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Reptation Quantum Monte Carlo: A Method for Unbiased Ground-State Averages
and Imaginary-Time Correlations
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We introduce a new stochastic method for calculating ground-state properties of quantum systems.
Segments of a Langevin random walk guided by a trial wave function are subject to a Metropolis
rejection test performed on the time integral of the local energy. The algorithm—which is as simple
as variational Monte Carlo—for bosons providesact expectation values of local observables, as
well as their static and dynamic (in imaginary time) response functions, without mixed-estimate
nor population-control biases. Our method is demonstrated with a few case applicatiéhig.to
[S0031-9007(99)09325-4]
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The analogies existing between the classical diffusiordeterministic forcef(x) and a white nois€ [(£(7)) = 0,
equation and the quantum imaginary-time Schrédingeté(7)&(7')) = 2€6,.,]. For notational simplicity, in
equation constitute the basis of a simulation method—Eq. (1) and in the following, we consider a one-
known adiffusion Monte Carld DMC)—which has been dimensional system, the generalization to many dimen-
successfully applied to the study of interacting bosons andions being straightforward. The process described by
fermions at zero temperature [1,2]. The DMC crucially Eq. (1) is readily simulated by a pseudorandom walk
relies onimportance samplingi.e., on letting the diffus- with transition probability W.(x |y) « exp{—[x — y —
ing walkers be guided by our prior knowledge of somef(y)e]*/4e}. The associated Fokker-Planck equation for
approximate wave functiondy, for the system under the probability distribution,P(x,7), in the continuous
study. The resulting stochastic process consists of Amit reads
(biased) diffusion term pluslaranchingterm which deter- aP(x,7)  92P(x.7) 9
mine the variation of the local number of random walkers. 5r o2 ax [fG)P(x,T)].  (2)

Sampling the asymptotic distribution of the random walk_ . . . _
allows one to calculate the ground-state energy exactiyVith the identifications f(x) = 24[logd(x)]/9x and
(x,7) = ®(x, 7)Po(x), Eq. (2) is formally equivalent to

within statistical noise (at least for bosons). However, th schridi A . : D
calculation of observables which do not commute with the® Schrodinger equation in imaginary time,0®(x, 7)/

Hamiltonian requires the so-calleixed estimatg2]—a 07 = L ®(x,7), for the wave function®, with a fic-
procedure which is biased by the trial function. One carfitious Hamiltonian 3{ = —42/ax? + Do (9°Do/0x)
remove this bias and obtain information on imaginary-time("€ré and in the following we set”/2m = 1). It
correlations by thdorward walkingtechnique [3] which, ¢an be verified by inspection that (i) theial func-
however, substantially increases the statistical noise. THEPN Po is the ground-state of}{ with eigenvalue
control of the walker population introduces a further sys0: (il) the asymptotic solution of Eg. (2) i®(x, 7 —
tematic error [1,2] whose elimination [2] leads to addi-*) = ®a(x); and (iii) the transition probability W, of
tional fluctuations. the random walk is a short-time approximation for the
In this paper we propose a hew method, name&mportance-san_]plﬁd propagator of, ?amely, Welx|
reptation quantum Monte CarldRQMC) [4], which Y) = Po(x){xle™ 7 |y)Po(y)™" + O(e®). Because of
avoids the above difficulties by exploiting tiiynamical ~ Property (i), Eq. (1) can be used in the so-called varia-
propertiesof the classical diffusion process—rather thantional monte carlo (VMC) method to sam_ptlﬁ; in addi-
retaining the asymptotic distribution alone—and mappindion: because of (iii), the Langevin equation (1) describes
them onto the (imaginary-time) dynamical properties ofthe imaginary-time dynamics generated by the fictitious
the quantum system of interest. In the following we firstHam'ItO”_'an}[’ fore — 0. o
discuss the formalism starting from classical diffusion The difference between the true Hamiltoniah and
as described by the Langevin equation: we then outling is thelocal energyassociated with the trial function,
an algorithm suitable for practical implementations, and. £ (x) = ®o(x)"'H®(x). In order to recover from the
finally, we present results for superfiufe which are Langevin dynamics the correct imaginary-time evolution

meant to be representative of the potential of the methoddenerated by the true Hamiltoniaf/, we invoke a

The time-discretized Langevin equation, generalization of the Feynman-Kac formula [5]:
o) = xln) + fan)e + &, (D) <q>0|e*7”|q>0>=/e*S[XJ?[x]D[X] + 0@,
describes the motion in configuration space under a
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where X = {xp,x;,...,xy} indicates a time-discretized with the Metropolis acceptance test described above
path generated by the random walky = 7/€, (and a time-symmetrized form of the estimator has been
PIX]1= Wolxy,xn-1) X --- X Welxy,x0)®Po(x0)> is used). Analogously, expectation values of local operators
the corresponding joint probability distributiod[X]=  O(x) and their imaginary-time correlation€,(7) =
el E(xg) + E(xy) + -+ E(xy_1) + s E(xy)] is  (01(7)02(0)) can be cast in the form
the (discretized) integral of the local energy along the _ 7 O(r') dr'
path, and the integraf D[X] is calculated over all of the (0) = |Iﬂ;</ —>
paths generated by the random walk. T

