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Large-Scale Simulations of Bubble-Induced Convection in a Liquid Layer
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The flow pattern induced by a swarm of bubbles rising in a liquid layer is studied numerica
The fluid motion is described by spatially filtered Navier-Stokes equations forced by the prese
of the bubbles. When the volume fraction and the residence time of the bubbles increas
Rayleigh-Taylor-type instability develops. After transient stages, the flow reaches an equilibrium s
made of counterrotating cellular structures. The simulations suggest that no wavelength sele
mechanism exists in the present situation, making a striking difference with thermal convect
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Passive dispersion of bubbles, drops, and rigid partic
in turbulent flows has received attention for a long tim
because of its paramount importance in many industr
and geophysical processes (see [1], for a recent revie
It is only in recent years that situations in which the flui
motion is affected by the presence of the particles ha
begun to be considered. Most of the corresponding stud
have focused on the modulation of turbulence [2,3] or o
the distortion of vortices [4] produced by the interactio
between the fluid and the dispersed phase. In these stud
because of the low volume fraction of particles whic
is generally considered, the effect of the particles on t
underlying flow is rather small, while already significan
In contrast, there are physical situations in which the acti
of the particles may completely change the flow field o
may even be the unique mechanism producing it, as in se
mentation problems. In this Letter we consider one of su
situations, namely, the motions induced in a liquid layer
finite depth initially at rest by the rise of a large number o
bubbles injected randomly.

To study this problem we use a numerical approac
Several levels of physical models are currently employ
in the simulation of two-phase flows involving drops an
bubbles. The most satisfactory from the conceptual po
of view is certainly the direct numerical simulation ap
proach in which all the scales of the flow, outside and i
side the bubbles, are determined together with the shap
the interfaces by solving the exact Navier-Stokes equatio
which are assumed to be valid at the “microscopic” leve
However, owing to the computer resources required by t
approach, its practical applicability is currently limited t
the study of problems involving a small number of bubble
[typically Os10d to Os102d [5] ]. In the present case we in-
tend to consider situations in which the number of bubbl
is much larger, typicallyOs104d to Os105d. Therefore we
must turn to a different strategy involving some modelin
of small-scale processes since it is no longer possible
solve the whole range of spatial scales present in the flo
To this end we have developed a large-scale simulation
proach in which the Navier-Stokes equations are spatia
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filtered on “mesoscopic” control volumesVf whose sizel
is intermediate between the typical diameter of the bubb
d and the typical size of the large-scale structures of t
flow L . The essential result of this filtering procedure
to produce modified Navier-Stokes equations in which t
effect of the bubbles on the flow appears through sour
terms. A detailed presentation of this model can be fou
in [6]. To lowest order in the volume fraction of the dis
persed phase, the resulting equations governing the fl
motion are8>><>>:

= ? kul ­ 0 ,

rff ≠kul
≠t 1 kul ? =kulg ­ 2=kPl

1 = ? fmEs=kul 1 t=kuldg 1 FS ,

(1)

in which kul and kPl denote the filtered velocity and
pressure fields, withrf being the density of the liquid and
mEsx, td its effective viscosity which is generally differen
from its physical viscositym, as in a suspension. Here
this effective viscosity is introduced to take account of th
small-scale dissipative effects associated to the wake
each bubble [7]. The source termFSsx, td results from the
momentum exchange between the two phases. Neglec
the densityrb of the bubbles compared torf , FS can be
written under the simple form

FSsx, td ­ lim
Vf!0

1
Vf

3

NbX
i­1

Vi

"
rf

√
≠kul
≠t

1 kul ? =kul 2 g

!#
.

(2)

In Eq. (2), Vi is the volume of bubblei and g de-
notes gravity, whileNbsxd is the number of bubbles
present at timet in the control volumeVfsxd. The quan-
tity limVf!0

PNb
i­1 ViyVf represents the volume fraction o

bubbles at pointx and timet. The source termFS can be
seen as a generalized buoyancy force which depends on
local volume fraction of bubbles. Consequently, in Eq. (
© 1999 The American Physical Society 4827
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bubbles affect the liquid motion through an effective vis
cosity and through point forces. The spatial distributio
of both quantities has to be found by determining at ea
time the position of each bubble. To this end we use
Lagrangian approach based on the following assumptio
(i) Surface tension forces are strong enough to mainta
bubbles spherical; (ii) bubbles are free of any contamin
tion so that the liquid can slip along the interfaces; (iii) co
alescence and breakup phenomena occur so rarely that
can be neglected; (iv) bubble volume fractions do not e
ceed a few percent so that direct hydrodynamic interactio
4828
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may be neglected (see, e.g., [8]); (v) pressure fluctuatio
in the flow have characteristic time scales much larger th
the Rayleigh period of bubbles, so that no volume oscil
tion occurs; (vi) small-scale motions which are not pr
dicted by Eq. (1), especially the potential flow due to th
finite size of the bubbles and the rotational flow in the
wake, do not affect bubble trajectories except through t
coefficients involved in the expression of the various h
drodynamic forces. Under these assumptions, the posi
xistd and the velocityv istd of bubblei whose diameter is
di are governed by
8>><>>:

