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Energy of a Plasma in the Classical Limit
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When lT ø dT , wherelT is the de Broglie wavelength anddT is the distance of closest approach
of thermal electrons, a classical analysis of the energy of a plasma can be made. In all the classical
analysis made until now, it was assumed that the frequency of the fluctuationsv ø T , (kB ­ h̄ ­ 1).
Using thefluctuation-dissipation theorem,we evaluate the energy of a plasma, allowing the frequency
of the fluctuations to be arbitrary. We find that the energy density is appreciably larger than previously
thought for many interesting plasmas, such as the plasma of the Universe before the recombination era
[S0031-9007(99)09376-X]
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There have been many classical calculations of t
energy of a plasma [1–3]. They are based on perturbat
theory of an ideal gas, in terms of the plasma parame
g (which usually is a small value). The treatment, to th
first order ing, is the Debye-Hückel theory. However
in the calculations that have been made it is assumed t
v ø T (kB ­ h̄ ­ 1). This is a very strong assumption
For example, in our previous analysis [4,5], we showed th
only by not assumingv ø T , is the blackbody spectrum
obtained.

We evaluate the energy of a plasma, studying the ele
tromagnetic fluctuations in a plasma without assumin
that v ø T . A plasma in thermal equilibrium sustains
fluctuations of the magnetic and electric fields. The ele
tromagnetic fluctuations are described by the fluctuatio
dissipation theorem [6].

The evaluation of the electromagnetic fluctuations in
plasma has been made in numerous studies [7]. Recen
Cable and Tajima [8] (see also [9]) studied the magne
field fluctuations in a cold plasma description with
constant collision frequency as well as for a warm
gaseous plasma, described by kinetic theory.

Using a model that extends the work of Cable an
Tajima [8], we study an electron-proton plasma of tem
perature104 105 K with densities1013 1019 cm23. The
condition for a classical analysis is thatlT , dT , where
lT is the de Broglie wavelength for a thermal electron an
dT ­ e2yT , the distance of closest approach. This con
dition is satisfied forT , 3 3 105 K and for the plasmas
studied.

In Sec. I we recall the expressions for the electroma
netic fluctuations in a plasma, and in Sec. II, the ele
tromagnetic energy is computed. Finally, we discuss o
results in Sec. III.
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( I) Electromagnetic fluctuations.—The spectra of the
electromagnetic fluctuations in an isotropic plasma a
given by [6]
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(h̄ ­ kB ­ 1), where ´L and ´T are, respectively, the
longitudinal and transverse dielectric permittivities o
the plasma. The first and second terms in Eq. (1) a
the longitudinal and transverse electric field fluctuation
respectively.

By using the fluctuation-dissipation theorem, we ca
estimate the energy in the electromagnetic fluctuatio
for all frequencies and wave numbers. The calculati
includes not only the energy of the fluctuations in th
well defined modes of the plasma, such as plasmons
the longitudinal component and photons in the transve
component, but also the energy in fluctuations that
not propagate.

For the description of the plasma, we use the mod
described in detail in Opher and Opher [4,5]. Th
description includes thermal and collisional effects.
uses the equation of Vlasov in first order, with the BG
(Bhatnagar-Gross-Krook) collision term that is a mod
equation of the Boltzmann collision term [10]. We use
the BGK collision term as a rough guide for the inclusio
of collisions in a plasma.

From this description, the dielectric permittivities for a
isotropic plasma are easily obtained:
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wherea is the label for the species of particles,ya is the
thermal velocity for the species, andZszd is the Fried and
Conte function.

( II) Electromagnetic energy.—In order to estimate the
electromagnetic energy, we use the dielectric permittiv
ties, given by Eqs. (3) and (4), and calculate the magne
and the electric field spectra from Eqs. (1) and (2). I
tegrating the spectra in wave number and frequency [a
dividing by s2pd3], we obtain the energy densities of th
magnetic fieldrB and of the transverse and longitudina
electric fieldsrET andrL.

Usually, when estimating the energy stored in the ele
tromagnetic fluctuations from Eqs. (1) and (2), it is a
sumed thatv ø T (kB ­ h̄ ­ 1). With this assump-
tion, the Kramers-Kronig relations can then be used, an
simple expression for the energy is obtained [1,2]. How
ever, the assumption thatv ø T is very restrictive. For
example, a large part of the fluctuations which create t
blackbody electromagnetic spectrum hasv . T [4,5]. It
is therefore necessary to perform the integration of t
spectra over frequency and wave number without usi
this assumption.

