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Reptation Quantum Monte Carlo: A Method for Unbiased Ground-State Averages
and Imaginary-Time Correlations
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We introduce a new stochastic method for calculating ground-state properties of quantum systems.
Segments of a Langevin random walk guided by a trial wave function are subject to a Metropolis
rejection test performed on the time integral of the local energy. The algorithm—which is as simple
as variational Monte Carlo—for bosons providesexact expectation values of local observables, as
well as their static and dynamic (in imaginary time) response functions, without mixed-estimate
nor population-control biases. Our method is demonstrated with a few case applications to4He.
[S0031-9007(99)09325-4]
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The analogies existing between the classical diffusi
equation and the quantum imaginary-time Schröding
equation constitute the basis of a simulation method
known asdiffusion Monte Carlo(DMC)—which has been
successfully applied to the study of interacting bosons a
fermions at zero temperature [1,2]. The DMC cruciall
relies onimportance sampling, i.e., on letting the diffus-
ing walkers be guided by our prior knowledge of som
approximate wave function,F0, for the system under
study. The resulting stochastic process consists of
(biased) diffusion term plus abranchingterm which deter-
mine the variation of the local number of random walker
Sampling the asymptotic distribution of the random wa
allows one to calculate the ground-state energy exac
within statistical noise (at least for bosons). However, th
calculation of observables which do not commute with th
Hamiltonian requires the so-calledmixed estimate[2]—a
procedure which is biased by the trial function. One ca
remove this bias and obtain information on imaginary-tim
correlations by theforward walkingtechnique [3] which,
however, substantially increases the statistical noise. T
control of the walker population introduces a further sy
tematic error [1,2] whose elimination [2] leads to add
tional fluctuations.

In this paper we propose a new method, nam
reptation quantum Monte Carlo(RQMC) [4], which
avoids the above difficulties by exploiting thedynamical
propertiesof the classical diffusion process—rather tha
retaining the asymptotic distribution alone—and mappin
them onto the (imaginary-time) dynamical properties
the quantum system of interest. In the following we fir
discuss the formalism starting from classical diffusio
as described by the Langevin equation; we then outli
an algorithm suitable for practical implementations, an
finally, we present results for superfluid4He which are
meant to be representative of the potential of the metho

The time-discretized Langevin equation,
xst 1 ed ­ xstd 1 fsssxstdddde 1 jstd , (1)

describes the motion in configuration space under
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deterministic forcefsxd and a white noisej [kjstdl ­ 0,
kjstdjst0dl ­ 2edtt0 ]. For notational simplicity, in
Eq. (1) and in the following, we consider a one
dimensional system, the generalization to many dime
sions being straightforward. The process described
Eq. (1) is readily simulated by a pseudorandom wa
with transition probabilityWesx j yd ~ exph2fx 2 y 2

fsydeg2y4ej. The associated Fokker-Planck equation f
the probability distribution,Psx, td, in the continuous
limit reads

≠Psx, td
≠t

­
≠2Psx, td

≠x2 2
≠

≠x
f fsxdPsx, tdg . (2)

With the identifications fsxd ­ 2≠flogF0sxdgy≠x and
Psx, td ­ Fsx, tdF0sxd, Eq. (2) is formally equivalent to
a Schrödinger equation in imaginary time,2≠Fsx, tdy
≠t ­ H Fsx, td, for the wave functionF, with a fic-
titious Hamiltonian H ­ 2≠2y≠x2 1 F

21
0 s≠2F0y≠x2d

(here and in the following we set̄h2y2m ­ 1). It
can be verified by inspection that (i) thetrial func-
tion F0 is the ground-state ofH with eigenvalue
0; (ii) the asymptotic solution of Eq. (2) isPsx, t !

`d ­ F
2
0sxd; and (iii) the transition probabilityWe of

the random walk is a short-time approximation for th
importance-sampled propagator ofH , namely,Wesx j

yd ­ F0sxd kxje2eH jylF0s yd21 1 O se2d. Because of
property (ii), Eq. (1) can be used in the so-called vari
tional monte carlo (VMC) method to sampleF

2
0 ; in addi-

tion, because of (iii), the Langevin equation (1) describ
the imaginary-time dynamics generated by the fictitiou
HamiltonianH , for e ! 0.

