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Optical Linewidth of a Low Density Fermi-Dirac Gas
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We study propagation of light in a Fermi-Dirac gas. We analytically obtain the leading density cor-
rection to the optical linewidth at zero temperature. This correction is a direct consequence of the quan-
tum statistical correlations of atomic positions that modify the optical interactions between the atoms at
small interatomic separations. The gas exhibits a dramatic line narrowing already at very low densities.
[S0031-9007(99)09375-8]
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The observation of Bose-Einstein condensation in dicorrection to the standard column-density refractive index
lute atomic vapors [1] has spurred much interest in ultraanalytically, by legitimately ignoring collective linewidths
cold atomic gases. Another evident milestone of atomi@nd line shifts generated in the processes in which a photon
physics would be the cooling of a Fermi-Dirac (FD) gasis repeatedly scattered between the same atoms. A fermion
to the quantum degenerate regime. So far all probingas exhibits a striking line narrowing characteristic of the
of atomic Bose-Einstein condensates has been done opD statistics, which behaves a%/ at low atom densities.
tically, and obviously optical detection could also play an In the dipole approximation it is advantageous to trans-
important role in the experimental studies of FD gasesform the Hamiltonian into théengthgauge by the Power-
Appropriately, theoretical studies of the FD gases are exZienau-Woolley transformation [7]. Then the positive
periencing a renaissance [2—6]. frequency component of the electric fidi® may be ex-

In this paper we investigate propagation of low-intensitypressed [8,9] in terms of the positive frequency compo-
light in a FD gas in the limit of low atom density. At nents of the driving electric displacemeB;, and of the
zero temperature we derive the leading quantum statistjcabource field radiated by atomic polarizatidh’, as

eE"(r) = Df(r) + % [d3r’ Grr — r)P*('), (1a)

Gir) — ind| 2~ 5w |4 5 0) (1b)
Y ar; or; Y 4ar Y '

Herek = Q/c, Q is the frequency of the driving field] simplicity, we consider here two-level atoms with just a
and the scalar constart= D?/lie, is defined in terms single ground stat¢g) and one excited state), using a

of the reduced dipole moment matrix elemébt. The constant real vectad (such thatD = |d|) as the dipole
three-dimensional monochromatic dipole radiation kernematrix element.

G(r) coincides with the corresponding classical expression While Egs. (1) describe the scattered light in a medium,

[10]. In second quantization the polarization reads in general, with a small atom-light detuning and for a dense
atomic sample, there is no easy way to find the polarization
P (r) = dgell/;(r)tl/e(r)- (2) P*(r). By making a field theory version of the Born and

Markov approximations, we have derived a hierarchy of

Here r, andy, are the ground state and the excited stat€guations of motion for correlation functions that contain
atom-field operators in the Heisenberg picture, dgdis ~ ©N€ excited-atom field and one, three, five, etc., ground

the dipole matrix element for the transitien— g. For state atom fields, for the limit of low light intensity [8]. In
| the present case of two-level atoms the hierarchy reads

-1
Pi(ry,....,1-1317) = (i6 — y)Pi(ry,...,1-1517) + Z PGt — rp)Py(ry, ..., T 1, T, .. T3 1)
k=1
+ ikpi(ry,....e)P - Di(r) + fd3rz+1 P-G(r; — rps)Prii(ry,...orisr11),  (3)

wherey = D?%k3/6mhe, denotes the spontaneous linewidihs the atom-light detuning. We have defined a projection
operatorP = dd/|d|*> whose purpose is to eliminate all but the two atomic states from consideration, and the correlation
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functions
Pi(ry,....,r—151)) = <¢g(r1)"'¢g(rlfl)P+(rl)¢g(rlfl)"'¢g(rl)>’ (4a)
pi(ry,....r) = <¢g(l‘1)'"ll/;(l'l)llfg(l'z)"'l//g(l'l)>- (4b)
The quantityP; reflects correlations between the dipoiethe correlation hierarchy (3) also in the present three-

