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New Limits on the Couplings of Light Pseudoscalars from Equivalence Principle Experiments
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The exchange of light pseudoscalar quanta between fermions leads to long-range spin-dependent
forces in orderg2, where g is the pseudoscalar-fermion coupling constant. We demonstrate that
laboratory bounds on the Yukawa couplings of pseudoscalars to nucleons can be significantly improved
using results from recent equivalence principle experiments, which are sensitive to the spin-independent
long-range forces that arise in orderg4 from two-pseudoscalar exchange. [S0031-9007(99)09397-7]
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It is well known that the exchange of a light pseu
doscalar quantumsfd with massm between two fermions
scd of massM gives rise to a long-range spin-depende
fermion-fermion interaction. If we describe the funda
mental coupling via the usual Lagrangian density
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L sxd ­ igcsxdg5csxdfsxd , (1)

where g is the pseudoscalar coupling constant, then
spin-dependent potential between two identical spin-1y2
fermions is given by [1]
V s2ds$r; $s1, $s2d ­
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Herer ­ j$rj ­ j$r1 2 $r2j is the distance between fermi-
ons 1 and 2,s1y2d $s1,2 are the fermion spins (h̄ ­ c ­ 1),
and we have dropped a term proportional tod3srd. Our
focus in this paper will be on them ­ 0 limit [2] of
Eq. (2), which characterizes the long-range interaction b
tween fermions when1ym is large compared to the size
of the apparatus,

V s2ds$r; $s1, $s2d m­0
!
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S12 ; 3s $s1 ? r̂d s $s2 ? r̂d 2 s $s1 ? $s2d . (3b)

Limits on g2y4p derived from recent spin-dependent ex
periments are summarized by Ritteret al. [3]. Although
these limits appear at first to be quite restrictive, they a
not nearly as stringent as the limits implied by recent spi
independent tests of the equivalence principle, which a
probe for the presence of new long-range forces. For e
ample, if the coupling of a new long-range vector fieldAm

to fermions is described by the Lagrangian

L ­ if csxdgmcsxdAmsxd , (4)

then typical limits onf2y4p over laboratory distance
scales aref2y4p & 10246 [4,5] compared tog2

ey4p &

10216, wherege is the pseudoscalar coupling to electron
[3]. Among the reasons for the differing sensitivities o
spin-dependent and spin-independent experiments are
(1) The strength of the spin-dependent coupling in Eq. (
is suppressed relative to that for the spin-independe
coupling by a factor of order1ysMRd2, whereR is the
characteristic size of the experimental apparatus. IfM
denotes the electron mass andR ­ 1 m, then1ysMRd2 .
1.5 3 10225. (2) Test masses which have a net electro
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spin polarization can also interact electromagnetica
Since the electromagnetic background is many ord
of magnitude larger than the effects expected from
putative new force, special materials (such as Dy6Fe23)
and methods must be used which limit the sizes of
samples that can be studied. (3) Furthermore, even
these special materials, only a small fraction of the t
masses actually contributes, since the net polarizat
is only 0.4 electrons per Dy5Fe23 molecule [6]. (4)
The spin-dependent couplings of light pseudoscalars
nucleons are further suppressed by the dilution of
electron polarization as it is transferred to the nucleons

The disparity in the limits set ong2 and f2, by
spin-dependent and spin-independent experiments, res
tively, raises the question of whether interesting limits
g2 can also be inferred from spin-independent searches
macroscopic forces. The exchange of two pseudosca
as shown in Fig. 1, gives rise to a spin-independent
tential V s4dsrd in orderg4 which has been calculated by
number of authors [7,8]. In the limitm ! 0, Vs4dsrd is
given by

V s4dsrd ­ 2
g4

64p3M2

1
r3 ; g4fsrd . (5)

Interestingly, V s4d and V s2d have the same functiona
dependence onM andr in the m ­ 0 limit, and the ratio
of their strengths (per pair of interacting particles) is

jV s2dsr; $s1, $s2dj
jV s4dsrdj

­
4p2jkS12lj

g2 , (6)

where kS12l is determined by averaging over the pola
izations of samples 1 and 2. We see from Eq. (6) th
© 1999 The American Physical Society 4753
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FIG. 1. Contributions to the spin-independent long-range i
teraction of fermionsa and b arising from two-pseudoscalar
exchange. The solid lines are fermions and the dashed lin
denote the pseudoscalars.

