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Nonequilibrium features of a first order phase transition from the quark-gluon plasma to a hadr
gas in relativistic heavy-ion collisions are discussed. It is demonstrated that strong collective expa
may lead to the fragmentation of the plasma phase into droplets surrounded by undersaturated ha
gas. Subsequent hadronization of droplets will generate strong nonstatistical fluctuations in the h
rapidity distribution in individual events. The strongest fluctuations are expected in the vicinity of
phase transition threshold. [S0031-9007(99)09365-5]
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The main goal of present and future experimen
with relativistic heavy ions is to produce and stud
in the laboratory a new form of strongly interacting
matter, the quark-gluon plasma (QGP). Because of t
confinement of color charges, only colorless hadronic fin
states can be observed experimentally. Therefore, Q
properties can be studied only indirectly through the fin
hadron distributions or by penetrating electromagnet
probes.

The phase structure of QCD is not yet fully understoo
Reliable lattice calculations exist only for baryon-fre
matter where they predict a second order phase transit
or crossover atTc ø 160 MeV. Recent calculations using
different models [1–4] reveal the possibility of a firs
order phase transition at large baryon chemical potenti
and moderate temperatures. The predicted phase diag
in the sT , md plane contains a first order transition line
(below called the critical line) with a (tri)critical point
at T ø 120 MeV [2,3]. Possible signatures of this poin
in heavy-ion collisions are discussed in Ref. [5]. Unde
certain nonequilibrium conditions, a first order transitio
is also predicted for baryon-free matter [6].

A striking feature of relativistic heavy-ion collisions,
confirmed in many experiments (see, e.g., [7]), is a ve
strong collective expansion of matter. The applicability o
equilibrium concepts for describing phase transitions und
such conditions becomes questionable. The goal of t
paper is to demonstrate that nonequilibrium phase tran
tions in rapidly expanding matter can lead to interestin
phenomena which, in a certain sense, can be even easie
observe.

To make the discussion below more concrete, I adop
picture of the chiral phase transition for which the mea
chiral field F ­ ss, p d serves as an order paramete
It is assumed that the theory respects chiral symmet
which is spontaneously broken in the vacuum whe
s ­ fp , p ­ 0. The effective thermodynamic potentia
VsT , m; Fd depends, besidesF, on temperatureT and
baryon chemical potentialm. Since explicit symmetry
breaking terms are supposed to be small, to a go
approximationV is a function ofF2 ­ s2 1 p2.
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The schematic behavior ofVsT , m; Fd as a function
of the order parameter fields at p ­ 0 is shown in
Fig. 1. Each curve represents a certain point on th
(T , m) trajectory of expanding matter. The minima of
V correspond to the stable or metastable states of mat
under the condition of thermodynamical equilibrium
where the pressure isP ­ 2Vmin. The figure is based on
the calculations within the linears model with constituent
quarks [1], which predicts a rather weak first orde
phase transition. A similar structure ofVsT , m; Fd but,
possibly, with a stronger phase transition is predicted b
the Nambu-Jona-Lasinio model [2] and by the random
matrix model [3]. The discussion below is quite general

Assume that at some early stage of the reaction therm
(but not necessarily chemical) equilibrium is establishe
and partonic matter is in a “high energy density” phas
Q. This state corresponds to the absolute minimum ofV

with the order parameter close to zero,s ø 0, p ø 0,

FIG. 1. Schematic view of the effective thermodynamic po
tential per volumeVyV as a function of the order parame-
ter field s at p ­ 0, as predicted by the linears model
in the chiral limit mp ­ 0 [1]. The curves from bottom to
top correspond to the different stages of the isentropic expa
sion of homogeneous matter starting fromT ­ 100 MeV and
m ­ 750 MeV (curve 1). The upper curve 5 is the vacuum
potential. The other curves are discussed in the text.
© 1999 The American Physical Society 4779
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and chiral symmetry restored (curve 1). Because of
very high internal pressure,Q matter will expand and
cool down. At some stage a metastable minimum appe
in V at a finite value ofs corresponding to a “low
energy density” phaseH, in which chiral symmetry is
spontaneously broken. At some later time, the critic
line in the (T , m) plane is crossed where theQ and H
minima have equal depths, i.e.,PH ­ PQ (curve 2). At
later times theH phase becomes more favorable (curve 3
but the two phases are still separated by the poten
barrier. If the expansion of theQ phase continues until
the barrier vanishes (curve 4), the system will freely ro
down into the lower energy state corresponding to theH
phase (spinodal instability).