moment of one atom and the positions lof- 1 other dimensional case.
atoms, andop; is simply the density correlation function  We consider the steady-state solution of (3). The atoms

for I ground state atoms. are assumed to fill the half-infinite spage> 0 with a
The terms in the sum on the right-hand side of Eq. (3)onstant densityp. The incoming free field is written
represent processes in which theatoms atry,...,r; Dr(r) = Dr é explikz), and we assume that|d. The

repeatedly exchange photons. Such processes are thierarchy of Eq. (3) is truncated by writing [11]

microscopic mechanism for collective linewidths and line Pi(r1.12:13) = Ps(ry:13)pa(ry. 1)/ ©6)

shifts. The integral stands for a process in which yet I M2 X3P, 1)/ -

another atom shines its light on the atonrat By ignoring the interatomic short-range interactions,
Because of the resulting divergent dipole-dipole inter-which in the case of a low-temperature single-species

actions, all correlation functionB; vanish whenever two FD gas may be described in terms of the wgakvave

position arguments are the same [9]. The Lorentz-Lorengcattering [5], the pair correlation function for a homoge-

(LL) local-field correction follows mathematically from neous gas has the following general form:

this obs_ervation. Moreover, Withputchanging the outcome pa(rr ) = p2[1 + o(r) — 1)]. @)

of the hierarchy, we may, and will, remove all contact in- ) ) »

teractions between different atoms in Eq. (3) by introducHere the functione(r) characterizes two-atom position

ing the field propagato®’ defined by correlations analogous to bunching or antibunching for
photons. We introduce the dimensionless quantities
Gj;(r) = Gj;(r) + ix6;;8(r)/3. (6) &/v.p=p/k,
./
This definition indicates that the integral & over an a= - _677 , G'(r) = P;G;r) (8)
infinitesimal volume enclosing the origin vanishes. 6+ ixk

The coupled theory for light and matter fields [Egs. (1)where @ denotes the dimensionless atomic polarizabil-
and (3)] may be solved, in principle exactly, by means ofity. In the present three-dimensional case, with the ansatz
stochastic simulations [6]. This is because the correlatio®,(r) = Pé exp(ik’z) for Im(k’) > 0, we obtain the sus-
hierarchy (3) is the same as the hierarchy describing theeptibility of the sample as

classical electrodynamics of charged harmonic oscillators k2 ap

with the position correlations;. By synthesizing a X="a " l=1—nsic 9)
stochastic ensemble of samples of dipoles that have ap/3 +C

the position correlation functiong; and calculating the with

ensemble-averaged response to classical light, we have _ - a’3GBe™iT + 52G” )

a solution to Eq. (3). Unfortunately, such simulationsC = _Pfd ) 1 — a2G”? "€

are demanding on computer time. The computations

of Ref. [6] were therefore performed within a one- . aGle iz + @232
dimensional (1D) model electrodynamics. While the - ;‘;]d37 pe” [ [~ 2261 ]é- (10)

predictive power of 1D electrodynamics may be ques-
tioned, the simulation results for a FD gasTat= 0 show Here we use the dimensionless integration variabte
clear signatures of the quantum statistics: Even in the limikr. The quantityC, and hence alsé’, have been forced

of zero density, the optical linewidth of the FD gas is onlyto be independent of position by essentially ignoring the
half of the resonance linewidth of an isolated atom [6]. effects of the surface of the atomic sample [6].

The 1D simulations have also allowed us to test The second term in the denominatorin Eq. (9) gives LL
predictions of the density expansion introduced by Moriceshift. In the absence of th€ term the electric suscep-
et al.[11] in their studies of the optical response of atibility is the standard column-density result augmented
quantum degenerate Bose-Einstein gas. At least in oneith a local-field correction. Atom statistics and atom-
dimension this expansion is in qualitative agreement witHield collective effects are encapsulated in the integral
numerical simulations [6]. The first two orders of the The expansion of Ref. [11] is such that the parameter
analytical density expansion of the optical line shapeC takes into account quantum statistical position corre-
agree with direct numerical computations to better thanations between any pair of atoms and the exchange of
on the 10% level by slightly underestimating the effectsphotons between them to arbitrary order, but ignores all
of the quantum statistics. In the low density limit the repeated photon exchange involving more than two atoms
agreement is excellent. With this in mind, we venture to[12]. Correspondingly, one may expand the functions in-
use the approximation of Moricet al.[11] to truncate side the integrals in Eq. (10) as power serie&i®’, and
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interpret thenth order as a process in which a photon isa manner that must eventually cancel to give a finite