althoughV s4d is suppressed relative toV s2d by the factor
g2y4p2, V s2d is suppressed relative toV s4d by the factor
kS12l. Moreover,V s2d is further suppressed relative toV s4d

by virtue of the fact that there are fewer contributions tP
V

s2d
ij than to

P
V

s4d
ij , since the source masses are nece

sarily smaller in the spin-dependent experiments.
As we show in the ensuing discussion, the net e

fect of the various suppression factors in Eq. (6) is th
the most stringent laboratory limits on Yukawa cou
plings of pseudoscalars to protons, neutrons (and u
mately quarks), arise from spin-independent equivalen
principle experiments which constrainV s4d, rather than
from spin-dependent experiments which are sensitive
V s2d. Since the couplings of axions to fermions involv
derivatives, the resulting 2-axion potential varies as1yr5

rather than as1yr3, as has been noted by Ferrer and Gr
fols [8]. Hence, the numerical results of the present p
per do not apply to axions directly, although the prese
formalism can be taken over for axions with appropria
modifications.

Consider the interaction between two objects 1 an
2 containing N1 (Z1) neutrons (protons), andN2 (Z2)
neutrons (protons), respectively. The total energyW is
obtained by summing the pairwise interactions arisin
from Eq. (5) after replacing the generic coupling consta
g4 by g4

n, g4
p , or g2

pg2
n for n-n, p-p, andn-p interactions,

respectively. Heregn (gp) denotes the pseudoscala
coupling constant appearing in Eq. (1) whenc is a
neutron (proton). From Eq. (5)W can be expressed in
the form

W ­ fg4
pZ1Z2 1 g4

nN1N2 1 g2
ng2

psZ1N2 1 Z2N1dg

3 k fsrdl , (7)

wherek fsrdl is obtained from Eq. (5) by integrating over
the mass distributions of the two objects.

In a typical equivalence principle experiment object
is an extended source toward which the relative accele
tions of samples 2 and20 (with massesM2 and M20) are
being measured. If the dimensions of the test masses
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small compared to the size of the source, the force$Fs$r d
exerted by the source on test mass 2 (located at$r ) can be
written in the form

$Fs$r d ­ fg4
pZ1Z2 1 g4

nN1N2

1 g2
ng2

psZ1N2 1 Z2N1dg $F s$r d, (8a)

$F s$r d ­

√
23

64p3M2V1

! Z
d3r 0

1
s$r 2 $r 0

1 d
j$r 2 $r 0

1 j5
, (8b)

whereV1 is the volume of the source. It follows from
Eq. (8) that the experimentally measured accelerat
differenceD $a2220 ; $a2 2 $a20 is given by

D $a2220 ­ $F s$r d
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where M1 is the source mass,DsZymd2220 ­ Z2ym2 2

Z20ym20 , etc.,mi ­ MiymH, andmH ­ ms1H1d [5]. Ex-
cept for g2

p and g2
n, the right-hand side of Eq. (9)

is known, and hence an experimental determination
D $a2220 leads to a constraint ong2

p andg2
n.

Examination of Eq. (9) leads to the observation th
there are two classes of constraints ong2

p andg2
n, depend-

ing on the relative sign ofDsZymd2220 andDsNymd2220 .
Sinceg2

p, g2
n, N1, and Z1 are all inherently positive, the

right-hand side of Eq. (9) cannot vanish ifDsZymd2220

and DsNymd2220 have the same sign, unlessg2
p and g2

n
themselves do. It follows that in this circumstance an e
perimental bound onD $a2220 leads to an absolute uppe
bound on eitherg2

p or g2
n. We refer to such constraints

as “elliptical,” since Eq. (9) produces ellipses in thex-y
plane defined byx ­ g2

p and y ­ g2
n. By contrast, if

DsZymd2220 and DsNymd2220 have opposite signs, the
right-hand side of Eq. (9) can vanish wheneverg2

p and
g2

n satisfy

g2
p

g2
n

­ 2
DsNymd2220

DsZymd2220

, (10)

and henceg2
p and g2

n can be arbitrarily large and still
be compatible with any experimental bound onD $a2220 .
We term such constraints “hyperbolic,” since in th
case Eq. (9) leads to hyperbolas in thex-y plane. The
asymptotes of these hyperbolas in the (physical) fi
quadrant lie near the liney ­ x, which represents the
locus of points satisfying Eq. (10) [9].