The difference between the true HamiltonianH and
H is the local energyassociated with the trial function,
E sxd ­ F0sxd21HF0sxd. In order to recover from the
Langevin dynamics the correct imaginary-time evolutio
generated by the true HamiltonianH, we invoke a
generalization of the Feynman-Kac formula [5]:

kF0je
2tH jF0l ­

Z
e2S fXgP fXgD fXg 1 O sed , (3)
© 1999 The American Physical Society 4745
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te
where X ; hx0, x1, . . . , xN j indicates a time-discretized
path generated by the random walk,N ­ tye,
P fXg ; WesxN , xN21d 3 · · · 3 Wesx1, x0dF0sx0d2 is
the corresponding joint probability distribution,S fXg ­
ef 1

2 E sx0d 1 E sx1d 1 · · · 1 E sxN21d 1
1
2 E sxN dg is

the (discretized) integral of the local energy along th
path, and the integral

R
D fXg is calculated over all of the

paths generated by the random walk.
The ground-state energyE0, the expectation values of

local operatorsOsxd, and the corresponding generalize
susceptibilities can be obtained by differentiation from
the pseudo-partition-functionZ0 ­ kF0je2HtjF0l. For
example, one has

E0 ­ 2 lim
t!`

d
dt

logZ0 ­ lim
t!`

kE stde2S fXgl
ke2S fXgl

, (4)

where k· · ·l denotes the average over the probabilit
distributionP fXg.

This formalism (worked out in more detail elsewher
[4]) is the basis for the pure diffusion Monte Carlo
method (PDMC) [6], in which weighted averages such a
Eq. (4) are directly accumulated. Since the local ener
is an extensive quantity, the fluctuations of the weigh
grow exponentially with the system size, and PDMC
simulations are bound to fail but for the smallest system

The RQMC offers a cure for the fluctuating weigh
problem,without losing information on the dynamics of
classical diffusion. This is achieved using a generalize
Metropolis rejection method [7] to sample theproduct
P fXg ; P fXge2S fXg, rather thanP fXg alone. The basic
variable of our algorithm is apath, X ­ hx0, x1, . . . , xN j,
whose length in imaginary time,N ­ tye, is chosen so
large that the limitt ! ` in Eqs. (6) and (7) is reached
within the desired accuracy. We refer to this object as
reptile [8]. Given a reptile,X, we generate a new one,Y ,
by chopping off from its tail a piece of lengthd ­ Me

(M , N), and by sticking on its head a piece of equa
length, built up ofM steps of the Langevin dynamics (1)
The action by which the new reptileY is generated fromX
is calledreptation [8], and we indicate the corresponding
transition probability byW0fY , Xg. Iterating the reptation
move, the resulting asymptotic distribution for the reptil
is, by construction,P fXg. One can sampleP fXge2S fXg

instead, interpretingW0 as aproposal for a move, and
letting the proposal pass an acceptance test, so as to imp
detailed balance with respect toPfXg. The resulting
acceptance probability is [7]

AfY , Xg ­ minh1, W0fX, Y gPfY gysW0fY , XgPfXgdj

­ minh1, e2S fY gye2S fXgj . (5)
By explicitly including the acceptance test in the

dynamics of the random walk, the weightse2S fXg drop
out of the averages. For example, the expression for t
ground-state energy, Eq. (4), becomes

E ­ lim
t!`

kfE s0d 1 E stdgly2 , (6)

where the averagek· · ·l is now over thereptile random
walk whose dynamics is given by reptation supplement
4746
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with the Metropolis acceptance test described abo
(and a time-symmetrized form of the estimator has be
used). Analogously, expectation values of local operat
Osxd and their imaginary-time correlationsC12std ­
kO1stdO2s0dl can be cast in the form

kOl ­ lim
t!`

*Z t2s

s

Ost0d dt0

t 2 2s

+

kC12stdl ­ lim
t0!`

*Z t02t2s

s

O1st00 1 tdO2st00d dt00

t0 2 t 2 2s

+
.

(7)

The average ofOsxd taken at one end of the path
kF0jOe2HtjF0lyZ0, is the mixed estimate [2]. In the
time integrals of Eq. (7), the exclusion of two portions o
length s from the head and tail of the reptile makes th
convergence to the unbiased estimates faster.