dxi

dt ­ v i ,

CM
dv i

dt ­ 2g 1 s1 1 CMd f ≠kul
≠t 1 kul ? =kulg

2
3

4di
CDsReid jv i 2 kulj sv i 2 kuld 2 CLsv i 2 kuld 3 s= 3 kuld ,

(3)
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where Rei ­ rf jv i 2 kuljdiym is the instantaneous value
of the Reynolds number of bubblei. The second equa-
tion in (3) expresses the fact that the sum of the forc
acting on each bubble is zero at any time sincerbyrf is
negligibly small. This equation is now recognized to a
low a correct prediction of trajectories of isolated bubble
in slightly viscous flows. It takes into account the fou
most important hydrodynamic forces acting on a clea
spherical bubble of fixed radius, namely, buoyancy, add
mass, viscous drag, and rotational lift. Recent analytic
and numerical studies [9,10] have established the gene
expression of the added mass force and have demonstr
that the added mass coefficientCM of a spherical particle
is constant and equal to12 whatever the Reynolds num-
ber and the strength of the local acceleration. Accordi
to the results of direct simulations [10], the drag coeffi
cient is taken to beCDsReid ­ 16s1 1 0.15Re

1y2
i dyRei for

Rei # 50, andCDsReid ­ 48s1 2 2.21Re
21y2
i dyRei [11]

for Rei $ 50. Finally it has been shown analytically [12
that CL ­ 1

2 in inviscid, weakly rotational, quasisteady
flows. Direct numerical simulations [13] have reveale
that for a bubble the variations ofCL are weak when Rei
is larger than unity, such that we use the above val
whatever Rei .

Equations (1)–(3) form a closed system as soon
boundary and initial conditions forkul andv i are specified.
The above model is now applied to a situation in whic
bubbles rise under the action of gravity in a layer o
liquid of finite height initially at rest. Bubbles are injected
randomly in time and space at the bottom of the layer a
their initial velocity is chosen to be their rise velocityV`

in a liquid at rest. Bubbles then rise freely in the liqui
until they reach the upper boundary, where they leave
computational domain as they would do at a free surfa
All bubbles used in the present computations have the sa
diameter d0, and their characteristic Reynolds numbe
Rè ­ rfV`d0ym is about 4 (under usual conditions thi
corresponds tod0 , 0.2 mm in water). Their average
volume fractionC close to the injection is about 1%, so
that assumption (iv) above is fairly well satisfied. Period
es
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conditions are imposed on the vertical boundariesx ­
0 and x ­ L while kul satisfies a no-slip (respectively
shear-free) condition on the lower (respectively, uppe
boundaryy ­ 0 (respectively,y ­ H). The aspect ratio
LyH of the liquid layer is varied between12 and 4 (d0yL ,
5 3 1024 in all cases), and we assume the large-sca
motions determined by Eq. (1) to be two dimensional. Th
computational methods used to solve (1)–(3) are describ
in [6]; the computations corresponding to the figures belo
are performed on a80 3 80 uniform grid.

Different flow regimes are observed, depending onC
and on the characteristic residence timeT ­ HyV`. By
an analogy with thermal convection to be discussed b
low, these regimes can be characterized by introducing
Rayleigh number defined as Ra­ rfgC H2ysmV`d and a
Prandtl number Pr­ mysrfHV`d ­ d0ysHRè d. In the
present computations the Prandtl number is set constan
the low value Pr0 ­ 2.5 3 1024. When Ra is less than a
critical value RacsPr0d , 2.0 3 105, the amplitude of the
velocity fluctuations induced in the liquid remains muc
smaller thanV` and grows linearly withC in accordance
with experimental results [14]. Consequently, bubbles ri
almost in straight lines and no particular large-scale stru
ture emerges when the flow field is averaged over tim
OsT d. The interesting feature of this regime is that the v
locity fluctuations are highly anisotropic since we find tha
the vertical fluctuation is typically 2.8 times larger tha
the horizontal one. This anisotropy has been observed
many experiments, even if the value of the anisotropy ra
is still a subject of discussion.

A completely different regime occurs when Ra is in
creased beyond Rac. After an initial stage, the magnitude
of the velocity fluctuations in the liquid becomes compa
rable toV`, making bubble trajectories significantly dif-
ferent from straight lines. Then at a given timet , T
(i.e., before the first bubbles reach the upper boundar
horizontal inhomogeneities related to the randomness
the injection begin to be amplified. Bubbles then acc
mulate quickly in mushroomlike regions producing intens
upwelling motions (Fig. 1). The instability that develop
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during this stage looks very similar to the usual Rayleigh
Taylor instability [15], since the mixture forming the lower
part of the layer has a smaller density than the pure liq
uid located above. However, if several realizations of th
flow are computed using the same set of control param
ters, one observes that the horizontal spacing of the u
welling regions may vary by nearly 1 order of magnitude
This variation is obviously related to the distribution of the
horizontal inhomogeneities of the injection which varie
randomly from one realization to another. The sensitivit
of the later stages of the instability to this initial condition
suggests that in the present system no wavelength select
mechanism like the well-known effect of surface tensio
for immiscible liquids exists [15,16].