It is instructive to contrast the constraints arising fro
V s4d in Eq. (5) with those arising in second order from
the exchange of a scalar or vector field, as in the us
“fifth force” scenario [5]. The expression forD $a2220

in this case has the same general form as in Eq.
except thatg2

p,n ! gp,n. Sincegp and gn can each be
positive or negative, no choice of samples 2 and20 can
ensure that the coefficient of$F s$rd will have a unique
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sign, and hence there are no elliptical constraints
the conventional fifth force case. Note thatD $a2220 can
vanish not only when the analog of Eq. (10) holds for th
test masses, but also when the source strength vanis
as happens whensgpZ1 1 gnN1d ­ 0 [10]. It follows
from this discussion that the novel feature ofV s4d is
that it gives rise to elliptical constraints, and hence
absolute bounds ong2

p and g2
n, for appropriate choices

of 2 and20. To determine which pairs of elements woul
produce elliptical constraints, we have evaluatedDsZymd
andDsNymd for the 4,186 pairs that can be formed from
the first 92 elements, and found 7 possible pairs: He-
He-O, N-O, S-Ca, Br-Mo, Li-Ru, and Pt-Rn. Among
these, Li-Ru is the most obvious choice, where the
sample could be gold plated to prevent oxidation. Oth
choices involving compounds are also possible, as
discuss in greater detail elsewhere [9].

As we now demonstrate, if the preceding formalism
combined with the recent results of Gundlachet al. [4],
the laboratory limits ong2

p and g2
n can be significantly

improved. This experiment compared the acceleratio
of test bodies composed of Cu and a Pb alloy towa
a 2620 kg depletedU source, and they found for the
acceleration difference

D $a2220 ­ $aCu 2 $aPb ­ r̂s20.7 6 5.7d 3 10213 cmys2,
(11)

where r̂ is a unit vector in the direction of the field
$F produced by the source. Since theU source was

positioned close to the test masses, this experiment can
used to set limits on short-range interactions of the for
V srd ­ LN sr0yrdN21sh̄cyrd, with N ­ 3 corresponding
to V s4d in Eq. (5). Combining Eq. (9) with the bound
from Ref. [4],L3 , 6 3 10216, leads to the constraint

jD $a2220 j

s1 cm/s2d
­ s9.6g2

p 1 15.3g2
nd

3 jg2
pDsZymd2220 1 g2

nDsNymd2220 j , (12)

which applies to any test masses 2 and20 in Ref. [4].
For the actual samples used,2 ­ Cu and20 ­ Pb alloy,
DsZymd2220 ­ 0.05925, DsNymd2220 ­ 20.05830, and
the slope of the asymptote for the hyperbolic constra
implied by Eq. (12) is 0.05925y0.05830 ­ 1.016. Insert-
ing these results for 2 and20 into Eq. (12) along with the
1s bound in Eq. (11),jD $a2220 j , 6.4 3 10213 cm/s2,
leads to the final result,

s9.6g2
p 1 15.3g2

nd j0.05925g2
p 2 0.05830g2

nj

& 6.4 3 10213. (13)

A plot of the hyperbolic constraint in Eq. (13) is show
in Fig. 2 along with an illustrative elliptical constrain
curve obtained from Eq. (12) by substituting2 ­ Li and
20 ­ Ru. As can be seen from Fig. 2 and Eqs. (1
and (13), separate bounds ong2

p and g2
n can be inferred

by repeating the experiment of Gundlachet al., with
various combinations of appropriately chosen test mass
in
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FIG. 2. Constraints on g2
p and g2

n arising from two-
pseudoscalar exchange. The region shaded in dark g
exhibits the hyperbolic constraint implied by the experime
of Gundlachet al., Ref. [4]. The light gray region illustrates
the hypothetical elliptical constraint that would emerge fro
Gundlachet al., had they used Li and Ru as the test mass
The overlap region is shown in black.