Our model uses kinetic theory with a collision term tha
describes the binary collisions in the plasma. A cuto
has to be taken since, for very small distances, the ene
of the Coulomb interaction exceeds the kinetic energ
This occurs for distancesrmin , e2yT , which defines our
maximum wave number,kmax.

A large kmax is needed in order to reproduce th
blackbody spectrum. In this study, we used akmax
equal to the inverse of the distance of closest approa
which we previously found is able to do this [4,5]. Any
smallerkmax was unable to reproduce the entire blackbod
spectrum.

In the usual classical calculations, the correction to t
energy due to correlations between the particles is ma
through thecorrelation energy. To the first order in the
plasma parameterg, the correlation energy depends on th
two-particle correlation functionSskd,

EC ­
n

4p2

Z
dk k2fkSskd 2

n
4p2

Z
dk k2fk , (5)

where the second term is the energy of the particles due
their own fields. Sskd can be estimated by the fluctuation
dissipation theorem or by the Bogoliubov-Born-Green
Kirkwood-Yvon hierarchy equations [3]. Generally, it is
assumed thatv ø T (so the Kramers-Kronig relation can
be used) andSskd is obtained as

Sskd ­
k2

k2 1 k2
D

, (6)

wherekD is the inverse of the Debye length.
With this, the energy density of a plasma to first ord

in g is given as

U ­
3
2
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wheren is the number density of the particles. Thus, th
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correlation energy to the first order ing is

Ec ­ 2
3
2

nT

µ
g

12p

∂
. (8)

We define the energy of a plasma as

U ­
3
2

nT s1 1 Dd . (9)

With this definition,D ­ D0 ­ 2gy12p for the previous
classical analysis [Eq. (7)], where the subscript “0” mean
that the assumptionv ø T has been used.

Higher order calculations of the correlation energy hav
been made, for example, by O’Neil and Rostoker [11]
However, in all treatments, the assumptionv ø T has
been made. As we commented above, the assumpti
v ø T is very strong. A large part of the fluctuations
hasv . T .

To obtain the interaction energy, we need to subtrac
the energy of the particles due to their own fields, the
second term of Eq. (5), from the longitudinal energy
density,rL. We thus haverint ­ rL 2

n
4p2

R
dk k2fk.

Using Eq. (9), the interaction energy can be written
as rint ; 3

2 snT dD, where rint is the equivalent of the
correlation energy. In fact, using the approximationv ø
T , rint is equal to the second term of Eq. (7).

In order to comparerint with Ec, we define the
parameter,

F ;
jDj 2 jD0j

jD0j
. (10)

We previously found [5] that the transverse energy
(summing the transverse electric and magnetic field en
ergies,rET andrB) has an additional energy, compared to
the blackbody energy density in vacuum. The additiona
transverse energy is

Drg ­ rB 1 rET 2 rg , (11)

whererg is the photon energy density, estimated as th
blackbody energy density in vacuum.

Adding the interaction energyrint to Drg , we obtain
the total change in the energy density due to the transver
and longitudinal components,

rnew ­ Drg 1 rint . (12)

We calculaternew and rint for an electron-proton
plasma atT ­ 105 K, T ­ 104 K, and T ­ 105 K for
densities ranging from103 1019 cm23. The densities
were chosen so as to assure that the plasma parame
g ­ 1ynl

3
D , 1, in order that kinetic theory is valid. For

these plasmas, the de Broglie wavelength is less than t
distance of closest approach of thermal electrons, whic
justifies our classical treatment.

In Fig. 1, we plot D as a function of the density
103 # n # 1019 cm23 for the temperaturesT ­ 103, 104,
and 105 K. We extended each plot until the density for
which g ­ 0.3 was reached. For each of the tempera
tures, the value ofg increases with the density. In
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FIG. 1. The correctionD as a function of density and
temperature. The filled curve is forT ­ 105 K, the dashed
curve for T ­ 104 K, and the dotted curve forT ­ 103. The
curves are evaluated from the analytic expression and the fil
squares are the calculated values from Eqs. (1)–(4).

the case ofT ­ 105 K, for example, forn ­ 103 cm23,
g ­ 9.62 3 1029 and for n ­ 109 cm23, g ­ 3.04 3

1026. When g ­ 0.3, n ­ 1019 cm23. In the case of
T ­ 103 K, for n ­ 103 cm23, g ­ 3.04 3 1026 and for
n ­ 1010 cm23, g ­ 9.62 3 1023. Wheng ­ 0.3, n ­
1013 cm23.

