate the energy in the electromagnetic fluctuations
Cable and Tajima [8] (see also [9]) studied the magnetidor all frequencies and wave numbers. The calculation
field fluctuations in a cold plasma description with aincludes not only the energy of the fluctuations in the
constant collision frequency as well as for a warm,well defined modes of the plasma, such as plasmons in
gaseous plasma, described by kinetic theory. the longitudinal component and photons in the transverse

Using a model that extends the work of Cable andcomponent, but also the energy in fluctuations that do
Tajima [8], we study an electron-proton plasma of tem-not propagate.
peraturel 04~ 10° K with densities10'*~10'° cm™3. The For the description of the plasma, we use the model
condition for a classical analysis is that < dr, where described in detail in Opher and Opher [4,5]. The
A7 is the de Broglie wavelength for a thermal electron anddescription includes thermal and collisional effects. It
dr = ¢*/T, the distance of closest approach. This con-uses the equation of Vlasov in first order, with the BGK
dition is satisfied fofl < 3 X 10° K and for the plasmas (Bhatnagar-Gross-Krook) collision term that is a model
studied. equation of the Boltzmann collision term [10]. We used

In Sec. | we recall the expressions for the electromagthe BGK collision term as a rough guide for the inclusion
netic fluctuations in a plasma, and in Sec. I, the elecof collisions in a plasma.
tromagnetic energy is computed. Finally, we discuss our From this description, the dielectric permittivities for an
results in Sec. lll. | isotropic plasma are easily obtained:

_ ‘”paz 1+ [(w + in)/\/ikva]Z[(w + in“)/\/zkv“]
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wherea is the label for the species of particlas, is the  correlation energy to the first order inis
thermal velocity for the species, aidz) is the Fried and 3 g
Conte function. E.= 5 nT<E>- (8)

(II) Electromagnetic energy—In order to estimate the
electromagnetic energy, we use the dielectric permittivi- We define the energy of a plasma as
ties, given by Egs. (3) and (4), and calculate the magnetic 3
and the electric field spectra from Egs. (1) and (2). In- U=SnT(l+4). 9)
tegrating the spectra in wave number and frequency [and . . o .
dividing by (27)?], we obtain the energy densities of the With this definition,A = A¢ = —¢/127 for the previous
magnetic fieldp, and of the transverse and longitudinal classical analysis [Eq. (7)], where the subscript “0” means
electric fieldspz, andp;. that.the assumptiow < T has been used._

Usually, when estimating the energy stored in the elec- Higher order calculations of the co_rrelatlon energy have
tromagnetic fluctuations from Egs. (1) and (2), it is as-P€en made, for example, by O’'Neil and Rostoker [11].
sumed thato < T (kg = i = 1). With this assump- However, in all treatments, the assumption< T has _
tion, the Kramers-Kronig relations can then be used, and 8¢€n made. As we commented above, the assumption
simple expression for the energy is obtained [1,2]. How-® < T is very strong. A large part of the fluctuations
ever, the assumption that < T is very restrictive. For hase >T. _ _
example, a large part of the fluctuations which create the 10 obtain the interaction energy, we need to subtract
blackbody electromagnetic spectrum has> T [4,5]. It the energy of the particles due to thelr.ow'n fields, the
is therefore necessary to perform the integration of théecond term of Eq. (5), from the Iongltudlnalzenergy
spectra over frequency and wave number without usin%ens't%/?b We thus havepin = pr. — 772 [ dk k> i
this assumption. sing Eq.3 (9), the interaction energy can be written

Our model uses kinetic theory with a collision term thatas pine = 5(nT)A, where piy, is the equivalent of the
describes the binary collisions in the plasma. A cutoffcorrelation energy. In fact, using the approximation<
has to be taken since, for very small distances, the energfy: Pint IS €qual to the second term of Eq. (7).
of the Coulomb interaction exceeds the kinetic energy. In order to comparepi, with E., we define the
This occurs for distances,, ~ ¢2/T, which defines our Parameter,
maximum wave numbeky,y. Al — |Aol

A large kn.x is needed in order to reproduce the F= T (10)
blackbody spectrum. In this study, we usedkg.x
equal to the inverse of the distance of closest approac

which we previously found is able to do this [4,5]. Any

smallerkn, was unable to reproduce the entire blackbodyEr9i€S»x, andpp) has an additional energy, compared to
the blackbody energy density in vacuum. The additional

We previously found [5] that the transverse energy
Q’summing the transverse electric and magnetic field en-

spectrum. )
In the usual classical calculations, the correction to thd'aNSVerse energy is
energy due to correlations between the particles is made Apy = pp + pE, — Py, (12)

through thecorrelation energy _To the first order in the where p, is the photon energy density, estimated as the

plasma parametey, the correl_atlon energy depends on theblackbody energy density in vacuum.

two-particle correlation functio (k), Adding the interaction energyi, to Ap., we obtain
__n 2 __n 2 the total change in the energy density due to the transverse

Ec 472 dk kiS5 k) 4772 f k. () and longitudinal components,

where the second term is the energy of the particles due to — Ap. + p. (12)

their own fields. S(k) can be estimated by the fluctuation- Puew Py T Pinc.

dissipation theorem or by the Bogoliubov-Born-Green- We calculate pn.,, and pi, for an electron-proton