Even though the relevant experiments have not yet be
performed, one can, nonetheless, obtain useful bou
on g2

p and g2
n separately by considering special cases

Eq. (13). For example, for a light pseudoscalar whic
couples universally to baryon number we haveg2

p ­ g2
n,

and hence from Eq. (13)

g2
py4p & 4 3 1027. (14)

The result in Eq. (14) represents an improvement by mo
than 2 orders of magnitude on the bound inferred
Ramsey [11,12],g2

py4p & 5 3 1025. This is the only
other direct laboratory limit ong2

p , which was obtained
by comparing theory and experiment for the energies
low-lying vibrational and rotational states in molecula
H2. Two other interesting bounds can be inferred fro
Eq. (13) in the limiting casesg2

p ¿ g2
n and g2

n ¿ g2
p .

These are

g2
py4p & 9 3 1028, sg2

p ¿ g2
nd ;

g2
ny4p & 7 3 1028, sg2

n ¿ g2
pd .

(15)

In contrast to the case forg2
p, there are no direct

laboratory limits ong2
n, apart from those arising from

Eq. (13). However, one can attempt to infer a crud
indirect bound ong2

n by following an argument due to
Daniels and Ni (DN) [13]. Consider, for example, th
experiment of Ritteret al. [6], which uses test samples
of Dy6Fe23 containing polarized electrons to measu
g2

e. As noted by DN, the hyperfine interaction of th
electrons in Dy aligns the Dy nuclei and similarly, bu
4755
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less significantly, for Fe. DN estimate this polarizatio
(at room temperature) to bePX . 3.4 3 1025 (X ­ Dy),
which compares toPe . 0.4 for the electrons themselves
Hence, although the Dy nuclei have a nonzero induc
polarization, this polarization is quite small. It follows
that the sensitivity of the experiment of Ritteret al. [6]
to g2

X is smaller than its sensitivity tog2
e by a factor

P2
XyP2

e ­ 7 3 1029, due to the differences inkS12l for
electrons and nuclei. To infer a bound ong2

n the Dy
polarization must be related to that of the neutron.
we assume, for example, that the polarization of th
Dy nucleus is carried by a single odd neutron outsid
a symmetric core, then we can identify the neutro
polarization with that of the Dy nucleus. Combining th
preceding arguments we are led to the crude estimate

g2
ny4p & sP2

XyP2
e d21sg2

ey4pd . 8 3 1026, (16)

where we have usedg2
ey4p & 6 3 10214 from Ritter

et al. [6]. Note that although the limits ong2
e from other

experiments such as Refs. [14,15] are more restrictive,
configuration of these experiments renders the preced
arguments inapplicable [9]. In the experiment of Chi
and Ni [14], for example, the polarization of an initially
unpolarized TbF3 sample was measured in the presenc
of a rotating polarized Dy6Fe23 source. Since the TbF3
sample was shielded against conventional magnetic fie
by superconducting Nb, any polarization of the electron
would arise solely from the putative long-range spin
spin interaction, which is presumably a small effec
The alignment of the nuclear spins via the hyperfin
interaction would be smaller still, and hence no usef
limit on couplings to nucleons emerges from such a
experiment.

The laboratory constraints on pseudoscalar couplin
derived in this paper are model independent, but do not a
ply to axions which are derivative coupled [8]. Although
the present formalism can be adapted to infer limits o
axion couplings using the1yr5 potential arising from 2-
axion exchange, the best existing limits on light axions st
come from stellar cooling [16,17]. In addition, astrophys
ical arguments also yield tighter bounds on Yukawa (i.e
nonderivative) couplings of pseudoscalars to nucleon
For example, energy loss arguments from the SN 1987
supernova typically giveg2y4p & 10221 [16,18].

In summary, we have shown that the most stringe
laboratory limits on the Yukawa couplings of light pseu
doscalars to nucleons (and ultimately to quarks) deri
from the Osg4d contributions in Fig. 1 to equivalence
principle experiments. These limits can be further im
proved by reconfiguring existing experiments to mak
them more sensitive to a short-range1yr4 force, and by
using appropriate materials such as Li and Ru. Furthe
4756
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more, by suitably adapting space-based experiments su
as STEP [19] even more significant improvements in se
sitivity could be realized in the foreseeable future.
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