According to the standard theory of homogeneo
nucleation [8], supercritical bubbles of theH phase appear
only below the critical line. Under condition of therma
equilibrium between the two phases, the supercritic
bubbles can grow only through the conversion of ne
portions of theQ matter into theH phase on the bubble
boundary. The bubble growth is then limited by a sma
viscosity of theQ phase resulting in a slow dissipation
of the latent heat [8]. Therefore, a certain degree
supercooling is needed in order to convert a significa
fraction of theQ matter into theH phase in the form of
nucleation bubbles [8,9].

In rapidly expanding matter the nucleation pictur
might be very different. Let us consider first an isotrop
cally expanding system with the collective velocity fiel
which follows the Hubble law locally,ysrd ­ H r. The
Hubble “constant”H may in general be a function of
time, e.g.,H , 1yt. Suppose that a bubble of theH
phase has formed in the expandingQ matter because of a
statistical fluctuation. In the thin-wall approximation th
change in thermodynamic potential of the system can
decomposed into three parts,

DV ­ DVbulk 1 DVsurf 1 DVkin . (1)

The bulk and surface terms are expressed through
bubble radiusR in a standard way,

DVbulk ­ 2
4p

3
R3

°
PH 2 PQ

¢
,

DVsurf ­ 4pR2g , (2)

wherePH andPQ are the pressures of the bulkH andQ
phases,g is the effective surface tension. The last term
Eq. (1) accounts for the change in the local kinetic ener
of expanding matter,

DVkin ­
1
2

Z R

0
4pr2 drEsrdy2srd

ø 2
2p

5
R5DEH 2, (3)

whereDE ; EQ 2 EH is the difference of energy (more
exactly, enthalpy) densities of the two bulk phase
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Since this term is negative (typically,EQ ¿ EH), the
bubble formation is favored by the collective expansion
Moreover, the nucleation can start now even above t
critical line, when PH , PQ, and the standard theory
would predict no growing bubbles. In principle, the
phase separation can start as early as the metastablH
state appears in the thermodynamic potential, and a sta
interface between the phases may exist.

Using Eqs. (2) and (3) one can determine the critic
bubble radiusRc, corresponding to the top of the potentia
barrier in DVsRd. The condition≠RDV ­ 0 leads to
a cubic equation forRc. When H ! 0 the kinetic
term vanishes and this equation gives a standard Lapla
formula for the critical bubble [8]. However, for realistic
parameters (see below) the kinetic term dominates.
particular, in the vicinity of the critical line, whenPH ø
PQ, one can consider the bulk term perturbatively. The
one obtains

Rc ­

µ
4g

DEH 2

∂1y3∑
1 2

PH 2 PQ

3s2g2DEH 2d1y3

∏
. (4)

The bubbles withR . Rc will expand further while those
with R , Rc will eventually shrink. One may even
expect the formation of vacuum bubbles withP # 0
inside [10].

Below the critical line the bubbles will grow faster due
to increasing pressure difference,PH 2 PQ . 0, between
the two phases. It is most likely that the conversion o
Q matter on the bubble boundary is not fast enough
saturate theH phase. Therefore, a fast expansion ma
lead to a deeper cooling of theH phase inside the bubbles
compared to the surroundingQ matter. At some stage the
H bubbles percolate, and the topology changes to isolat
regions of theQ phase (Q droplets) surrounded by the
undersaturated vapor of theH phase.

Standard thermodynamical concepts cannot be used
this nonequilibrium situation. However, the characteris
tic droplet size can be estimated by applying the ener
balance consideration first proposed by Grady [11,12]
the study of dynamical fragmentation. The idea is tha
the fragmentation of expanding matter is a local proce
minimizing the sum of surface and kinetic (dilational
energies per fragment volume. The predictions of th
simple model are in reasonable agreement with molec
lar dynamics simulations [12,13] and experimental da
on dynamical fragmentation of fluids and solids (see
e.g., [11,12,14]). As shown in Ref. [15], this prescription
works fairly well also for multifragmentation of expand-
ing nuclei, where the standard statistical approach fails.