The ground-state energy,, the expectation values of . ST 07" 4 705 (7)) d 7
local operatorsO(x), and the corresponding generalized (Ciar)) = Tll'ﬂlo<fa >
susceptibilities can be obtained by differentiation from

T — 20

7 — 71— 20

the pseudo-partition-functionZy = (®gle #7|d,). For ()
example, one has The average ofO(x) taken at one end of the path,
d _ (E(r)e SXD (PolOe 7| D)/ Zy, is the mixed estimate [2]. In the
Eo = —lim ar logZy = lim T e Sy (4)  time integrals of Eq. (7), the exclusion of two portions of

length o from the head and tail of the reptile makes the
convergence to the unbiased estimates faster.

The implementation of the algorithm is very simple, at
the level of a VMC simulation. The initial configuration

[4]) is the basis for the pure diffusion Monte Carlo of the retile is i
. . : ptile is just a segment of a random walk generated
method (PDMC) [6], in which weighted averages such aith the Langevin equation, and the simulation proceeds

.Eq' (4) are d'irectly acpumulated. Sin_ce the local ENerg%s follows: (1) Select a “direction of time”f¢rward
is an extensive quantity, the fluctuations of the weights A backward with equal probability. If the choice is
grow exponentially with the system size, and PDMCbackward SetX — X = fxy,xv_ xo). This step is

simulations are bound to fail but for the smallest SYSteMS i oduced to enforce detailed balance at each reptation

Tgle RQ.tN;]C ?}‘fer_s a cfure f(t)_r the f[{t;]ctu;t|ng \(ve|gr;t move. (2) Using the Langevin equation, generate a new
probiem, without 1osing Information on the dynamics o egment of the reptile corresponding to the time interval
classical diffusion. This is achieved using a generallzecf

. o 7,7 + 8]togetY = {xy, xp+1,...,Xxpu+n}. The value
Metropolis rejection method [7] to sample teoduct o’ 5 is sampled from a uniform deviate in the interval
P [X] = P[X]e Y] rather tharfP[X] alone. The basic prec e .

: ' ; ) [0, A] whose width is chosen so as to minimize the auto-
variable of our algorithm is path X = {xo,x1,...,xn},

h lenath in i : i - s oh correlation times of the measured quantities. (3) Evalu-
}N osihetn’?h ;n l_rtnaglno?ry IIEmeN g T/Ed’ '? chosen r?od ate A [Y, X] according to Eq. (5) and set — Y with
a_rg_e tr? d e_|m(;T — C\‘; ( )fant (tg. IS rt()a'acte robability A. (4) Accumulate the ground-state energy
\r/gptillr(]e [8]e gi/'(r; aar?aC[:;Jtirlae(,:))(/. we Zerﬁeer;tg a :1$e\?v éi% S &nd other observables using Egs. (6) and (7); go to (1).
by chopping off from its tail a piece of length — Me The efficiency of the algorithm obviously depends on

W< N d by sticki its head ; f Ithe quality of the trial function. The relaxation time of

I( th b) .ﬁn ¥MS "; Ing (f)r':hl SL €ad a ;()jlece 0 eqfa the reptile is proportional tar?/{8), where(8) is the
ﬁ?g ,t' ui buP ?]. h?heps 0 et.gﬂge"'” {ngr}wlcrsﬁ( )- average length of the reptation moves. In the limit of
i faﬁgéorgptgt\il(\;nlfS] aig?/\\;\(lerﬁl%ilca:tse %ﬁgec:gr?esggn ding perfect importance sampling the local energy is constant,
transition probability by [Y. X]. lterating the reptation so that moves of arbitrary length will be accepted with

move, the resulting asymptotic distribution for the reptilepmbab”ity one and the algorithm achieves an optimal
is, by construction?[X]. One can samplé[X]e~SX] efficiency with(8) = 7. With a necessarily approximate

. : . trial function, the acceptance rate for a fixed length of
instead, interpretingv® as aproposalfor a move, and b g

X .~ the reptation moveS will decrease with an increasing
letting the proposal pass an acceptance test, so as to imp

. . : ber of particlesvp. Therefore, for largeVp, one is
detailed balance V\.”.th _respect ®[X]. The resulting forced to decreasé, thus deteriorating the efficiency of
acceptance probability is [7]

) 0 o the algorithm. However, even the branching algorithm
ALY, X] = min{l, WLX, Y]P[Y]/(WLY, XIP[X])} suffers from the same pathology, and the issue is whether
= min{l, e S /e~ SIXIY (5) simulations are feasible for system sizes mhctical
interest. Among various conceptually similar techniques
[6,9,10], the variational path integral (VPI) method has
a better asymptotic scaling witNp, because it does not
suffer from uncontrolled fluctuations of the local energy

where (---) denotes the average over the probability
distribution P[X].
This formalism (worked out in more detail elsewhere

