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Large-Scale Simulations of Bubble-Induced Convection in a Liquid Layer
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The flow pattern induced by a swarm of bubbles rising in a liquid layer is studied numerically.
The fluid motion is described by spatially filtered Navier-Stokes equations forced by the presence
of the bubbles. When the volume fraction and the residence time of the bubbles increase, a
Rayleigh-Taylor-type instability develops. After transient stages, the flow reaches an equilibrium state
made of counterrotating cellular structures. The simulations suggest that no wavelength selection
mechanism exists in the present situation, making a striking difference with thermal convection.
[S0031-9007(99)09346-1]
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Passive dispersion of bubbles, drops, and rigid particleSiitered on “mesoscopic” control volumé& whose size
in turbulent flows has received attention for a long timeis intermediate between the typical diameter of the bubbles
because of its paramount importance in many industrial and the typical size of the large-scale structures of the
and geophysical processes (see [1], for a recent reviewlflow L. The essential result of this filtering procedure is
It is only in recent years that situations in which the fluidto produce modified Navier-Stokes equations in which the
motion is affected by the presence of the particles haveffect of the bubbles on the flow appears through source
begun to be considered. Most of the corresponding studigerms. A detailed presentation of this model can be found
have focused on the modulation of turbulence [2,3] or orin [6]. To lowest order in the volume fraction of the dis-
the distortion of vortices [4] produced by the interactionpersed phase, the resulting equations governing the fluid
between the fluid and the dispersed phase. Inthese studiesotion are
because of the low volume fraction of particles which

is generally considered, the effect of the particles on the V:(u=0,

underlying flow is rather small, while already significant. a(u) . — _

In contrast, there are physical situations in which the action Pl + (w) - V)] vP) @)
of the particles may completely change the flow field or + V- [pe(V(w) + V)] + &y,

may even be the unique mechanism producing it, as in sedi-
mentation problems. In this Letter we consider one of sucfin which (u) and (P) denote the filtered velocity and
situations, namely, the motions induced in a liquid layer ofpressure fields, witlp » being the density of the liquid and
finite depth initially at rest by the rise of a large number of 4£(X, ?) its effective viscosity which is generally different
bubbles injected randomly. from its physical viscosityu, as in a suspension. Here,
To study this problem we use a numerical approachthis effective viscosity is introduced to take account of the
Several levels of physical models are currently employe@mall-scale dissipative effects associated to the wake of
in the simulation of two-phase flows involving drops andeach bubble [7]. The source tedry(x, 7) results from the
bubbles. The most satisfactory from the conceptual poinfnfomentum exchange between the two phases. Neglecting
of view is certainly the direct numerical simulation ap- the densityp,, of the bubbles compared gy, &5 can be
proach in which all the scales of the flow, outside and in-Written under the simple form

side the bubbles, are determined together with the shape of 1

the interfaces by solving the exact Navier-Stokes equat|ons‘1>s(X 1) = Jif_fjov—

which are assumed to be valid at the “microscopic” level. ! f

However, owing to the computer resources required by this il a(u)

approach, its practical applicability is currently limited to X Z Vi [Pf< + () - Vu) - gﬂ
the study of problems involving a small number of bubbles )

[typically O(10) to O(10%) [5]]. In the present case we in-

tend to consider situations in which the number of bubbledn Eq. (2), V; is the volume of bubblei and g de-

is much larger, typically0(10%) to 0(10%). Therefore we notes gravity, whileN,(x) is the number of bubbles
must turn to a different strategy involving some modelingPresent at time in the control volumeV;(x). The quan-

of small-scale processes since it is no longer possible toty limy,_ Z, 1 Vi/V; represents the volume fraction of
solve the whole range of spatial scales present in the flowbubbles at poink and timer. The source terndg can be

To this end we have developed a large-scale simulation ageen as a generalized buoyancy force which depends on the
proach in which the Navier-Stokes equations are spatialljocal volume fraction of bubbles. Consequently, in Eq. (1)