Kirkwood-Yvon hierarchy equations [3]. Generally, it is Plasma atl’ = 10° K, T = 10* K, and T = 10° K for

assumed thab < T (so the Kramers-Kronig relation can densities ranging fromi0°~10' cm™. The densities

be used) and (k) is obtained as were chosen so as to assure that the plasma parameter,
k2 ¢ = 1/nA3, < 1, in order that kinetic theory is valid. For
S(k) = [EEE (6) these plasmas, the de Broglie wavelength is less than the
D

distance of closest approach of thermal electrons, which
rjustifies our classical treatment.
In Fig. 1, we plot A as a function of the density
10> = n = 10" cm™3 for the temperatures = 103, 10*,
U= 3 nT[l - <L>} (7) and 10° K. We extended each plot until the density for
2 127 which ¢ = 0.3 was reached. For each of the tempera-
wheren is the number density of the particles. Thus, thetures, the value ofg increases with the density. In

wherekp is the inverse of the Debye length.
With this, the energy density of a plasma to first orde
in g is given as
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FIG. 1. The correctionA as a function of density and F|G. 2. The deviation of the correction, from the usual one,
temperature. The filled curve is fd&f = 10° K, the dashed Aot F = |A] — |Aol/IAol. The filled curve is forT = 10° K,

curve forT = 10* K, and the dotted curve fof = 10°. The  the dashed curve fof’ = 10* K, and the dotted curve for
curves are evaluated from the analytic expression and the fillegr — 103 K.
squares are the calculated values from Egs. (1)—(4).

we then found thal is equal toA, the value obtained in

the case off = 10° K, for example, forn = 10° cm™,  previous analysis.
g =962 x 10" and forn = 10° cm™3, g = 3.04 X (Il Conclusions and discussios-We calculated
107%. Wheng = 0.3, n = 10" cm™3. In the case of p,., andpiy, for an electron-proton plasma as a function
T =10° K,forn = 10° cm™3, g = 3.04 X 10" %andfor of density for 7 = 103-10° K. For many interesting
n=10"cm3, ¢ =962 %X 1073. Wheng =0.3,n = plasmas, we found thah > A,. We used the BGK
1013 cm™3. collision term as a rough guide to the inclusion of

We found a very good fit for the results of Fig. 1, collisions. The BGK is a model collision term for the
using a Fermi-Dirac functional form for the density Boltzmann collision term. Collisions, however, change
dependence oA, A(T) = Al/{exd(x/A2) — A3] + 1},  the results very little. For example, fa@t = 10° K and
with x = log(n) and Al = ajg + a T + a;pT? A2 = n = 10" cm™3, the difference inA, with or without
axy + anT + anT? and A3 = asy + a3 T + aT?.  collisions, is less than0~°. Since there is no significant
From Fig. 1, we obtain A1 = 0.3522 — 0.1698(T/  difference between the energy density, with or without
10%) + 0.1145(T/10°)?, A2 = 0.8255 + 0.4797(T/10°) —  the collision term, the use of a more accurate collision
0.4532(T/10°)%, and A3 = 17.650 + 33.027(T/10°) —  term than the BGK collision term is not necessary.
26.201(T/10°)%>. The curves (filled, dashed, and dotted) Appreciably different values than the usual ones are
are evaluated from the analytic expression; the fillecobtained, for the interaction energy of a plasma, by not
squares are the calculated values\ofrom Egs. (1)—(4). assumingw < T. To the first order ing, we found
The fit can be seen to be excellent. In Fig. 2, we plothat the energy of an ideal gas needs to be corrected
F = (A — Ag)/A as a function of the density, for the by a positive value, approximately3pp,, = 0.3(3/2)nT.
temperatureg = 10%, 10*, and10’ K, which shows how This results in very different values from the usual ones
A differs from the usual correctiof. ~(1073-107%) (3/2)nT.

The values ofA that we obtained are positive and larger We obtained a general expression for the correction
in absolute value thal,, whereas\, is negative. This as a function of density and temperatute(T’) = A1/
indicates that the energy in the fluctuations dominates thgexd (x/A2) — A3] + 1} with x = log(n), A1 = 0.3522 —
interaction energy of the particles. We observe thaan  0.1698(7/10°) + 0.1145(T/10°)>, A2 = 0.8255 +
reach values of a thousand or greater. 0.4797(T /10°) — 0.4532(T/10°)?, and A3 = 17.650 +

The additional transverse energyp, is completely 33.027(7/10%) — 26.201(T/10°)>.
negligible for these temperatures and densities. For The total correction to the energy is completely dom-
example, for7T = 10°K and » = 10" cm™3, Ap = inated by the interaction energy. For these tempera-
1073p,. For this temperature and densipp.: = 273p,  tures and densities, the transverse additional energy is
and pyy, is completely dominated by, = Appar. For  negligible.
example, for7 = 10° K and n = 10'7 cm™3, Ap, = Our results may be applied to the plasma before the
1077p,,. recombination era, when the plasma had a temperature

As a check, we calculategt,,, integrating in frequency 7 > 10° K and a densityn > 10° cm™3. Since the
only up to w = w,, the plasma frequency<T), and expansion rate of the Universe (the Hubble parameter)
integrating in wave number up to < kp. As expected, is proportional to the square root of the plasma energy
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