By explicitly including the acceptance test in the
dynamics of the random walk, the weighisSX1 drop
out of the averages. For example, the expression for th

d-stat Eq. (4), b .
ground-sta e;n_ergy, <[%((()) );_ Zc(or)g)e/sz 5 [9]. However for systems of-100 “He atoms, for which
- m T ’ 6) it has been tested, VPl is far less efficient than RQMC [11].
where the average - -) is now over thereptile random A preliminary test of the RQMC algorithm has been
walk whose dynamics is given by reptation supplementegerformed for the hydrogen atom with an approximate
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-0 B~ o e e e e e e e e B LA e e TABLE I. Ground-state energyf,, and potential energyy,

u b in “He, computed from RQMC and branching DMC runs of
3 X 10° Monte Carlo steps witke = 0.001 K~!. The length

of the path in the RQMC calculation is = 0.4 K~!, and
the length of the forward walk fo¥# in the diffusion Monte
Carlo calculation i€).2 K~'. The extrapolation of, to e — 0
yields —7.3789(15) for RQMC and —7.3812(14) for DMC.
The overestimate of the experimental binding energy,17 K,

is due to neglect of three-body forces, mostly triple-dipole
repulsion, in the interparticle potential adopted [12].

-21.4

vV (K)

-21.6

_21 8 i 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 i EO (K) V (K)
0 0.1 0.2 0.3 0.4 RQMC —7.4066(27) —21.644(15)
T (K1) DMC ~7.3902(15) —21.674(21)

FIG. 1. Average of the potential energy iHe, calculated on

individual time slices along the path. The statistical error onthe . . . . . . .
central slices is=0.03 K. This result was obtained using a trial Mation on imaginary-time correlations is used, RQMC is

function with pair correlations only: Note th&t converges to  likely to be competitive or better.
the same value given in Table I, obtained using a trial function From the density-density correlation functidt(q, 7)
with pair and triplet correlations. we obtain the static structure factas(q) = F(g,0)
and the static linear response functjp(y) = —2 fg F(q,

trial function, reproducing exact results for several mo-7) 4+, both shown in Fig. 2. In particular, the present
ments of electron-nucleus distance. As a demonstratiozalculation of the response for a Bose system is remark-
we now present the calculation of several properties of suably simple and efficient in comparison with the standard
perfluid*He, showing that the method can be successfullyoute utilized so far with branching algorithms [14] (note
applied to systems of actual physical interest. that at virtually no additional cost morg vectors could

We simulateNp = 64 “He atoms in a cubic box with have been included in the calculation). The agreement
periodic boundary conditions at the equilibrium density,with the measured(g) and y(¢) [15] is excellent. The
p = 0.02186 A~3. The particles interact with a realistic
pair potential obtained from first-principles calculations
[12]. Most of the simulations use a trial functioi
with pair and nearly optimal three-body correlations
[13]. We compute E,, the potential energyV, the

diffusion coefficient of the center of mass motibrir) = 02
([rem(7) — rem(0)P)Np/(67), and the imaginary-time %
correlations of the density fluctuation operafoly, 7) = —_
<pq(7)p*q(0)>/NPi Wherepq = Zi exp(—iq - r;). SN
The time step ise = 0.001 K~!, which gives a sys- > 0.1

tematic bias of the order af0~2 K on the total energy.
E, and V are well converged for = 0.4 K™!, corre-
sponding toN = 400 time slices. For the calculation of 0
F(gq,7) a longer path withv = 700 is used. The num-
ber of time slices of each reptation move is uniformly
sampled between 0 and 20, yielding an acceptance ratio
of =80%. In the averages (7) fo¥ and F(q, 7), we ex- 1
clude the contributions from 150 time slices on each side —~
of the path. The convergence uf from the mixed esti- 1ol
mate at slice 0 o to the unbiased estimate is shown in
Fig. 1.

Our results forEy andV are listed in Table I, together
with the corresponding data obtained from a branching
DMC calculation using the same time step and trial func- 0
tion. Here the branching evaluation¥fis complemented 0
with forward walking, implemented in the “backward stor- qg R)
ing” mode [10]. From the estimated statistical error we _ )
infer that reptation is roughly 3 times slower than branchf!G: 2. Computed (open circles) and measured[15] (solid

. . . - lines) static structure factor (upper panel) and static linear
ing for the calculation ofy, but twice as fast fov. This  a5,0nse function (lower panel). The discrepancs() at the

comparison, far from being a conclusive statement of relasmallest value of is due to the finite temperature of the experi-
tive efficiency, still suggests that, whenever explicit infor- mental setup.

w

4747



VOLUME 82, NUMBER 24 PHYSICAL REVIEW LETTERS 14 Jne 1999

O T 20 Clusters, films, and superfluids in restricted geometries are
L N ) natural candidates for further applications. For Fermion
0.03 ‘ 8 53 problems, the fixed-node approximation [1,2] can be used
" i 10> to cope with the sign problem. The dynamical information
i 1 = contained in the path is, in this case, incorrect [6], but
o | ] = the algorithm is still free from the mixed estimate and the
\% 002 L] population control biases. Furthermore, because it samples
L 0 an explicit expression for the imaginary time evolution,
R - RQMC gives access to quantities obtained by differentia-
& i tion, for instance, a low-variance estimator of electronic
“ 0.0l - forces [18].
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