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We study propagation of light in a Fermi-Dirac gas. We analytically obtain the leading density
rection to the optical linewidth at zero temperature. This correction is a direct consequence of the
tum statistical correlations of atomic positions that modify the optical interactions between the ato
small interatomic separations. The gas exhibits a dramatic line narrowing already at very low den
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The observation of Bose-Einstein condensation in d
lute atomic vapors [1] has spurred much interest in ultr
cold atomic gases. Another evident milestone of atom
physics would be the cooling of a Fermi-Dirac (FD) ga
to the quantum degenerate regime. So far all probi
of atomic Bose-Einstein condensates has been done
tically, and obviously optical detection could also play a
important role in the experimental studies of FD gase
Appropriately, theoretical studies of the FD gases are e
periencing a renaissance [2–6].

In this paper we investigate propagation of low-intensi
light in a FD gas in the limit of low atom density. At
zero temperature we derive the leading quantum statisti
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correction to the standard column-density refractive ind
analytically, by legitimately ignoring collective linewidths
and line shifts generated in the processes in which a pho
is repeatedly scattered between the same atoms. A ferm
gas exhibits a striking line narrowing characteristic of t
FD statistics, which behaves asr2y3 at low atom densities.

In the dipole approximation it is advantageous to tran
form the Hamiltonian into thelengthgauge by the Power-
Zienau-Woolley transformation [7]. Then the positiv
frequency component of the electric fieldE1 may be ex-
pressed [8,9] in terms of the positive frequency comp
nents of the driving electric displacement,D1

F , and of the
source field radiated by atomic polarization,P1, as
e0E1srd ­ D1
F srd 1

1
ik
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Here k ­ Vyc, V is the frequency of the driving field,
and the scalar constantk ­ D 2yh̄e0 is defined in terms
of the reduced dipole moment matrix elementD . The
three-dimensional monochromatic dipole radiation kern
Gsrd coincides with the corresponding classical expressi
[10]. In second quantization the polarization reads

P1srd ­ dgecy
g srdcesrd . (2)

Herecg andce are the ground state and the excited sta
atom-field operators in the Heisenberg picture, anddge is
the dipole matrix element for the transitione ! g. For
el
on

te

simplicity, we consider here two-level atoms with just
single ground statejgl and one excited statejel, using a
constant real vectord (such thatD ­ jdj) as the dipole
matrix element.

While Eqs. (1) describe the scattered light in a mediu
in general, with a small atom-light detuning and for a den
atomic sample, there is no easy way to find the polarizat
P1srd. By making a field theory version of the Born an
Markov approximations, we have derived a hierarchy
equations of motion for correlation functions that conta
one excited-atom field and one, three, five, etc., grou
state atom fields, for the limit of low light intensity [8]. In
the present case of two-level atoms the hierarchy reads
n
lation
ÙPlsr1, . . . , rl21; rld ­ sid 2 gdPlsr1, . . . , rl21; rld 1

l21X
k­1

P ? G0srl 2 rkdPlsr1, . . . , rk21, rk11, . . . , rl ; rkd

1 ikrlsr1, . . . , rldP ? D1
F srld 1

Z
d3rl11 P ? G0srl 2 rl11dPl11sr1, . . . , rl ; rl11d , (3)

whereg ­ D 2k3y6p h̄e0 denotes the spontaneous linewidth,d is the atom-light detuning. We have defined a projectio
operatorP ; ddyjdj2 whose purpose is to eliminate all but the two atomic states from consideration, and the corre
© 1999 The American Physical Society 4741
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functions
Plsr1, . . . , rl21; rld ; kcy

g sr1d · · · cy
g srl21dP1srldcgsrl21d · · · cgsr1dl , (4a)

rlsr1, . . . , rld ; kcy
g sr1d · · · cy

g srldcgsrld · · · cgsr1dl . (4b)
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The quantityPl reflects correlations between the dipol
moment of one atom and the positions ofl 2 1 other
atoms, andrl is simply the density correlation function
for l ground state atoms.

The terms in the sum on the right-hand side of Eq. (
represent processes in which thel atoms atr1, . . . , rl

repeatedly exchange photons. Such processes are
microscopic mechanism for collective linewidths and lin
shifts. The integral stands for a process in which y
another atom shines its light on the atom atrl .