We found a very good fit for the results of Fig. 1
using a Fermi-Dirac functional form for the density
dependence ofD, DsT d ­ A1yhexpfsxyA2d 2 A3g 1 1j,
with x ­ logsnd and A1 ­ a10 1 a11T 1 a12T2; A2 ­
a20 1 a21T 1 a22T2 and A3 ­ a30 1 a31T 1 a32T2.
From Fig. 1, we obtain A1 ­ 0.3522 2 0.1698sTy
105d 1 0.1145sTy105d2, A2 ­ 0.8255 1 0.4797sTy105d 2

0.4532sTy105d2, and A3 ­ 17.650 1 33.027sTy105d 2

26.201sTy105d2. The curves (filled, dashed, and dotted
are evaluated from the analytic expression; the fille
squares are the calculated values ofD from Eqs. (1)–(4).
The fit can be seen to be excellent. In Fig. 2, we pl
F ­ sD 2 D0dyD0 as a function of the density, for the
temperaturesT ­ 103, 104, and105 K, which shows how
D differs from the usual correctionD0.

The values ofD that we obtained are positive and large
in absolute value thanD0, whereasD0 is negative. This
indicates that the energy in the fluctuations dominates t
interaction energy of the particles. We observe thatF can
reach values of a thousand or greater.

The additional transverse energyDrg is completely
negligible for these temperatures and densities. F
example, for T ­ 105 K and n ­ 1019 cm23, Dr >
1023rg . For this temperature and density,rpar ­ 273rg

andrnew is completely dominated byrint ­ Drpar . For
example, for T ­ 105 K and n ­ 1017 cm23, Drg >
1027rg .

As a check, we calculatedrint, integrating in frequency
only up to v ­ vp , the plasma frequencysøT d, and
integrating in wave number up tok # kD . As expected,
led
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FIG. 2. The deviation of the correction,D from the usual one,
D0: F ­ jDj 2 jD0jyjD0j. The filled curve is forT ­ 105 K,
the dashed curve forT ­ 104 K, and the dotted curve for
T ­ 103 K.

we then found thatD is equal toD0, the value obtained in
previous analysis.

( III) Conclusions and discussion.—We calculated
rnew andrint for an electron-proton plasma as a functio
of density for T ­ 103 105 K. For many interesting
plasmas, we found thatD ¿ D0. We used the BGK
collision term as a rough guide to the inclusion o
collisions. The BGK is a model collision term for the
Boltzmann collision term. Collisions, however, chang
the results very little. For example, forT ­ 105 K and
n ­ 1010 cm23, the difference inD, with or without
collisions, is less than1026. Since there is no significant
difference between the energy density, with or witho
the collision term, the use of a more accurate collisio
term than the BGK collision term is not necessary.

Appreciably different values than the usual ones a
obtained, for the interaction energy of a plasma, by n
assumingv ø T . To the first order ing, we found
that the energy of an ideal gas needs to be correc
by a positive value, approximately0.3rpar ­ 0.3s3y2dnT .
This results in very different values from the usual on
,s1023 1024d s3y2dnT .

We obtained a general expression for the correctionD

as a function of density and temperature:DsT d ­ A1y
hexpfsxyA2d 2 A3g 1 1j with x ­ logsnd, A1 ­ 0.3522 2

0.1698sTy105d 1 0.1145sTy105d2, A2 ­ 0.8255 1

0.4797sTy105d 2 0.4532sTy105d2, and A3 ­ 17.650 1

33.027sTy105d 2 26.201sTy105d2.
The total correction to the energy is completely dom

inated by the interaction energy. For these tempe
tures and densities, the transverse additional energy
negligible.

Our results may be applied to the plasma before t
recombination era, when the plasma had a temperat
T . 103 K and a densityn . 103 cm23. Since the
expansion rate of the Universe (the Hubble paramet
is proportional to the square root of the plasma ener
4837
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density, our results indicate that the Universe before t
recombination era was expanding appreciably faster th
previously thought.

The purpose of this work was to demonstrate thatv ø
T is an extremely strong assumption. By not making th
assumption, there is a large change in the energy of
plasma.
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