When time increases beyondT , Ra being still larger than
Rac, the flow reaches a statistically steady state in whic
the rate of kinetic energy provided by the bubbles throug
the source term (2) is balanced by viscous dissipation. T
flow is then made of a set of counterrotating cells and i
structure looks at first glance very similar to the one ob
served in usual Rayleigh-Bénard convection. Bubbles fi
the upwelling regions which drive the whole flow while
very few bubbles stay in the downwelling zones (Figs.
and 3). The qualitative similarity between the plumes o
bubbles observed here and the large “bubbly” regions fre
of particles occurring in fluidized beds when the gas veloc
ity is increased beyond the fluidization limit [17] springs
to mind. The maximum velocities in the liquid are compa
rable to or even larger than the rise velocity of the bubble
FIG. 1. Four stages of the development of the instability. Ra­ 5.91 3 105; LyH ­ 1. (a) tyT ­ 0.105; (b) tyT ­ 0.315;
(c) tyT ­ 0.525; (d) tyT ­ 0.735.
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(they reach the value4.4V` in Fig. 3). Such stable cellu-
lar configurations are found up to Ra, 5.0Rac, the high-
est Rayleigh number for which computations have bee
carried out. It is highly tempting to make an analogy be
tween the role of bubbles in the present problem and th
role of hot fluid in thermal convection. Nevertheless, criti-
cal differences exist between the two phenomena as well
between their governing equations. First, the source ter
(2) differs from the usual buoyancy term because vert
cal density gradients cannot create any baroclinic torque
thermal convection while they can generate such a torqu
in the present situation since the fluid acceleration ma
have locally a significant horizontal component. Second
Eqs. (3) governing bubble motion differ strongly from the
heat equation, especially because they do not involve a
diffusion process (the Prandtl number introduced abov
must only be understood as the ratio between the res
dence timeT of bubbles and the viscous diffusion time
H2yn); however, in real flows second-order effects ne
glected in the present approach, like direct hydrodynam
interactions, may act as a random noise resulting in som
diffusion. Last, owing to the absence of wavelength se
lection observed during the transient stage, the aspect ra
of the cells may vary greatly while it is known to remain
close to unity in thermal convection [18]. Cells of vari-
ous aspect ratios are easily observed in the computatio
(Figs. 2 and 3). We note similar tendencies in recently re
ported experiments [19]. In these experiments, hydroge
bubbles produced by means of electrolysis were released
4829
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FIG. 2. Cells of aspect ratio 1 obtained for Ra­ 2.07 3 105

andLyH ­ 4. (a) Bubbles distribution; (b) velocity field.

the bottom of a tank of water. The Rayleigh number wa
Ra ­ 2.5 3 105, i.e., slightly above the threshold found
in our computations, and the Prandtl number was high
(Pr ­ 3.0 3 1022). The development and the character
istics of the instability reported by the authors fort , T
are very similar to those found in the present computation
In later stages they also observed a wide range of cell a
pect ratios, from 0.9 to 0.1.

The present computations allow us to explore only two
dimensional flow patterns, so that it may well be tha
some phenomena which are crucial in the experimen
especially regarding the stability of the two-dimensiona
cellular pattern [20], are not captured here. Despite th
limitation it appears that the model provided by Eqs. (1)
(3) is able to reproduce most of the observations carri
out in the same range of parameters. This suggests t
in that limited range the important phenomena are esse
tially two dimensional and that Eqs. (1)–(3) capture th
large-scale physics of bubble-induced flows, at least in t
dilute limit. We note that simulations based on lattice-ga
methods and involving high concentrations of a mixture o
“light” and “heavy” two-dimensional “bubbles” have al-
ready been reported [21]. In a certain range of paramete
the authors also observed the occurrence of large-scale
culations looking like Rayleigh-Bénard cells. As we hav
shown, bubble-induced convection is close but not simil
to thermal convection. It provides a remarkable examp
of an inverse cascade process since the energy introdu
at the small scale corresponding to the bubble diameter
finally transferred to large-scale cells. Three-dimension
computations are now needed to explore a wider range
parameters and to get a more complete view of the ana
gies and the differences existing between these two ph
nomena, especially regarding the nature of the success
bifurcations and the possible routes to turbulence. It
also highly desirable that carefully controlled laborator
experiments be performed as well, especially for specif
ing the limits of validity of mesoscopic models like the
present one.

The computations reported in this Letter were carrie
out on the IBM-SP2 parallel computer of the “Centre
4830
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FIG. 3. Cells of aspect ratio12 obtained for Ra­ 2.07 3 105

andLyH ­ 4. (a) Bubbles distribution; (b) velocity field.
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