Because of the resulting divergent dipole-dipole inte
actions, all correlation functionsPl vanish whenever two
position arguments are the same [9]. The Lorentz-Lore
(LL) local-field correction follows mathematically from
this observation. Moreover, without changing the outcom
of the hierarchy, we may, and will, remove all contact in
teractions between different atoms in Eq. (3) by introdu
ing the field propagatorG0 defined by

G0
ijsrd ­ Gijsrd 1 ikdijdsrdy3 . (5)

This definition indicates that the integral ofG0 over an
infinitesimal volume enclosing the origin vanishes.

The coupled theory for light and matter fields [Eqs. (1
and (3)] may be solved, in principle exactly, by means
stochastic simulations [6]. This is because the correlati
hierarchy (3) is the same as the hierarchy describing
classical electrodynamics of charged harmonic oscillato
with the position correlationsrl. By synthesizing a
stochastic ensemble of samples of dipoles that ha
the position correlation functionsrl and calculating the
ensemble-averaged response to classical light, we h
a solution to Eq. (3). Unfortunately, such simulation
are demanding on computer time. The computatio
of Ref. [6] were therefore performed within a one
dimensional (1D) model electrodynamics. While th
predictive power of 1D electrodynamics may be que
tioned, the simulation results for a FD gas atT ­ 0 show
clear signatures of the quantum statistics: Even in the lim
of zero density, the optical linewidth of the FD gas is on
half of the resonance linewidth of an isolated atom [6].

The 1D simulations have also allowed us to te
predictions of the density expansion introduced by Moric
et al. [11] in their studies of the optical response of
quantum degenerate Bose-Einstein gas. At least in o
dimension this expansion is in qualitative agreement w
numerical simulations [6]. The first two orders of th
analytical density expansion of the optical line shap
agree with direct numerical computations to better th
on the 10% level by slightly underestimating the effec
of the quantum statistics. In the low density limit th
agreement is excellent. With this in mind, we venture
use the approximation of Moriceet al. [11] to truncate
4742
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the correlation hierarchy (3) also in the present three
dimensional case.

We consider the steady-state solution of (3). The atom
are assumed to fill the half-infinite spacez . 0 with a
constant densityr. The incoming free field is written
DFsrd ­ DF ê expsikzd, and we assume that̂ejjd. The
hierarchy of Eq. (3) is truncated by writing [11]

P3sr1, r2; r3d . P2sr2; r3dr2sr1, r2dyr . (6)

By ignoring the interatomic short-range interactions
which in the case of a low-temperature single-specie
FD gas may be described in terms of the weakp-wave
scattering [5], the pair correlation function for a homoge
neous gas has the following general form:

r2sr1, r2d ­ r2 f1 1 wsr1 2 r2dg . (7)

Here the functionwsrd characterizes two-atom position
correlations analogous to bunching or antibunching fo
photons. We introduce the dimensionless quantitiesd̄ ;
dyg, r̄ ; ryk3,

ā ; 2
6p

d̄ 1 i
, Ḡ0srd ;

P ? G0srd
ikk3 , (8)

where ā denotes the dimensionless atomic polarizabil
ity. In the present three-dimensional case, with the ansa
P1srd ­ Pê expsik0zd for Imsk0d . 0, we obtain the sus-
ceptibility of the sample as

x ­
k02

k2 2 1 ­
ār̄

1 2 ār̄y3 1 C
, (9)

with

C ­ 2r̄
Z

d3r̄ êp ?

"
ā3Ḡ03e2iz̄ 1 ā2Ḡ02

1 2 ā2Ḡ02

#
? ê

2 r̄
Z

d3r̄ wêp ?

"
āḠ0e2iz̄ 1 ā2Ḡ02

1 2 ā2Ḡ02

#
? ê . (10)

Here we use the dimensionless integration variabler̄ ­
kr. The quantityC, and hence alsok0, have been forced
to be independent of position by essentially ignoring th
effects of the surface of the atomic sample [6].

The second term in the denominator in Eq. (9) gives LL
shift. In the absence of theC term the electric suscep-
tibility is the standard column-density result augmente
with a local-field correction. Atom statistics and atom-
field collective effects are encapsulated in the integralC.
The expansion of Ref. [11] is such that the paramete
C takes into account quantum statistical position corre
lations between any pair of atoms and the exchange
photons between them to arbitrary order, but ignores a
repeated photon exchange involving more than two atom
[12]. Correspondingly, one may expand the functions in
side the integrals in Eq. (10) as power series ināḠ0, and
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interpret thenth order as a process in which a photon i
radiated between a pair of atomsn times.