0031-9007 99/ 82(24)/4827(4)$15.00  © 1999 The American Physical Society 4827



VOLUME 82, NUMBER 24 PHYSICAL REVIEW LETTERS 14 Jne 1999

bubbles affect the liquid motion through an effective vis-may be neglected (see, e.g., [8]); (v) pressure fluctuations
cosity and through point forces. The spatial distributionin the flow have characteristic time scales much larger than
of both quantities has to be found by determining at eaclthe Rayleigh period of bubbles, so that no volume oscilla-
time the position of each bubble. To this end we use dion occurs; (vi) small-scale motions which are not pre-
Lagrangian approach based on the following assumptionsticted by Eq. (1), especially the potential flow due to the
(i) Surface tension forces are strong enough to maintaifinite size of the bubbles and the rotational flow in their
bubbles spherical; (ii) bubbles are free of any contaminawake, do not affect bubble trajectories except through the
tion so that the liquid can slip along the interfaces; (iii) co-coefficients involved in the expression of the various hy-
alescence and breakup phenomena occur so rarely that thégodynamic forces. Under these assumptions, the position
can be neglected; (iv) bubble volume fractions do not exx/(¢) and the velocitw’(z) of bubblei whose diameter is
ceed a few percent so that direct hydrodynamic interacti?nd,- are governed by

X i
d Vo
Cu Gy = g+ (1 + Q57 + (W) - V)] 3)