radiated between a pair of atomgimes. result (10). Besides, the divergences do not depend on
In this paper we consider only the leading order in thep. Omitting the divergences, the integrals scale with

modifications of the optical response of an atom due t@s indicated. All told, Eq. (11) not only represents the

the presence of the other atoms, and write lowest-order correction to the optical properties in terms
3 o of the number of microscopic optical interaction processes
C=—-pa f d’re Pp(F)é* - G'(F) - é. (11)  between the atoms, but it also correctly gives the leading

_ . _ . density correction< 5%/3 to the optical response.
The expression (11) arises from processes in which any \we have plotted the linewidth and the line shift,

“probe” dipole is subject to the external driving field, including both the effect of the FD statistics and LL shift,
and in addition to the primary radiation from the other

dipoles. Collective linewidths and line shifts, processes I'=y[1 = 67 Im(C/a)],
that involve the repeated scattering of a photon between A = y[27p — 67 REC/a)] (15)
the same atoms, are ignored. For uncorrelated locations ylemp ’
of the dipoles withe = 0, the effects of the primary as a function of density in Fig. 1 using the full form 6f
radiation from the other dipoles on a probe dipole averagérom Eq. (11). A zero-temperature result is obtained ana-
to zero. However, for the FD statistics Eq. (11) gives alytically and the finite temperature result numerically from
nontrivial result. This reflects the short-range orderingEq. (12) for*°K with the 767 nm optical transition [5].
within the correlation length, of the atoms in the gas. A low-temperature FD gas exhibits a striking linewidth
In the thermodynamic limitp(r) in the pair correlation narrowing already at low densities. For= 1.5 X 1073
function [Eq. (7)] is given by the optical linewidth of the gas & = 0 is I' = 0.94v,
1 Rk and with p = 1.5 X 1072 we haveTI = 0.79y. For
p(r) = G f dkie™ |, (12)  the 767 nm transition the corresponding densities would
pem bep =82 X 10' cm™ andp = 8.2 X 10" cm™3. At
where the occupation numbems, = (e/z + 1)1 5 =0.1 (p = 5.5 X 10'3 cm™3) and atT = 0 the opti-
obey the FD statistics with 8 = 1/kgT and cal linewidth of a FD gas would be approximately half
ex = h*k*/2m. Fermions at7 = 0 fill the Fermi of the linewidth of an isolated atom. However, at the
sphereiiy, = O(kr — |k[), with the Fermi wave number latter density we may already have to consider collective
kr = (6m%p)'/3. In this case we may evaluate Eq. (12) linewidths and line shifts to obtain a reliable quantitative
in closed form. The result is prediction, a task we do not undertake in the present pa-
9 [ sinkgr 2 per. From Fig. 1(b), the line shift & = 0 is negative
il Tor Coskpr | . (13)  at low densities and completely vanishegat 0.03. At
o FroL O BF _ higher densities the line shift turns positive.
After inserting Eq. (13) into Eq. (11) we obtain a (Com-  The dramatic line narrowing may be attributed to the
plicated) analytical expression, whose density expansiofegular spacing between the atoms characteristic of the
reads FD statistics. As discussed in Ref. [6], the mechanism is
L 3 YA - particularly transparent in one dimension. An alternative
¢ = o\ ) “P +0(p). (14) description of the line narrowing may be obtained in the
momentum representation. At= 0 the fermions fill the