In this paper we consider only the leading order in th
modifications of the optical response of an atom due
the presence of the other atoms, and write

C . 2r̄ā
Z

d3r̄ e2iz̄wsr̄d êp ? Ḡ0sr̄d ? ê . (11)

The expression (11) arises from processes in which a
“probe” dipole is subject to the external driving field
and in addition to the primary radiation from the othe
dipoles. Collective linewidths and line shifts, processe
that involve the repeated scattering of a photon betwe
the same atoms, are ignored. For uncorrelated locatio
of the dipoles withw ­ 0, the effects of the primary
radiation from the other dipoles on a probe dipole avera
to zero. However, for the FD statistics Eq. (11) gives
nontrivial result. This reflects the short-range orderin
within the correlation length, of the atoms in the gas.

In the thermodynamic limitwsrd in the pair correlation
function [Eq. (7)] is given by

wsrd ­ 2
1

r2s2pd6

É Z
d3k n̄keik?r

É2
, (12)

where the occupation numbers̄nk ­ sebek yz 1 1d21

obey the FD statistics with b ­ 1ykBT and
ek ­ h̄2k2y2m. Fermions at T ­ 0 fill the Fermi
spheren̄k ­ QskF 2 jkjd, with the Fermi wave number
kF ­ s6p2rd1y3. In this case we may evaluate Eq. (12
in closed form. The result is

wsrd ­ 2
9

k4
Fr4

"
sinkFr

kFr
2 coskFr

#2

. (13)

After inserting Eq. (13) into Eq. (11) we obtain a (com
plicated) analytical expression, whose density expansi
reads

C ­
3i
10

√
p

6

!1y3

ār̄2y3 1 O sr̄d . (14)

In our 1D electrodynamics, the entire expression (1
may be integrated analytically for a FD gas atT ­ 0
[6]. It is then easy to see that the lowest-order dens
contribution is correctly introduced by the expansion (11
This is also true in the present three-dimensional ca
although the demonstration is more indirect. First, th
terms in Eq. (10) that do not depend onwsr̄d are linearly
proportional tor̄. Second, expanding the contribution
to Eq. (10) thatdo depend onw into a series ofāḠ0,
for orders beyond the one included in (11) we find radi
integrals of the formZ

dr̄ r̄2 ejir̄

r̄n21 wsr̄d ~ O sr̄d ,

Z
dr̄ r̄2 1

r̄n
wsr̄d ~ O sr̄dny3.

Herej are integers independent ofr̄, andn $ 3. Most
of these integrals formally diverge at the origin, but i
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a manner that must eventually cancel to give a fini
result (10). Besides, the divergences do not depend
r. Omitting the divergences, the integrals scale withr̄

as indicated. All told, Eq. (11) not only represents th
lowest-order correction to the optical properties in term
of the number of microscopic optical interaction process
between the atoms, but it also correctly gives the leadin
density correction~ r̄2y3 to the optical response.

We have plotted the linewidth and the line shift
including both the effect of the FD statistics and LL shift

G ­ gf1 2 6p ImsCyādg ,

D ­ gf2pr̄ 2 6p ResCyādg ,
(15)

as a function of density in Fig. 1 using the full form ofC
from Eq. (11). A zero-temperature result is obtained an
lytically and the finite temperature result numerically from
Eq. (12) for 40K with the 767 nm optical transition [5].
A low-temperature FD gas exhibits a striking linewidth
narrowing already at low densities. Forr̄ ­ 1.5 3 1023

the optical linewidth of the gas atT ­ 0 is G . 0.94g,
and with r̄ ­ 1.5 3 1022 we have G . 0.79g. For
the 767 nm transition the corresponding densities wou
ber . 8.2 3 1011 cm23 andr . 8.2 3 1012 cm23. At
r̄ ­ 0.1 (r . 5.5 3 1013 cm23) and atT ­ 0 the opti-
cal linewidth of a FD gas would be approximately hal
of the linewidth of an isolated atom. However, at th
latter density we may already have to consider collectiv
linewidths and line shifts to obtain a reliable quantitativ
prediction, a task we do not undertake in the present p
per. From Fig. 1(b), the line shift atT ­ 0 is negative
at low densities and completely vanishes atr̄ . 0.03. At
higher densities the line shift turns positive.