The implementation of the algorithm is very simple, a
the level of a VMC simulation. The initial configuration
of the reptile is just a segment of a random walk genera
with the Langevin equation, and the simulation procee
as follows: (1) Select a “direction of time” (forward
or backward) with equal probability. If the choice is
backward, setX √ X̄ ­ hxN , xN21, . . . , x0j. This step is
introduced to enforce detailed balance at each reptat
move. (2) Using the Langevin equation, generate a n
segment of the reptile corresponding to the time interv
ft, t 1 dg to getY ­ hxM , xM11, . . . , xM1N j. The value
of d is sampled from a uniform deviate in the interva
f0, Dg whose width is chosen so as to minimize the aut
correlation times of the measured quantities. (3) Eva
ate A fY , Xg according to Eq. (5) and setX √ Y with
probability A. (4) Accumulate the ground-state energ
and other observables using Eqs. (6) and (7); go to (1).

The efficiency of the algorithm obviously depends o
the quality of the trial function. The relaxation time o
the reptile is proportional tot2ykdl, where kdl is the
average length of the reptation moves. In the limit
perfect importance sampling the local energy is consta
so that moves of arbitrary length will be accepted wi
probability one and the algorithm achieves an optim
efficiency withkdl ­ t. With a necessarily approximate
trial function, the acceptance rate for a fixed length
the reptation moved will decrease with an increasing
number of particlesNP . Therefore, for largeNP , one is
forced to decreased, thus deteriorating the efficiency o
the algorithm. However, even the branching algorith
suffers from the same pathology, and the issue is whet
simulations are feasible for system sizes ofpractical
interest. Among various conceptually similar techniqu
[6,9,10], the variational path integral (VPI) method ha
a better asymptotic scaling withNP , because it does not
suffer from uncontrolled fluctuations of the local energ
[9]. However for systems of,100 4He atoms, for which
it has been tested, VPI is far less efficient than RQMC [1

A preliminary test of the RQMC algorithm has bee
performed for the hydrogen atom with an approxima
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FIG. 1. Average of the potential energy in4He, calculated on
individual time slices along the path. The statistical error on
central slices is.0.03 K. This result was obtained using a tria
function with pair correlations only: Note thatV converges to
the same value given in Table I, obtained using a trial funct
with pair and triplet correlations.

trial function, reproducing exact results for several m
ments of electron-nucleus distance. As a demonstrat
we now present the calculation of several properties of
perfluid4He, showing that the method can be successfu
applied to systems of actual physical interest.

We simulateNP ­ 64 4He atoms in a cubic box with
periodic boundary conditions at the equilibrium densi
r ­ 0.02186 Å23. The particles interact with a realisti
pair potential obtained from first-principles calculation
[12]. Most of the simulations use a trial functionF0
with pair and nearly optimal three-body correlation
[13]. We compute E0, the potential energyV , the
diffusion coefficient of the center of mass motionDstd ­
kfrCMstd 2 rCMs0dg2lNPys6td, and the imaginary-time
correlations of the density fluctuation operatorFsq, td ­
krqstdr2qs0dlyNP , whererq ­

P
i exps2iq ? rid.

The time step ise ­ 0.001 K21, which gives a sys-
tematic bias of the order of1022 K on the total energy.
E0 and V are well converged fort ­ 0.4 K21, corre-
sponding toN ­ 400 time slices. For the calculation o
Fsq, td a longer path withN ­ 700 is used. The num-
ber of time slices of each reptation move is uniform
sampled between 0 and 20, yielding an acceptance r
of ø80%. In the averages (7) forV andFsq, td, we ex-
clude the contributions from 150 time slices on each s
of the path. The convergence ofV from the mixed esti-
mate at slice 0 orN to the unbiased estimate is shown
Fig. 1.