In our 1D electrodynamics, the entire expression (10kermj sphere. Because of the Pauli exclusion principle

may be integrated analytically for a FD gas Bt=0 g either strict forward scattering or scattering events
[6]. Itis then easy to see that the lowest-order densityy i ake the recoiling atom out of the Fermi sea are

contribution is correctly introduced by the expansion (11).;owed. The change of the wave vector of an atom upon

This is also true in the present three-dimensional CaScattering satisfie$As| = 2k sin(6/2), where 6 is the

although the demonstration is more inEiirect. _First, thescattering angle for photons. All atoms are scattered out
terms in Eq. (10) that do not depend gitr) are linearly ¢ the Fermi sea ifAx| > 2kr. Thus, we see that for the
proportional top. Second, expanding the contributions photon scattering anglessatisfying

to Eq. (10) thatdo depend ong into a series ofaG’,
for orders beyond the one included in (11) we find radial sin(0/2) > kp/k = (67%p)"/>, (16)
integrals of the form

e(r) =

scattering is not inhibited by the FD statistics. On

f dF P2 etim o(7) = O(p) the other hand, for s{#/2) < kr/k some recoil events
pn—l ’ would lead to an already occupied state in the Fermi sea,
1 and are forbidden. The suppression of light scattering
f dr 2 — o(F) « O (p)"/>. is strongest in the near-forward direction corresponding
rn

to small values ofd. When the density is increased,
Here ¢ are integers independent pf andn = 3. Most at p = 1/67% we havekr = k, and scattering is at
of these integrals formally diverge at the origin, but inleast partially suppressed in all nonforward directions.
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FIG. 1. The optical (a) linewidth and (b) the line shift of a

Fermi-Dirac gas as a function of the atom density per cubic

optical wave number of the driving light. The solid line
representsT” = 0, the dash-dotted lind = 150 nK for “°K,
the dashed lingd = 500 nK, and the dotted lind = 2 wK.

Correspondingly, Fig. 1 shows that= 1/672 = 0.017
is a relevant scale for the density.
It is instructive to note the difference between dif-

shift in the equation of motion faP, [Eq. (3)]. This can
generate an optical line shift that nevertheless for low den-
sity gas and for low-intensity light is suppressed in the ab-
sence of multiple spin states due to the FD statistics [13].
Apart from this line shift the dominant effect of the short-
range interactions is to modify the ground state atom cor-
relation functions. In the present study we ignored these
effects which for a FD gas, in the absence of the BCS
superfluid state [3,13], are expected to be significantly
weaker than for bosonic atoms [5].

We assumed a homogeneous gas in our analysis. Now,
a FD gas may be considered locally homogeneous [3]
when the length scale over which the density varies is
much larger than the spatial correlation length. Given the
length scale of a harmonic trap= (/i/mw)'/? and the
correlation length1/kr = (672p)~'/3 from Eq. (13),
the criterion readsl®p > 1. A simple dimensional
argument shows that this is the same as requiring that
the number of trapped atoms be much larger than one.
Furthermore, if the size scale of the atomic sample is much
larger than the wavelength of lighit>> A, itis reasonable
to expect that the refractive index as appropriate for the
local density applies in the bulk of the gas.
In conclusion, we studied propagation of light in a
FD gas. We discussed quantum statistical corrections to
the refractive index, and calculated the leading density
correction to the standard column density susceptibility.
Already at low densities, fermions exhibit a dramatic
narrowing of the resonance line. This might serve as a
signature of quantum degeneracy in a cold FD gas.
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p; = p!, corresponds to an uncorrelated atomic sample,

and givesp = 0. The leading correction to the standard

column-density linewidth therefore results from the-
operativeoptical effects, the collective optical linewidths,

and line shifts, and it is proportional to atom density, just
as LL shift. FD statistics is different because the correla-

tions have a length scalg ! that enters the argumeratnd
the length scale itself depends on density! o« p~!/3.

The result is that, at low densities, the effects of the FD

statistics dominate over LL shift. A Maxwell-Boltzmann
ideal gas has another nontrivial correlation functigrbout

the length scale is determined by temperature and does not

depend orp. The leading density correction to the optical

response is then once more proportional to atom density.
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