Let us imagine an expanding sphericalQ droplet em-
bedded in the background of the diluteH phase. In the
droplet rest frame the change of thermodynamic potent
compared to the uniformH phase is given by the same ex
pression (1) but with indexesH andQ interchanged. The
kinetic term is positive now. According to the Grady’s
prescription, the characteristic droplet radiusRp can be
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determined by minimizingµ
DV

V

∂
droplet

­ 2
°
PQ 2 PH

¢
1

3g

R
1

3
10

DEH 2R2. (5)

It is worth noting that the collective kinetic energy term
acts here as an effective long-range potential, similar
the Coulomb potential in nuclei. Since the bulk term do
not depend onR the minimization condition constitutes
the balance between the collective kinetic energy a
interface energy. This leads to an optimum droplet radi

Rp ­

µ
5g

DE H 2

∂1y3

. (6)

It should be noticed that this radius is expressed throu
the same combination of model parameters as the criti
bubble radius atPH ø PQ , Eq. (4), but with a slightly
bigger numerical coefficient. This suggests that in th
vicinity of the critical line theH and Q phases occupy
roughly equal fractions of the total volume. This mixe
state of matter is far from thermodynamical equilibrium
because of the excessive interfacial energy and unders
ration of theH phase. One can say that the metastableQ
matter is torn apart by a mechanical strain associated w
the collective expansion. This has a direct analogy w
the fragmentation of pressurized fluids leaving nozzl
[13,14]. In a similar way, splashed water forms droplet

At ultrarelativistic collision energies the expansion wi
be very anisotropic, with its strongest component alo
the beam direction. Applying the same consideration f
the anisotropic flow, one can see that resulting fractur
will have smaller size in the direction of stronger flow
Therefore, in the case of strong one-dimensional expans
the inhomogeneities associated with the phase separa
will rearrange themselves into pancakelike slabs ofQ
matter layered by the diluteH phase. The characteristic
width of the slab is given by Eq. (6) with a slightly
different geometrical factor. At a later stage the slabs w
further fragment into smaller droplets.

The driving force for expansion is the pressure gradie
=P ­ c2

s =E, which depends on the sound velocity in th
matter cs. In the vicinity of the critical line one may
expect a “soft point” [16,17] wherecs is smallest and the
ability of matter to generate the collective expansion
minimal (smallH ). If the initial state of theQ phase is
close to this point, the primordial droplets will be bigges
Increasing initial pressure will result in a faster expansio
and smaller droplets. For numerical estimates I choo
two values of the Hubble constant:H 21 ­ 20 fmyc to
represent the slow expansion from the soft point [16] a
H 21 ­ 6 fmyc for the fast expansion [9].

One should also specify two other parameters,g and
DE. The surface tensiong is a subject of debate at
present. Lattice simulations indicate that at the critic
point it could be as small as a few MeVyfm2. However,
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for the nonequilibrium situation discussed here the valu
of 10 20 MeVyfm2, which follow from effective chiral
models, should be more appropriate. As a compromise,
valueg ­ 10 MeVyfm2 is used below. It is clear thatDE
should be close to the latent heat of the transition, i.e., ab
0.5 1 GeVyfm3. One can also estimateDE by realizing
that nucleons and heavy mesons are the smallest drop
of theQ phase. For estimates I takeDE ­ 0.5 GeVyfm3,
i.e., the energy density inside the nucleon. Substituti
these values in Eq. (6) one getsRp ­ 3.4 fm for H 21 ­
20 fmyc andRp ­ 1.5 fm for H 21 ­ 6 fmyc.

In the lowest-order approximation the characteris
droplet mass isMp ø DEV . For spherical and slablike
droplets one gets, respectively

Mp
sp ø

20p

3
g

H 2 , Mp
sl ø 2S

√
3gsDEd2

H 2

!1y3

, (7)

where S is the slab transverse area. It is interesting
note that in this approximationMp

sp is independent of
DE. For the two values ofRp given aboveMp

sp is ,100
and,10 GeV, respectively. The slablike fractures cou
have even larger mass, sinceS could be of order of the
transverse system size. Using the minimum informati
principle one can show [12,15] that the distribution o
droplets should follow an exponential law, exps2 M

Mp d.
Therefore, with1% probability one can find droplets as
heavy as5Mp.