The dramatic line narrowing may be attributed to th
regular spacing between the atoms characteristic of t
FD statistics. As discussed in Ref. [6], the mechanism
particularly transparent in one dimension. An alternativ
description of the line narrowing may be obtained in th
momentum representation. AtT ­ 0 the fermions fill the
Fermi sphere. Because of the Pauli exclusion princip
only either strict forward scattering or scattering even
that take the recoiling atom out of the Fermi sea a
allowed. The change of the wave vector of an atom upo
scattering satisfiesjDkj ­ 2k sinsuy2d, where u is the
scattering angle for photons. All atoms are scattered o
of the Fermi sea ifjDkj . 2kF . Thus, we see that for the
photon scattering anglesu satisfying

sinsuy2d . kFyk ­ s6p2r̄d1y3, (16)

scattering is not inhibited by the FD statistics. On
the other hand, for sinsuy2d , kFyk some recoil events
would lead to an already occupied state in the Fermi se
and are forbidden. The suppression of light scatterin
is strongest in the near-forward direction correspondin
to small values ofu. When the density is increased
at r̄ $ 1y6p2 we have kF $ k, and scattering is at
least partially suppressed in all nonforward direction
4743
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FIG. 1. The optical (a) linewidth and (b) the line shift of a
Fermi-Dirac gas as a function of the atom density per cub
optical wave number of the driving light. The solid line
representsT ­ 0, the dash-dotted lineT ­ 150 nK for 40K,
the dashed lineT ­ 500 nK, and the dotted lineT ­ 2 mK.

Correspondingly, Fig. 1 shows thatr̄ ­ 1y6p2 . 0.017
is a relevant scale for the density.

It is instructive to note the difference between dif
ferent atom statistics. For the Bose-Einstein condens
the standard factorization of the correlation function
rl ­ rl , corresponds to an uncorrelated atomic samp
and givesw ­ 0. The leading correction to the standar
column-density linewidth therefore results from theco-
operativeoptical effects, the collective optical linewidths
and line shifts, and it is proportional to atom density, ju
as LL shift. FD statistics is different because the correl
tions have a length scalek21

F that enters the argument,and
the length scale itself depends on density:k21

F ~ r̄21y3.
The result is that, at low densities, the effects of the F
statistics dominate over LL shift. A Maxwell-Boltzmann
ideal gas has another nontrivial correlation functionw, but
the length scale is determined by temperature and does
depend on̄r. The leading density correction to the optica
response is then once more proportional to atom densit

The dipole approximation for atoms neglects possib
short-range atom-atom interactions. In the case of co
bosonic atoms the short-range interactions may be
scribed to leading order in terms of the binarys-wave scat-
tering. For cold FD atoms in the same internal atomic sta
the dominant contribution must be significantly weake
p-wave scattering due to the Pauli exclusion princip
[3,5]. Between FD atoms in different internal levels als
s-wave interactions are possible. As shown in Ref. [1
the two-body short-range interactions introduce a loc
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shift in the equation of motion forP2 [Eq. (3)]. This can
generate an optical line shift that nevertheless for low d
sity gas and for low-intensity light is suppressed in the a
sence of multiple spin states due to the FD statistics [1
Apart from this line shift the dominant effect of the shor
range interactions is to modify the ground state atom c
relation functions. In the present study we ignored the
effects which for a FD gas, in the absence of the BC
superfluid state [3,13], are expected to be significan
weaker than for bosonic atoms [5].

We assumed a homogeneous gas in our analysis. N
a FD gas may be considered locally homogeneous
when the length scale over which the density varies
much larger than the spatial correlation length. Given t
length scale of a harmonic trapl ­ sh̄ymvd1y2 and the
correlation length1ykF ­ s6p2rd21y3 from Eq. (13),
the criterion readsl3r ¿ 1. A simple dimensional
argument shows that this is the same as requiring t
the number of trapped atoms be much larger than o
Furthermore, if the size scale of the atomic sample is mu
larger than the wavelength of light,l ¿ l, it is reasonable
to expect that the refractive index as appropriate for
local density applies in the bulk of the gas.

In conclusion, we studied propagation of light in
FD gas. We discussed quantum statistical corrections
the refractive index, and calculated the leading dens
correction to the standard column density susceptibili
Already at low densities, fermions exhibit a dramat
narrowing of the resonance line. This might serve as
signature of quantum degeneracy in a cold FD gas.
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