Our results forE0 andV are listed in Table I, togethe
with the corresponding data obtained from a branch
DMC calculation using the same time step and trial fun
tion. Here the branching evaluation ofV is complemented
with forward walking, implemented in the “backward sto
ing” mode [10]. From the estimated statistical error w
infer that reptation is roughly 3 times slower than branc
ing for the calculation ofE0, but twice as fast forV . This
comparison, far from being a conclusive statement of re
tive efficiency, still suggests that, whenever explicit info
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TABLE I. Ground-state energy,E0, and potential energy,V ,
in 4He, computed from RQMC and branching DMC runs o
3 3 106 Monte Carlo steps withe ­ 0.001 K21. The length
of the path in the RQMC calculation ist ­ 0.4 K21, and
the length of the forward walk forV in the diffusion Monte
Carlo calculation is0.2 K21. The extrapolation ofE0 to e ! 0
yields 27.3789s15d for RQMC and 27.3812s14d for DMC.
The overestimate of the experimental binding energy,27.17 K,
is due to neglect of three-body forces, mostly triple-dipo
repulsion, in the interparticle potential adopted [12].

E0 sKd V sKd

RQMC 27.4066s27d 221.644s15d
DMC 27.3902s15d 221.674s21d

mation on imaginary-time correlations is used, RQMC
likely to be competitive or better.

From the density-density correlation functionFsq, td
we obtain the static structure factorSsqd ­ Fsq, 0d
and the static linear response functionxsqd ­ 22

R`

0 Fsq,
td dt, both shown in Fig. 2. In particular, the presen
calculation of the response for a Bose system is rema
ably simple and efficient in comparison with the standa
route utilized so far with branching algorithms [14] (not
that at virtually no additional cost moreq vectors could
have been included in the calculation). The agreeme
with the measuredSsqd and xsqd [15] is excellent. The

FIG. 2. Computed (open circles) and measured[15] (so
lines) static structure factor (upper panel) and static line
response function (lower panel). The discrepancy inSsqd at the
smallest value ofq is due to the finite temperature of the exper
mental setup.
4747
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FIG. 3. The ME reconstruction of the dynamical structur
factor of 4He at q ­ 1.32 Å21 (solid line). The dotted line is
the result of a path integral Monte Carlo calculation [17], an
the dashed line is the measuredSsq, vd. The inset compares
the positions of the ME peaks at various wave vectors (op
circles) with the experimental excitation spectrum.

f-sum rule,≠Fsq, tdy≠tjt­0 ­ q2, is also fulfilled with
high precision.

Inferring the dynamical structure factorSsq, vd
requires an inverse Laplace transform,Fsq, td ­R`

0 Ssq, vdexps2vtd dv. We perform a maximum en-
tropy (ME) analysis [16] of our data, with results simila
to those obtained in Ref. [17]. The ME reconstructio
of Ssq, vd, shown in Fig. 3, is too smooth and does no
reproduce the sharp features exhibited by the experim
tal structure factor in the superfluid phase. Some know
properties of the spectrum are recovered: The presenc
a gap in the excitation spectrum is clearly revealed, a
the position of the peak of the reconstructed dynamic
response closely follows the measured dispersion of
elementary excitations [4,17]. However, the gener
reliability of the ME analysis as apredictive tool, with
the statistical accuracy of the data typically achieved fro
the simulation of continuum systems, is hard to assess.

We finally outline the calculation of the superfluid den
sity rs. The superfluid transition is of interest even a
zero temperature, for instance, in the presence of an ex
nal disordered potentialVext. We can computers from
the diffusion coefficient of the center of mass motion
rsyr ­ limt!` Dstd, which is the zero temperature limit
of the winding number estimator used in path integr
simulations [9]. We consider a model system of static im
purities in4He represented by attractive Gaussians plac
at random sites and we observe that the computedrs,
which is correctly one for the pure system, is indeed r
duced in the presence of the impurities [4].

Based on our limited experience, the RQMC metho
features distinct advantages over standard branching DM
4748
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Clusters, films, and superfluids in restricted geometries a
natural candidates for further applications. For Fermio
problems, the fixed-node approximation [1,2] can be us
to cope with the sign problem. The dynamical informatio
contained in the path is, in this case, incorrect [6], bu
the algorithm is still free from the mixed estimate and th
population control biases. Furthermore, because it samp
an explicit expression for the imaginary time evolution
RQMC gives access to quantities obtained by differenti
tion, for instance, a low-variance estimator of electron
forces [18].
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