After separation, the droplets recede from each oth
according to the global Hubble expansion, predominan
along the beam direction. Therefore, their center-of-ma
rapidities are in one-to-one correspondence with their s
tial positions. Presumably they will be distributed mor
or less evenly between the target and projectile rapiditi
At this late stage it is unlikely that the thermodynamic
equilibrium will be reestablished between theQ and H
phases or within theH phase alone.

The final fate of individual droplets depends on the
sizes, expansion rate, and details of the equation of st
Because of the counteracting pressure of theH phase and
additional Laplace pressure, their residual expansion w
slow down. In smaller droplets the expansion and cooli
may even reverse to the contraction and reheating. T
conversion ofQ droplets into theH phase may proceed
through formation of a deflagration front [17] or evapo
ration of hadrons from the surface [18]. Bigger drople
may expand further until they enter the region of spinod
instability. As shown in Ref. [19], the characteristic tim
of the “rolling down” process is rather short,,1 fmyc, so
that theQ droplets will be converted rapidly into theH
phase. The energy released in this process can be tr
ferred partly into the collective oscillations of the (s, p )
fields. Numerical simulations [10,20] show that these o
cillations persist for a long time and give rise to soft pio
radiation. One should also expect the formation of d
oriented chiral condensates (DCC) in the voids betwe
droplets.
4781
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Since rescatterings in the diluteH phase are rare,
most hadrons produced from individual droplets will g
directly into detectors. One may guess that the numb
of produced hadrons is proportional to the droplet mas
Each droplet will give a bump in the hadron rapidity
distribution around its center-of-mass rapidity [19]. I
emitted particles have a Boltzmann spectrum, the wid
of the bump will bedy , 2

p
Tym, whereT is the droplet

temperature andm is the particle mass. AtT , 100 MeV
this gives dy ø 2 for pions anddy ø 1 for nucleons.
These spectra might be slightly modified by the residu
expansion of droplets and their transverse motion. T
resulting rapidity distribution in a single event will be a
superposition of contributions from different droplets, an
therefore it will exhibit strong nonstatistical fluctuations
The fluctuations will be more pronounced if primordia
droplets are big. If droplets as heavy as 100 GeV a
formed, each of them will produce up to,300 pions
within a narrow rapidity interval,dy , 1. Such bumps
can be easily resolved and analyzed. Critical fluctuatio
of a similar nature were discussed recently in Ref. [21].

Some unusual events produced by high-energy cosm
nuclei have been already seen by the JACEE collabo
tion [22]. Unfortunately, they are very few. We should
be prepared to see plenty of such events in the future c
lider experiments. It is clear that the nontrivial structur
of the hadronic spectra will be washed out to a great e
tent when averaging over many events. Therefore, mo
sophisticated methods of the event sample analysis sho
be used. The simplest one is to search for nonstatisti
fluctuations in the hadron multiplicity distributions mea
sured in a fixed rapidity bin [23]. One can also study th
correlation of multiplicities in neighboring rapidity bins,
bump-bump correlations, etc. Such standard methods
intermittency and commulant moments [21], wavelet tran
forms [24], and HBT interferometry [25] can also be use
ful. All these studies should be done at different collisio
energies to identify the phase transition threshold. T
predicted dependence on the Hubble constant and the
ometry of reaction, Eq. (7), can be checked in collision
with different ion masses and impact parameters.

One should bear in mind two important points. Firs
if the expansion trajectory goes close to the (tri)critica
point, both g and dE will tend to zero and the critical
fluctuations will be less pronounced. Second, if a fir
order phase transition is possible only in the baryo
rich matter, then theQ droplets should have much highe
baryon density than the hadronic phase [3]. In this ca
one should expect strong nonstatistical fluctuations in t
distribution of the net baryon charge.

In conclusion, it is demonstrated that a first orde
phase transition in rapidly expanding matter should pr
ceed through a nonequilibrium stage when the metasta
phase fragments into droplets. If QCD matter undergo
such a phase transition, it will manifest itself in relativisti
heavy-ion collisions by the formation of droplets of quark
gluon plasma. The primordial droplets should be bigge
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in the vicinity of the soft point where the expansion
slowest. The fragmentation of plasma might be accom
nied by the formation of multiple DCC domains and e
hanced soft-pion radiation. Subsequent hadronization
QGP droplets will lead to large nonstatistical fluctuatio
in the hadron rapidity density in individual events. The
novel phenomena can only be detected through dedica
event-by-event analysis of experimental data.
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