— 47 Co(Re) v — (W) (v — (u) — CL(v — (u) X (V X (u)),

where Rg = p/|v' — (u)ld;/u is the instantaneous valué conditions are imposed on the vertical boundaries
of the Reynolds number of bubble The second equa- 0 and x = L while (u) satisfies a no-slip (respectively,
tion in (3) expresses the fact that the sum of the forceshear-free) condition on the lower (respectively, upper)
acting on each bubble is zero at any time sipg¢p; is  boundaryy = 0 (respectivelyy = H). The aspect ratio
negligibly small. This equation is now recognized to al-L/H of the liquid layer is varied betweeinand 4dy/L ~
low a correct prediction of trajectories of isolated bubbless x 107* in all cases), and we assume the large-scale
in slightly viscous flows. It takes into account the four motions determined by Eq. (1) to be two dimensional. The
most important hydrodynamic forces acting on a cleancomputational methods used to solve (1)—(3) are described
spherical bubble of fixed radius, namely, buoyancy, addegh [6]; the computations corresponding to the figures below
mass, viscous drag, and rotational lift. Recent analyticajre performed on 80 X 80 uniform grid.
and numerical studies [9,10] have established the general Different flow regimes are 0bserved1 depending@n
expression of the added mass force and have demonstratgfld on the characteristic residence tifhe= H/V... By
that the added mass coefficiefif; of a spherical particle an analogy with thermal convection to be discussed be-
is constant and equal b whatever the Reynolds num- |ow, these regimes can be characterized by introducing a
ber and the strength of the local acceleration. Accordingayleigh number defined as Rap;gCH?/(1V..) and a
to the results of direct simulations [10], the drag coeffi-prandtl number P& w/(pHV=) = do/(HRe.). In the
cientistakento b€p(Re) = 16(1 + O.ISRQI/Z)/RG,- for  present computations the Prandtl number is set constant to
Re = 50, andCp(Re) = 48(1 — 2.21Re,-_1/2)/Ra [11] the low value Ry = 2.5 X 107*. When Ra s less than a
for Re = 50. Finally it has been shown analytically [12] critical value Ra(Pr) ~ 2.0 X 10, the amplitude of the
that C; = % in inviscid, weakly rotational, quasisteady Velocity fluctuations induced in the liquid remains much
flows. Direct numerical simulations [13] have revealedsmaller thanV.. and grows linearly witiC in accordance
that for a bubble the variations @f, are weak when Re  with experimental results [14]. Consequently, bubbles rise
is larger than unity, such that we use the above valu@imost in straight lines and no particular large-scale struc-
whatever Re ture emerges when the flow field is averaged over times
Equations (1)—(3) form a closed system as soon a®(T). The interesting feature of this regime is that the ve-
boundary and initial conditions f@n) andv’ are specified. locity fluctuations are highly anisotropic since we find that
The above model is now applied to a situation in whichthe vertical fluctuation is typically 2.8 times larger than
bubbles rise under the action of gravity in a layer ofthe horizontal one. This anisotropy has been observed in
liquid of finite height initially at rest. Bubbles are injected many experiments, even if the value of the anisotropy ratio
randomly in time and space at the bottom of the layer ands still a subject of discussion.
their initial velocity is chosen to be their rise velocit A completely different regime occurs when Ra is in-
in a liquid at rest. Bubbles then rise freely in the liquid creased beyond Ra After an initial stage, the magnitude
until they reach the upper boundary, where they leave thef the velocity fluctuations in the liquid becomes compa-
computational domain as they would do at a free surfaceable to V., making bubble trajectories significantly dif-
All bubbles used in the present computations have the sanferent from straight lines. Then at a given time< T
diameterd,, and their characteristic Reynolds number(i.e., before the first bubbles reach the upper boundary),
Re. = p;V.dy/p is about 4 (under usual conditions this horizontal inhomogeneities related to the randomness of
corresponds taly ~ 0.2 mm in water). Their average the injection begin to be amplified. Bubbles then accu-
volume fractionC close to the injection is about 1%, so mulate quickly in mushroomlike regions producing intense
that assumption (iv) above is fairly well satisfied. Periodicupwelling motions (Fig. 1). The instability that develops
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during this stage looks very similar to the usual Rayleigh{they reach the valu¢4V.. in Fig. 3). Such stable cellu-
Taylor instability [15], since the mixture forming the lower lar configurations are found up to Ra 5.0Ra., the high-
part of the layer has a smaller density than the pure ligest Rayleigh number for which computations have been
uid located above. However, if several realizations of thecarried out. It is highly tempting to make an analogy be-
flow are computed using the same set of control paramdween the role of bubbles in the present problem and the
ters, one observes that the horizontal spacing of the upgele of hot fluid in thermal convection. Nevertheless, criti-
welling regions may vary by nearly 1 order of magnitude.cal differences exist between the two phenomena as well as
This variation is obviously related to the distribution of the between their governing equations. First, the source term
horizontal inhomogeneities of the injection which varies(2) differs from the usual buoyancy term because verti-
randomly from one realization to another. The sensitivitycal density gradients cannot create any baroclinic torque in
of the later stages of the instability to this initial condition thermal convection while they can generate such a torque
suggests that in the present system no wavelength selection the present situation since the fluid acceleration may
mechanism like the well-known effect of surface tensionhave locally a significant horizontal component. Second,
for immiscible liquids exists [15,16]. Egs. (3) governing bubble motion differ strongly from the
When time increases beyofid Ra being still larger than heat equation, especially because they do not involve any
Ra., the flow reaches a statistically steady state in whichdiffusion process (the Prandtl number introduced above
the rate of kinetic energy provided by the bubbles throughmust only be understood as the ratio between the resi-
the source term (2) is balanced by viscous dissipation. Thdence timeT of bubbles and the viscous diffusion time
flow is then made of a set of counterrotating cells and its4%/v); however, in real flows second-order effects ne-
structure looks at first glance very similar to the one ob-glected in the present approach, like direct hydrodynamic
served in usual Rayleigh-Bénard convection. Bubbles filinteractions, may act as a random noise resulting in some
the upwelling regions which drive the whole flow while diffusion. Last, owing to the absence of wavelength se-
very few bubbles stay in the downwelling zones (Figs. 2lection observed during the transient stage, the aspect ratio
and 3). The qualitative similarity between the plumes ofof the cells may vary greatly while it is known to remain
bubbles observed here and the large “bubbly” regions freelose to unity in thermal convection [18]. Cells of vari-
of particles occurring in fluidized beds when the gas velocous aspect ratios are easily observed in the computations
ity is increased beyond the fluidization limit [17] springs (Figs. 2 and 3). We note similar tendencies in recently re-
to mind. The maximum velocities in the liquid are compa-ported experiments [19]. In these experiments, hydrogen
rable to or even larger than the rise velocity of the bubble®ubbles produced by means of electrolysis were released at

Y/H
XA
Y/H

Y/H
Y/H

FIG. 1. Four stages of the development of the instability. =R&.91 X 10°; L/H = 1. (a) t/T = 0.105; (b) t/T = 0.315;
(c) /T = 0.525; (d) t/T = 0.735.
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FIG. 2. Cells of aspect ratio 1 obtained for Ra2.07 x 10  FIG. 3. Cells of aspect rati$ obtained for Ra= 2.07 X 10°
andL/H = 4. (a) Bubbles distribution; (b) velocity field. andL/H = 4. (a) Bubbles distribution; (b) velocity field.
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